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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

103 2 0 01
A3= oe—o o —~> A(A3)=|0 0 1| —~— Sa; = {2cos(F),0,2cos(3F)}
1

1 0
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

1 3 2 0 0 1
A3= oe—o o —~> A(A3)=|0 0 1| —~— Sa; = {2cos(F),0,2cos(3F)}
1 1 0
Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))
2
0O 0 0 1
Dy = o 4 s A= [0 0 0 My s, = {2c0s(%), 02, 2cos(5E
4 = (Ds) = 0 0 0 1 D4—{ C°5(€)707 COS(T)}
1 1 1 0
3
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Ue,1(A(l)) =0

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

1 3 5 0 0 1
A3 = e——e——o —~—> AA3)=({0 0 1 Ny = {2cos(%),0,2cos(3F)}
1 1 0

v~ fore=2

Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))

2
0 0 0 1
D : 4 —n A 0 0 0 1 bl 2 57
= (D4) = 00 o0 1|7 Sp, = {2cos( %), 0%, 2cos(F)}
1 1 1 0

3 v fore=4
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Let A(T') be the adjacency matrix of a finite, connected, loopless graph I'. Let
Ue+1(x)

el
Smith ~1969. The graphs solutions to (CP) are precisely

Cla ADE graphs for e + 2 being the Coxeter number. —0.
Type Am: fore=m-—1
Type Dp: < fore=2m—4
As = L cos(BT“)}
Type Es: I for e =10
Ds — 1] Type E7: - - - ] ‘ ) for e =16 cos(32)}
Type Es: [ for e =28
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o Dihedral representation theory
o Classical representation theory
@ N-representation theory
@ Dihedral N-representation theory

Q Non-semisimple fusion rings
@ The asymptotic limit
o Cell modules
@ The dihedral example

© Beyond
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The dihedral groups are of type l(e +2):
2 2 - _
Weio=(s,t|s*=t"=1 Seyp=_..8ts=wp = _..tst = Tet2),
e+2 e+2
eg  Wy= (s, t|s?=t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e =2
the Coxeter complex is:

| will sneak in the Hecke case
(a.k.a. quantum case) later on.
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The dihedral groups are of type l(e +2):

2 2 - =
Weio=(s,t|s*=t"=1 Seyp=_..8ts=wp = _..tst = Tet2),
e+2 e+2
eg  Wy= (s, t|s?=t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e =2
the Coxeter complex is:

| will explain in a few minutes
Lowest cell.
what cells are.
For the moment: Never mind!
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The dihedral groups are of type l(e +2):

2 2 - =
Weio=(s,t|s*=t"=1 Seyp=_..8ts=wp = _..tst = Tet2),
e+2 e+2
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the Coxeter complex is:

| will explain in a few minutes
what cells are.
For the moment: Never mind!

Lowest cell.

Biggest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide.

The Bott—Samelson (BS) generators 0; = s+ 1,0, =t + 1.
There is also a Kazhdan-Lusztig (KL) bases. Explicit formulas do not matter today.

One-dimensional modules. My_» , A5, A € C, 0, — A, 0. — A..

e=0mod?2

M.,z € VE-{0}

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide.

One-dimension Proposition (Lusztig?).
The list of one- and two-dimensional We.2-modules

is a complete, irredundant list of simple modules.
Mo,0, Ma2,0, M2, M2 2 Mo,0, M2

]I learned this construction from Mackaay in 2017. |

Two-dimension

7 007 \z2Z7
e =0 mod 2 i e # 0 mod 2
M,,z € VE—{0} | M,,zeVZ

Ve = roots(Uey1(X)) and VI the Z/2Z-orbits under z +— —z.
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Dihedral representation theory on one slide.

One-dimensional modules. My_» , A, A € C,0, — A, 0. — A..

e =0mod 2 i e # 0 mod 2

Mo,0, M2,0, Mo 2, M2 > | Mo, Moy

Example.
Mo,o is the sign representation and My, is the trivial representation.

In case e is odd, Uet1(X) has a constant term, so Mz o, Mo» are not representations.
|
M.,z € VE_{0} M,,z€ VE

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide.

One-dimensional modules. My_» , A, A € C,0, — A, 0. — A..

e =0 mod 2 i e # 0 mod 2

Example.

M, for z being a root of the Chebyshev polynomial is a
Two-dim representation because the braid relation in terms of BS generators
involves the coefficients of the Chebyshev polynomial.

e =0 mod 2 i e # 0 mod 2

M,,z € VE—{0} | M,,zeVZ

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihe

One-g

Two-(

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:

Example.

The case e=6

Mocas(rrs) = Macas(

The roots are 2cos(kn/8)

Mo 8)[2 Macas3n/8)

Macas(or/s) = Macos

M icesior /sy = Mo o @ Mo o

Daniel Tubbenhauer
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An algebra P with a fixed basis BY is called a (multi) N-algebra if

xy € NBF  (x,y € BY).

A P-module M with a fixed basis BM is called a N-module if
xm € NBM  (x € BY,m € BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Af

Group algebras of finite groups with basis given by group elements are N-algebras.

Example.

The regular module is a N-module.

A P-module M with a fixed basis BM is called a N-module if

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of

xm € NBM  (x € BY,m € BM).

