AUFGABEN 6: VORLESUNG GRUNDLAGEN DER MATHEMATIK

Aufgabe 1. Erläutern Sie ausführlich, wo der Fehler im folgenden Beweis steckt.

Behauptung: Seien $n \ge 1$ Menschen in einem Raum. Dann sind alle n Menschen gleich.

Beweis: Per Induktion. Der Induktionsanfang ist n=1, welcher klarerweise erfüllt ist. (Jeder ist zu sich selbst gleich.) Sei die Aussage also wahr für n, und seien n+1 Menschen in einem Raum. Schicken wir einen raus, so wissen wir per Induktion, dass alle verbleibenden n gleich sind. Nun holen wir den Mensch, der draußen stand, wieder rein und schicken einen anderen raus. Nun sind nach Induktionsvoraussetzung wieder alle gleich. Also müssen alle n+1 Menschen gleich sein.

Aufgabe 2. Es sei X eine Menge mit n Elementen. Zeigen Sie, dass die Potenzmenge $\mathfrak{P}(X)$ 2^n Elemente hat.

Aufgabe 3. Beweisen Sie folgende Aussagen per Induktion. Hierbei ist $n \in \mathbb{N}_0$.

- (a) $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.
- (b) $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- (c) Für $n \ge 2$ gilt $n + 1 < 2^n$.
- (d) $n^3 n$ ist durch drei teilbar.
- (e) $n^4 n$ ist im Allgemeinen nicht durch 4 teilbar. (Finden Sie ein Gegenbeispiel.)

Aufgabe 4. Sei $p \in \mathbb{N}_0, p > 1$. Zeigen Sie, dass p genau dann eine Primzahl ist, wenn $(p|ab) \Rightarrow (p|a \vee p|b) \quad \forall a, b \in \mathbb{N}_0.$

Abgabe: 28.Okt.2019 vor der Vorlesung. Rückgabe: 31.Okt.2019 in den Übungen.