2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example.

A

Group algebras of finite groups with basis given by group elements are N-algebras.
The regular module is a N-module.

Example.

AP

Fusion rings are with basis given by classes of simples elements are N-algebras.
Key example: Ko(Rep(G)) (easy N-representation theory).
The
Key example: Ko(Repg (Uq(g)) = Gg) (intricate N-representation theory).

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example.

A

Group algebras of finite groups with basis given by group elements are N-algebras.
The regular module is a N-module.

Example.

AP

Fusion rings are with basis given by classes of simples elements are N-algebras.
Key example: Ko(Rep(G)) (easy N-representation theory).
The
Key example: Ko(Repg (Uq(g)) = Gg) (intricate N-representation theory).

1 o7 1 1 1 1

Example. N-al
2-categories and

Exarﬁple.

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.

Their N-representation theory is mostly widely open.

pgorification of
ivalence.
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Clifford, Munn, Ponizovskit ~1942++, Kazhdan—Lusztig ~1979. x < y if x
appears in zy with non-zero coefficient for z € BY. x ~| y if x < y and y <| x.
~ partitions P into left cells L. Similarly for right R, two-sided cells LR or
N-modules.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.
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Clifford, Muni
appears in zy
~ partitions H
N-modules.

A N-module M|
equivalence cla

[

Hence, one can

Example. Tra
2-modules.

Daniel Tubbenhauer

Philosophy.

vi — v if vi appears in zvs.

X2 mpy
X1 X4 m; mg
X3 m3

cells = connected components
transitive = one connected component

“The atoms of N-representation theory”.

Imagine a graph whose vertices are the x's or the m'’s.

79. x <, yifx
yand y < x.
lIs LR or

e~
lling it.

]

ration of simple

|Question (N-representation theory). Classify them!
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Example. X
ap K.
~ Group algebras with the group element basis have only one cell, G itself.

NA

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.
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Example. X
ap K.
~ Group algebras with the group element basis have only one cell, G itself.

NA

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example. same ~|

equivalence class. A ot killing it.
Fusion rings in general have only one cell
Fac|since each basis element [V;] has a dual [V;"] jpex.

such that [Vj][V;*] contains 1 as a summand.
Hence, one can stu

Cell theory is useless for them!
Example. Transitive N-modules arise naturally as the decategorification of simple

2-modules.
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NA

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example.

equivalence class. A

Hence, one can stu

Exa

Fusion rings in general have only one cell
Fac|since each basis element [V;] has a dual [V/]
such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

same ~|
ot killing it.
pex.

nle Transitive Nomodnles arice natirallv as the decatecarification of Q'mp|e

2-mog

Example (Lusztig <2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

S 2 ts I sts ZZtsts’ststs

v P

S st & tst SststStsts

We will see the transitive N-modules in a second.
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Example. X

~ Group algebras with the group element basis have only one cell, G itself.

NA

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example. same ~|

equivalence class. A ot killing it.
Fusion rings in general have only one cell
Fac|since each basis element [V;] has a dual [V;"] jpex.

such that [Vj][V;*] contains 1 as a summand.
Hence, one can stu

Cell theory is useless for them!
Examnle Transitive Nemodules arise natiirallv as the decatecarification of simple

Example (Lusztig <2003).

2-mog

Hecke algebras for the dihedral group with KL basis have the following cells:

75# S STs SSJ@SS

1 “Wo Right cells.

S S STs STs

We will see the transitive N-modules in a second.
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NA

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example.

equivalence class. A

Hence, one can stu

Exa

Fusion rings in general have only one cell
Fac|since each basis element [V;] has a dual [V/]
such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

same ~|
ot killing it.
pex.

nle Transitive Nomodnles arice natirallv as the decatecarification of Q'mp|e

2-mog

Example (Lusztig <2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

STS —;CsSTs—STSTsS

SO

ST —STSCT—TstTs

. Two-sided cells. )
We will see the transitive N-modules in a second.
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Clifford, Munn, Ponizovskii ~19424++, Kazhdan—Lusztig ~1979. x <, y if x
appears in zy with non-zero coefficient for z € BY. x ~| y if x <_ y and y <| x.
~ partitions P into left cells L. Similarly for right R, two-sided cells LR or
N-modules.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

[ Fact. Fach transitive N-madule has a uniaue anex

Morally.

Hence, one ca
The further away an N-algebra is from being semisimple,
the more useful and interesting is its cell structure.

Example. Trd tion of simple

2-modules.
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

‘_
1 3 24 5
20100 00000
02111 00000
.~M.=| 00000 |, O ~M=| 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

i (.

O—— ——

1 3 2 4 5
U
210100 00000
02111 0000O
0s ~ Mg = 0/0 000 |, 0. ~ M, = 11200
0/0 00O 01020
00 00O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

action

O0s—— ———

1 3 5
2/0/1 00 00000
0/2/1 11 0000O
0s ~ Mg = 0/0/0 00 |, 0. ~ M, = 11200
0/0/0 0O 01020
0/0/0 0O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
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O——
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w <
N <
FN
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|
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':

o
H
=
wn
I
coocowmN

Daniel Tubbenhauer

M = C(1,2,3,4,5)

action

/

N —
1 3 24 5
A
01/o0/o 0
2111 0
0000 |, 6 ~M=]1
0000 0
0000 0

A tale of dihedral groups, SL(Z)q. and beyond
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)
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0s ~ Mg = 00000O0 |, 0. ~ M, = 1111200
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00000O 01/00 2

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019 8/14
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

0 —
1 3 24 5

20100 00000

02111 00000

.~M.=| 00000 |, O ~M=| 11200

00000 01020
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N-modules via graphs.

Constructa W___madule M associated ta a hinartite oranh -
The adjacency matrix A(T) of T is

0/1 00

A(r) =

[eNeN HeNe]
=== o
o O O
[eNeNal
[eNeNal

These are We2-modules for some e
only if A(T) is killed by the Chebyshev polynomial Ue1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

|It is not hard to see that the Chebysl:ev—braid-like relation c/an not hold othervbise. |
02111 000O0O
0s ~ Mg = 000O0O 0, ~ M, = 11/200
000O0O 01020
00O0O0O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = (C(1,2,3,4,5)

_/

N
Hence, by Smith’s (CP) and Lusztig: We get a representation of We 2

if I is a ADE Dynkin diagram for e + 2 being the Coxeter number.

|That these are N-modules follows from categorification. |
I 5 Z 4 5

[‘Smaller solutions’ are never N-modules. |

20100 00000
2 00000
0s ~» Mg = 00000 0 ~ M, = 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph T

Classification.
, irredundant of transitive N-modules of We.2:
apex ‘ @ cell ‘ @—Q cell ‘ cell
N-reps. ‘ Moo ‘ MADE-+bicolering for € +2 = Cox. num. ‘ Ma,»

Further upshot: A cute classification of ADE graphs.
I is finite type ADE iff Uey1(A(T)) gets periodic.
I is affine type ADE iff Uet1(A(I)) grows linearly.

I is anything else iff Uey1(A(T)) grows exponentially.

U I U U U U 00
02111 00000
N N N N N ya) AL 1 1 N N

2

| Iearned thls from /with Kildetoft—-Mackaay—Mazorchuk— Zlmmermann ~201

6.
\OOOOO) k01002)
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Example (e = 2).

The Weyl group of type B,. Number of elements: 8. Number of cells: 3, named 0
(trivial) to 2 (top).

Cell order:

Size of the cells:

Cell structure:

s,sts s number of elements | 2
1
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Example (e = 2).

The
(trivia

Cell

(v is the Hecke parameter deforming the reflection equations s* =

Example (SAGE).

1-1=+"1.

Size of the cells:

Cell structure:

Daniel Tubbenhauer

0=—1=—2

cell O] 1]2
size || 1|61

= ‘

= ‘

number of elements

=N
N =

A tale of dihedral groups, SL(Z)q, and beyond
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Example (e = 2).

The
(trivia

Cell (v is the Hecke parameter deforming the reflection equations s* =

Example (SAGE).

1-1=+"1.

Size of the cell

Cell structure:

Daniel Tubbenhauer

0 1 2

Example (SAGE).

0. -
ess'

0 = (v'+lower powers)ds.

0. = (v1+|ower powers)fss.
Os:s - O5e = (v'4-lower powers)d.+higher cell elements.
Os:s - 05 = (lower powers)ds: + higher cell elements.

number of elements

2

1

W‘

1

2

A tale of dihedral groups, SL(Z)q, and beyond
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Example (e = 2).

The Example (SAGE). med 0
(trivid

1-1=+"1L
Cell (v is the Hecke parameter deforming the reflection equations s® = 2 = 1.)

0 1 2
Example (SAGE).

Size of the cell

6 - 0. = (v'+lower powers)ds.
O.c -0 = (v1+|ower powers)fss.
Cell structure: |fs:s - 0505 = (v'-+lower powers)ds+higher cell elements.
Os:s - 05 = (lower powers)ds: + higher cell elements.

‘ ‘ number of elements ‘2 1

| s,
B Example (SAGE). 2|

i

Oy * Owy = (v*4-lower powers)f., .

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019 9/14



Example (e = 2). Fact (Lusztig ~1984-++).

For any Coxeter group W
there is a well-defined function

The Weyl group of typs ber of cells: 3, named 0
(trivial) to 2 (top). 2: W o N
Cell order: which is constant on two-sided cells.

Size of the cells:
cell 01]2

()]
—

size || 1

Cell structure:

»—\‘
»—l‘

number of elements

=N

N | =

]
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Example (e = 2).
The Weyl group of
(trivial) to 2 (top).
Cell order:

Size of the cells:

Fact (Lusztig ~1984++).

For any Coxeter group W
there is a well-defined function

typs ber of cells: 3, named 0

a:W—N

which is constant on two-sided cells.

Cell structure:

Idea (Lusztig ~1984).

Ignore everything except the leading coefficient
a(two-sided cell).

Daniel Tubbenhauer

number of elements | 2 | 1
112

f 1]

A tale of dihedral groups, SL(Z)q, and beyond
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Example (e = 2). Fact (Lusztig ~1984-++).

For any Coxeter group W
there is a well-defined function

The Weyl group of typs ber of cells: 3, named 0
(trivial) to 2 (top). 2. W — N
Cell order: which is constant on two-sided cells.

Size of the cells:

Idea (Lusztig ~1984).

Ignore everything except the leading coefficient
a(two-sided cell).

Cell structure:

Why isn't that stupid?
Because a is also turns up as the leading coefficients
of traces of standard generators acting on simple modules.

Upshot. One can associate an to simples,
and the simples should be uniquely determent by the leading coefficients.

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019 9/14



Let Hy(W) be the Hecke algebra associated to W. The asymptotic limit Jo (W)
of H,(W) is defined as follows.

As a free Z-module:

Joo(W) = B g Z{tw | w € LR}.  Compare: Hy(W) = Z[v,v {0, | W}.

Multiplication.
txty = > 1R Yaytze Compare: 0,6, =3 g hi 0.+ bigger friends.

where 77, € N is the leading coefficient of hZ , € N[v,v™'].
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Example (e

= 2).

The multiplication tables (empty entries are 0 and [2] = v+ v~ 1) in 1:

Daniel Tubbenhauer

A tale of dihedral groups, SL(2)4, and beyond

| & | e | 2 | & |ta]

t. || t |t t.

tees |G t.

to || te |t | 8+t

t t | t. t.

ti: to | ot t.

. o AN S

| e B 0. 0 0. 0..

0. 206. 206. . [2]0. 0. 0. + Oug 0. +0...
e || [206-0 | [206-+ 20w | [0 + 20w | 6o+ 6.0 | 6o+ 2P0 | 6o+ 0ot 206w
0. || [26. 216 + [2]0w0 206 + 206 | 6.+ 60 | 6o+ 6o+ [2]6ug 20, + Ou
0 0.. O.c + Oy 0.+ 0. 20 [200.. 2]6..

0 || 0. +0.. 0.+ 2P0, | 0.+ + 26w, [200.c 210 + 2P0 | [216.. + 2160,
O || 0nt 0ue | 00t Ouie + [2]00g 0. +0u | [206 2162 + [2]6u, [216- + [2]6-..
(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

March 2019




Fact (Lusztig ~1984++).

Let H,(W it Joo (W)

of Hy(W) Joo (W) = @, JX(W) with the t, basis

and all its summands JSX(W) = Z{t. | w € LR}
are multifusion algebras.

As a free 7 (Meaning semisimple N-algebras with a certain nice trace form.)

Joo(W) = @ g Z{tw | w € LR}. Compare: H,(W) = Z[v,v'|{0, | W}.

Multiplication.
txty = > 1R Yaytze Compare: 0.6, = > g h% 0, + bigger friends.

where 77, € N is the leading coefficient of hZ , € N[v,v™'].
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Fact (Lusztig ~1984++).

Let H,(W it Joo (W)

of Hy(W) Joo (W) = @, JX(W) with the t, basis

and all its summands JSX(W) = Z{t. | w € LR}
are multifusion algebras.

As a free 7 (Meaning semisimple N-algebras with a certain nice trace form.)

Joo(W) =4 Surprising fact 1 (Lusztig ~1984-4+). {0n | W}.
It seems one throws almost away everything, but:

There is an explicit embedding

Multiplication. Hy (W) < Joo (W) ®z Z[v, v }]

tety = > |which is an isomorphism after scalar extension to Q(v).|ger friends.

where 77, € N is the leading coefficient of hZ , € N[v,v™'].
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Fact (Lusztig ~1984++).

Let H, (W it Joo (W)

of Hy(W) Joo (W) = @, JX(W) with the t, basis

and all its summands JSX(W) = Z{t. | w € LR}
are multifusion algebras.

As a free 7 (Meaning semisimple N-algebras with a certain nice trace form.)

Joo(W) =4 Surprising fact 1 (Lusztig ~1984-4+). {6, | W}.
It seems one throws almost away everything, but:

There is an explicit embedding

Multiplication. H,(W) = Joo (W) @z Z[v,v"]

tety = > |which is an isomorphism after scalar extension to Q(v).|ger friends.

Surprising fact 2 (Lusztig ~1984++).
where 7 |, 4
There is an explicit 1:1 correspondence

{simples of H,(W) with apex LR} & {simples of J5X(W)}.
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“Induced” transitive N-algebras and -modules.

Fix a left cell L. Let M(>_), respectively M(>_), be the N-modules spanned by
all x € BP in the union L’ >| L, respectively L’ > L. Similarly for right R,
two-sided LR and diagonal H =L NR cells.

Left cell module C = M(>L)/M(>_). (Left N-module.)
Right cell module Cg = M(>g)/M(>r). (Right N-module.)
Two-sided cell module Ci g = M(>1r)/M(>1r). (N-bimodule.)

The diagonal cell Cy = JH (W) = (M(>1r)/M(>1r)) NKBY (H). (N-subalgebra.)
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“Induced” transitive N-algebras and -modules.

Fix a left cell L. Let M(>_), respectively M(>(), be the N-modules spanned by
all x € BP in the union L’ >| L, respectively L’ > L. Similarly for right R,
two-sided LR and diagonal H =L N R cells.

Analogy: “Hierarchy of structures”.

Left cell

(,CL left induced
. < C

Right cel Cl Clr  © subalgebras biinduced

C C C . .
_ Cr right induced
TWO—SId < LT/ AL "L VARR S 7

The diagonal cell Cy = JH (W) = (M(>1r)/M(>1r)) NKBF (H). (N-subalgebra.)
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“I Example.

Fi C[G] with the group element basis has only one cell module, the regular module.
X \
all Similarly for any fusion algebra.
two-sided LR and diagonal H = LN R cells.

Left cell module Cp = M(>1)/M(>L). (Left N-module.)
Right cell module Cr = M(>gr)/M(>r). (Right N-module.)
Two-sided cell module Ci g = M(>1r)/M(>1r). (N-bimodule.)

The diagonal cell Cy = JH (W) = (M(>1r)/M(>1r)) NKBF (H). (N-subalgebra.)
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“I Example.

Ei C[G] with the group element basis has only one cell module, the regular module.
X \
all Similarly for any fusion algebra.
two-sided LR and diagonal H = LN R cells.

Left Example (Kazhdan—Lusztig ~1979, Lusztig ~1983+).

. For Hecke algebras of the symmetric group with KL basis
Right the cell modules are Lusztig's
cell modules studied in connection with reductive groups in characteristic p.

Two-sided cell module Ci g = M(>1r)/M(>1r). (N-bimodule.)

The diagonal cell Cy = JH (W) = (M(>1r)/M(>1r)) NKBF(H). (N-subalgebra.)
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“I

C[G] with the group element basis has only one cell module, the regular module.

Example.

Fi y
all Similarly for any fusion algebra.
two-sided LR and diagonal H = L N R cells.
Left Example (Kazhdan—Lusztig ~1979, Lusztig ~1983+).
. For Hecke algebras of the symmetric group with KL basis
Right the cell modules are Lusztig's
cell modules studied in connection with reductive groups in characteristic p.
Two-sided cell module Cigr = M(>1r)/M(>r). (N-bimodule.)
Example (dihedral case).

[cel o] 1 [2] —— =
Cells: [size [1]2n2]1] 1for neven: 2 2 1for nodd: 22

[2 flo] t [n] S S

n even. Two left cell modules «~ Two bicolorings of the type A graph.

n odd. One left cell module «~ One bicoloring of the type A graph.
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Example (e = 2).

The fusion ring Ko(SL(2),) for g°¢ = 1 has simple objects [Lo], [L1], [L2]. The
fusion ring JSR(W) has simple objects t., t..s, tor, to, tiae, tos.

Comparison of multiplication tables:

te | tes ts t tis tes
I | & |
|tk | [L2) | It bR Ee &
tses tses [ ts
[Lo] || [Lo] | [L2] [L1] & ¢ to | At
(L] || 1] | [bo] | (L] P T T :
[La] || [La] | [La] | [Lo]+ [L2] S t. ts to
t oo | te | £+t

JER(W) is a bicolored version of Ko(SL(2),):

t&t, e [Lo],  ters&tise o [La],  tec&tis e [L4].

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019
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Example (e = 2).

The fusion ring Ko(SO(3),) for g*¢ = 1 has simple objects [Lo], [L2]. The fusion

ring J&L (W) (H = L. N R.) has simple objects t., t....

Comparison of multiplication tables:

[Lo] | [Lo]
[Lo] || [Lo] | [Lo]
[Lo] || [L2] | [Lo]
JH (W) is Ko(SO(3)4):
tg e [LO]a

ts [
& v e e
t s tS s ts
tses o [LZ]

This is the slightly nicer statement. |

Daniel Tubbenhauer

A tale of dihedral groups, SL(Z)q. and beyond
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Example (e =2

The fusion ring K

Fact.

Both connections are always true (i.e. for any e).

[L>]. The fusion

ring J!;L(VV) (H =T T TKgJ T1aS SMMPTE ODJECTS I3, Lois.

Comparison of multiplication tables:

ol [ 1t | & |t
(L] [ [l & £t
[La] |} [L2] | [Lo] e | &
JH (W) is Ko(SO(3),):
ty e [Lo], tsrs & [Lz]

Daniel Tubbenhauer
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Example (e =2 Fact.

[L2]. The fusion

The fli|5|onvr|ng HBoth connections are always true (i.e. for any e).
ring JOU(W) (H =TTy mas stmpre oojects &5 s

H-cell-theorem.
There are 1:1 correspondences
{transitives of Hy(W) with apex LR} &L {transitives of J\R(W)} &L {transitives of J%'(W)},

{transitives of H,(W) with apex LR} & {transitives of Ko(SL(2)5")} & {transitives of Ko(SO(3)q)}-

ts o~ [Lo], tses e [Lo].
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Example (e =2 Fact.

The fli|5|onvr|ng HBoth connections are always true (i.e. for any e).
ring JOU(W) (H =TTy mas stmpre oojects &5 s

[L2]. The fusion

H-cell-theorem.

There are 1:1 correspondences

{transitives of Hy(W) with apex LR} &L {transitives of J\R(W)} &L {transitives of J%'(W)},

{transitives of H,(W) with apex LR} & {transitives of Ko(SL(2)5")} & {transitives of Ko(SO(3)q)}-

ty e~ [Lo], i s [LQ]

Upshot.
H,(W) is a non-semisimple version of Ky(SL(2)q).

H'(W) is a non-semisimple version of Ko(SO(3),).

In particular, the Hecke algebras have a v parameter.

Daniel Tubbenhauer A tale of dihedral groups, SL(Z)q, and beyond
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Example (e = 2).

The fusion ring Ko(SO(3),) for g*¢ = 1 has simple objects [Lo], [L2]. The fusion
ring J9 (W) (H = L, NR.) has simple objects t., t

Comparison of Fact.

With a bit more care (with the H-cell-theorem)
all the above generalizes to any Coxeter group W.

Thus, Hecke algebras are non-semisimple fusion rings.

JH (W) is Ko(S

In general Joo(W) is not understood,

but for W being a finite Weyl group
JH (W) is very
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Beyond?

» Categorification?

Non-semisimple: Replace Hecke algebra by Soergel bimodules. .~
Non-semisimple: Categorical N-modules for dihedral groups. . Zigzag algebras
appear.

> Fusion: Replace asymptotic Hecke algebra by asymptotic Soergel bimodules. .~
> Fusion: Categorical N-modules for SL(2)q. .~ Algebras are trivial.
>
>

v Vv

H: Asymptotic Soergel bimodules are very nice, just remove Ky everywhere. .~
H-cell-theorem 7 . Work in progress!

» SL(n)q?

> Non-semisimple: Nhedral; leaves the realm of groups. .~

> Non-semisimple: Categorical N-modules for Nhedral algebras have a Ncolored
ADE-type classification. .~ Generalized zigzag algebras and Chebyshev polynomials
appear.

> Fusion: One gets SL(N)q.

> Fusion: Categorical N-modules of SL(N)q have an ADE-type classification. .~

Algebras are trivial.

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019 13/14
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O W2 o P e T e e Graph
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1= 133605, u = vl = 12137123565,
L)

There is still much to do...
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Let AT b the discency mte of a i, connecta, laopless ragh . Let
Ve 0) (1989 T gapes o o TP e |
| ADEgrohsfor <2 b e Comtr b
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o
-l e Vresie oy
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modules via graphs.

Costrct 3 W..-module M sssocisted o 3 bipritegraph

o
D, i G of e e of W

e | @] 00 @

s | o [ M b€ 2= Gor o |z

Forr oahor A coe osseston o A G2

0 i e 3075
Tetae ) Toicos)

Wy dodecab
For o we hve » .o

-, R
the adjacent 0-cals of F. %
o

(Mot the sl
T ——
o

Daniel Tubbenhauer

oy Example (SAGE). Hor i 3 randam clclstion n the ol 12 e type B
Pl=vtv s
S
o | vate
S (57459 412 T 125 v
N B R T T
. (69 55904 1174185 1052 4 5v-4 4 v s
e
T T T
I o e e e
O W2 o P e T e e Graph
e T e | e [
e o R e e Elements (shortha 5, 3)

1= 133605, u = vl = 12137123565,
L)

Thanks for your attention!
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 e~ tetrahedron «~ symmetric group S4.

Type B3 e cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

|Idea (Coxeter ~1934+|—).|
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

| | R C
Type Ag e tetr Fact. The symmetries are given by exchanging flags.
Type B3 «~ cub -
Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

[Idea (Coxeter ~1934++).]
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 e~ tetrahedron «~ symmetric group S4.

Type B3 e cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F. ’\
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 e~ tetrahedron «~ symmetric group S4.

Type B3 e cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.

For Ig we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 e~ tetrahedron «~ symmetric group S4.

Type B3 e cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting ° °
the adjacent 1-cells of F, etc.

|Write a vertex i for each H,-.|
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. This glves a generator-relation presentation.
Type Az <~ tetrahed 7.

Type B3 «M|And the braid relat|on measures the angle between hyperplanes. |

Type Hz «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting T C ®
the adjacent 1-cells of F, etc.

cos( /4)

|Write a vertex i for each H,-.|

Connect i, by an n-edge for
H;, H; having angle cos(w/n).
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Uo(X) =1, Up(X) =X, XUep1(X) = Ueora(X) + Uu(X)

Kronecker ~1857. Any complete set of conjugate algebraic integers in | —2,2[ is
a subset of roots(Ue+1(X)) for some e.

The roots of the Chebyshev polynomials
The roots of the Chebyshev polynomials The case of - being even
The case of ¢ being odd

Figure: The roots of the Chebyshev polynomials



In case you are wondering why this is supposed to be true, here is the main
observation of Smith ~1969:

Ues1(X,Y) = £det(XId — A(Aet1))

Chebyshev poly. = char. poly. of the type A.11 graph ‘

and

XT o 1(X) = +det(XId — A(D,)) £ (—1)" ™ *

first kind Chebyshev poly. ‘=" char. poly. of the type D, graph (n = <5*).




The type A family
e=3

—A—F—k

~
~

The type D family

e=10

.

The type E exceptions

e=16

f
i

e =28



The type A family
e=3

e=0 e=1 e = e=4

v —h—y —_——— —
—k —h—¥—k

* —— Fe—F—h—F—k

The type D family

e=38 e=10

]

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

M M M M

The type E exceptions

e=10 e=16 e =128




Example (SAGE). The Weyl group of type Bg. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5—7—10—13—15—18 —21
/7 /. N\~ 7/
0—1—2—4—6—8—9—12—16—17 — 19 — 22 — 23 — 24 —25
N\ 7 N\ 7

3 11 14 20

Size of the cells and whether the cells are strongly regular (sr):

cell |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20 21 22 | 23 | 24|25
ize | 1] 62 ] 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 [ 62 | 1
1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 15 11 16 | 17 12 15 | 25 | 25 | 36

=




Example (cell 12).

Example (SAGE). The Cell 12 is a bit scary: r of elements: 46080.
Number of cells: 26, nam

45,5 15,5 15,20 25,25 25,25

Ce” order: Iss 455 15,20 255 255
1205 | Loos | 42020 | 22005 | 220,25

5 — 225,5 225,5 225,20 425,25 125,25 |_
/ / 225,5 225,5 225,20 125,25 425,25
O=]1=2=4 e =B === 2 =10 = [[ = [Q =22 == 23 =24 — 25
/ N/
11 14 20

3

Size of the cells and whether the cells are strongly regular (sr):

cell 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20 21 22 | 23 |24]|25
size || 1] 62 ] 342 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62| 1
4 4 5 5 6 6 6 7 9 10 10 10 15 11 16 | 17 12 15 | 25 | 25 | 36

°
w
IS

=
w

a




Example (e = 4). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

Moo Mo M 5 Mo 2 Moa
atom sign rotation trivial
rank 1 1 2

apex(KL) | @ | ®-O

®-0

®-0

@

Group element basis. Subgroups and ranks of transitive N-modules.

subgroup 1 (st) (wo) (wo,s) | {wp,sts) G
atom regular | Moo@Map | M 58M 5 | Mag@Ma, | Mo2@M,, | trivial
rank 8 2 4 2 2 1
apex G G G G G G

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell | +—k—v —_— top cell
atom sign Mz 0®M 5 Mo2®M 5 trivial
rank 1 3 3 1
apex @ ©®-0 -0 @®



Example (e = 4). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

Moo Mo M 55 Mo 2 M,
atom sign rotation trivial
rank 1 1 2 1 1

apex(KL) | @D | O-O | O-@ | O-@ | @
Fun fact.

Group elelChoose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!

atom regular | Moo&Ma, | M 58M 5 | Maog@Map | Moa®Ma, | trivial
rank 8 2 4 2 2 1
apex G G G G G G

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell —r— —_— top cell
atom sign Mz 0dM /5 Mo &M /5 trivial
rank 1 3 3 1
apex @ ©®-0 6-0 ®




Example (e = 4). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

Moo Mo M 55 Mo 2 M,
atom sign rotation trivial
rank 1 1 2 1 1

pxKL) | @ | O-@ | O-@ | O-@ | @
Fun fact.

Group elelChoose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!

atom regular | Moo&Ma, | M 58M 5 | Maog@Map | Moa®Ma, | trivial
rank 8 2 4 2 2 1
apex G G G G G G
“Knowing the transitive N-modules
. . <~
KL basis. ADE diag . . . "
knowing the simples for all primes p > 0.
bottom cell — — — top cell
atom sign Mo 0® M. /5 Mo &M /5 trivial
rank 1 3 3 1

apex @ ©®-0 6-0 ®



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

Graph:
10— 3—l4=—=5—6

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

04604 =
(v7 +5v® +12v3 + 18v + 18v L + 12v 3 + 5v 5 + v "),
+(VE+ A3+ v+ TV v v Y6,
+(V6 + 5V4 =+ 11V2 + 14 —|— 11V_2 + 5V_4 —|— V_6)9121232123565

Graph:
l=2==3==4=—=5=—0

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

tgtyg =
(v7 +5v® +12v3 + 18v + 18v L + 12v 3 + 5v 5 + v "),
+(E+ 4+ v+ T A3 v o),
+(V6 + 5V4 =+ 11V2 + 14 —|— 11V_2 + 5V_4 —|— V_6)9121232123565

Graph:
l=2==3==4=—=5=—0

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

tgtyg =
(v7 +5v® +12v3 + 18v + 18v L + 12v 3 + 5v 5 + v "),
+(VE+ A3+ v+ TV v v Y6,
+(V6 + 5V4 + 11V2 + 14 + 11V_2 + 5V_4 + V_6)9121232123555

Bigger friends.

Graph:
l=2==3==4=—=5=—0

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

tgtyg =
(v7 +5v® +12v3 + 18v + 18v L + 12v 3 + 5v 5 + v "),
+(E+ 4+ v+ T A3 v o),

Graph:
l=2==3==4=—=5=—0

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

tatg =
(v/4+5v® +12v3 + 18v + 18v L + 12v 3 + 5v 5 + v )b,
+(VC AP+ TV Tv +4v3 v 0)6,

[Killed in the limit v — co. |

Graph:
10— 3—l4=—=5—6

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bg.

tygtg =

|Looks much simpler. |

Graph:
l=2==3==4=—=5=—0

Elements (shorthand s; = i):

d=d ! =132123565, u=u"! = 12132123565.



Example (SAGE; Type Bg).

Up to N-equivalence: five left cell modules, five right cell modules, one two-sided
cell bimodule, three H subalgebras:

2525 | 2525

455 | Iss | 1so0 | 2525 | 2525

2525 | 2525

220,25 | 220,25

2355 | 2255 | 22500 | 42525 | losos 42505 | 155
2255 | 2255 | 22520 | loss | 42525 13525 | 42525
455 | 1ss | 1so0 | 2525 | 2525 455 | 1lss | 1520 | 2525 | 2525
155 | 455 | 1s20 | 2505 | 2525 155 | 455 | 1s20 | 2505 | 2525

LR = 1205 | 1205 | 42020 | 22025 | 22025 H =115 | 1205 220,25 | 220,25
2555 | 2255 | 22520 | 42525 | Losos 2255 | 2255 | 22520 15525
2555 | 2255 | 22520 | los2s5 | 42525 2555 | 2255 | 22520 | los2s

Fact. The three N-algebras J" (W) are all “categorical Morita equivalent”.
(They have the same number of transitive N-modules.)



Example (e = 2).

|

1
1
0

v—&—v_1

0
0

v—}—v’1



Example (e = 2).

M = C(1,2,3)
-
1 3 2
vHvt 0 1 00 0
0. ~ 0 vv Tl o1 0.~ |10 O 0
0 0 0 1 1 vtv!
0 A | 0 0 0
Ocrs ~ | vHv1t 0 1 O ~ [0 O 0
0 0 0 1 1 vivt
0 0 0 1 v+v!
0. ~ 0 0 0 O~ |1 1 viv?
viv !l vyt o1 0 0



Example (e = 2).



Example (e = 2).

C(1,2,3)

M=

Example.

= ts + tsis

tse tes

[L1][L1] = [Lo] + [L2]

o O -

O O

— — O

o O o

O O o

— - O

o O O

o O O

=@ @ @

=@ @ =l

O O



Example (e = 2).

M = C(1,2,3)
1 3 2

of Ko(SL(2)q) found by
Etingof-Khovanov ~1995 and Kirillov—Ostrik ~2001,
which are also ADE classified.

U

\U U U/ \U

This wo;ks in general and recovers the transitive N-modules )
0

0

1

1

tes ~ 1
0

o O O
o O O

0
0 tor ~»
0

= O O
= O O



Figure: The connected Coxeter diagrams of finite type. The finite Weyl groups are of
type A, B=C, D, E, F and G.

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~1984).

Ee

D

type ‘ A B=C
worst case ‘ JH =1 ‘ I = Ko(Veegz ozye) ‘ I = Ko(Veez azye) ‘ JH = Ky (Rep(Ss))

type ‘ E7 ‘ Eg ‘ F4 ‘ G,
worst case ‘ JH = Ko(Rep(Ss)) ‘ JH 2 Ko(Rep(Ss)) ‘ JH = Ko(Rep(Ss)) ‘ JH = Ko(Rep(S2))

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

1.]27x 1. 27

N

((1,0)) ((1,1)) ((0,1))

{e}
In particular, there are two categorifications of the trivial module, and the rank

sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2, 4.



Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

7.)27.x7.,]27. {+1,-1}

N N

((1,0) ((1,1) ((0,1)) {e}  {e}  fe}

{e} {e}
In particular, there are two categorifications of the trivial module, and the rank

sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2, 4.



Example (G = Z/2xZ/2).

Subgroups, Schur multipliers and 2-simples.

7./2Z.x 7./ 27 {+1,-1} Vec, !, Vec; !
NI LN
((1,0)) ((1,1)) ((0,1)) {e} Vecz oz Vecg o Vecz o
NN NS
e €Ca

In particular, there are two categorlflcatlons of the trivial module, and the rank
sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2, 4.



Example (SAGE; Type Bg).

Reducing from 46080 to 14500 to 4:

455 | 1ss | 1s20 | 2525 | 25025 455 | 1ss | 1s20 | 2525 | 2505

Iss | 455 | 1s20 | 2525 | 2525 Iss | 455 | 1s20 | 2525 | 2525

LR = 1505 | 1o0s | 42020 | 22025 | 22025 ~ H =1 1505 | a5 | 42020 | 22025 | 22025

2555 | 2255 | 22520 | 42525 | Losos 2355 | 2255 | 22520 | 42525 | Losos

2555 | 2255 | 22520 | 1525 | 42525 2555 | 2255 | 22520 | losos | 42505
joE:VGCZ/ZZXZ/ZZv rank sequence: 1,1,2,2,2 4.

In particular, there is one non-cell 2-simple: one 2 is missing.

Daniel Tubbenhauer A tale of dihedral groups, SL(2)4, and beyond March 2019 1/2



SU@R)

Orbifold series

- Fr
[A] [Ai Ag

N

A3 A3 A3l3 A3 As3 Ag/3 ...

[ 3A5][ 3A5] 3A%

Conjugate orbifold series

e e
tii
r ¢ g
v

A5 A§

“05Q9g

3A% 3AS 345 ...

Exceptionals

| A A D _
wo [ o= N, o -, <1(\ ‘/5

& 4 "Ng Y

Es Es/3=(Es)° Eg  Eo/3=(E9)" (A3 (Ad3)'

Figure: “Subgroups” of SU(3),.

(Picture from “The classification of subgroups of quantum SU(N)'

Daniel Tubbenhauer A tale of dihedral groups, SL(2)q, and beyond

', Ocneanu ~2000.)

March 2019
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