2-representations of Soergel bimodules

Or: Mind your twists

Daniel Tubbenhauer
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Slogan. Representation theory is group theory in vector spaces.

Let A be a finite-dimensional algebra, e.g. a group ring K[G].
Frobenius ~1895++ Representation theory is the study of actions of

algebras:
M: A — End(V),

with V being some vector space. (Called modules or representations.)

The “elements” of such an action are called simple.

Maschke ~1899. All modules are built out of simples
(*Jordan—Halder" filtration).

Main goal of representation theory. Find the periodic table of simples.
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Slogan. 2-representation theory is group theory in categories.

Let 6 be a 2-category, e.g. a monoidal category.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000-H-. Higher
representation theory is the useful? study of actions of 2-categories:

M: 6 — &nd(V),

with V being some category. (Called 2-modules or 2-representations.)

The “elements” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples
( 2-Jordan—Halder filtration™).

Main goal of 2-representation theory. Find the periodic table of 2-simples.
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Sl Examples of 2-categories.
| {Monoidal categories, G-graded vector spaces Vec(G), module categories Zep(G),

R ep(Hopf algebra), tensor or fusion or modular categories,

=
re Soergel bimodules ¥ = & (W) (“the Hecke category”),
categorified quantum groups, categorified Heisenberg algebras, ...
with V being some category. (Called 2-modules or 2-representations.)

The “elements” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples
(" 2-Jordan—Halder filtration™).

Main goal of 2-representation theory. Find the periodic table of 2-simples.
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Sl Examples of 2-categories.

dMonoidal categories, G-graded vector spaces /'ec(G), module categories Zep(G),
Ei R ep(Hopf algebra), tensor or fusion or modular categories,

re Soergel bimodules ¥ = & (W) (“the Hecke category”),

categorified quantum groups, categorified Heisenberg algebras, ...

—~ =

Examples of 2-representation of these.
Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm,
es

cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module, ...

Main goal of 2-representation theory. Find the periodic table of 2-simples.
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Sl

Examples of 2-categories.

Monoidal categories, G-graded vector spaces ¥ec(G), module categories Zep(G),

L¢
Ei R ep(Hopf algebra), tensor or fusion or modular categories,
re Soergel bimodules ¥ = & (W) (“the Hecke category”),
categorified quantum groups, categorified Heisenberg algebras, ...
Examples of 2-representation of these.
T Categorical modules, functorial actions,
N (co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm, .
( cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module, ...
Applications of 2-representations.

M ES
Representation theory (classical and modular), link homologies, combinatorics,
TQFTs, quantum physics, geometry, ...
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Slogan. 2-representation theory is group theory in categories.

Let 6 be a 2-category, e.g. a monoidal category.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000+4. Higher
representation theory is the useful? study of actions of 2-categories:

with V being

The “elemer

Today: example based.

1) Fix some notation.

2) Discuss the cases ¥ec(G) and Zep(G).
3) Discuss the case of the Hecke category.

entations.)

Mazorchuk—vrrermerz
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(" 2-Jordan—Halder filtration™).

t of 2-simples

Main goal of 2-representation theory. Find the periodic table of 2-simples.

Daniel Tubbenhauer
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Classification problems are impossible unless you restrict yourself.
In classical representation theory one would:

Specify should be represented,
e.g. groups, algebra, Lie groups, Lie algebras, etc.

Specify one wants to represent,
e.g. on finite-dimensional vector spaces, unitary representation etc.

In 2-representation theory one needs do the same.
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we want to represent.

A finitary category C is "linear-finite":
» It is linear, additive and idempotent split.
» It has finitely many indecomposable objects (up to 2).
» It has finite-dimensional hom-spaces.
A finitary 2-category € is also “linear-finite”:
» It has finitely many objects and its hom-categories are finitary.
» The horizontal composition of 2-morphisms is bilinear.
» The identity 1-morphisms are indecomposable.

One also needs dualities, so we add “rigid”:

» If additionally there is an object-preserving, linear biequivalence
¥ 6 — 6 °°°P of finite order, then 6 is called weakly fiat. (Fiat=order two.)

» Weakly fiat + semisimple is called fusion.

The Grothendieck ring [€(1,1)] of such € is a finite-dimensional algebra. ‘
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we want to represent.

f: 2-category of finitary categories, linear functors and natural transformations.
A (left) finitary 2-representation of 6 is a linear 2-functor M: 6 — ./f.
Concretely, it associates:

» A finitary category M(i) to each object i.

» A linear functor M(F) to each 1-morphism F.

» A natural transformation M(«) to each 1-morphism a.

‘ The Grothendieck group [M(1i)] is a module of [€(i,1)]. ‘

‘ [M(F)] are N-valued matrices in End([M]). ‘
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we want to represent.

f: 2-category of finitary categories, linear functors and natural transformations.
A (left) finitary 2-representation of 4 is a linear 2-functor M: 6 — ./f.
Concretely, it associates:

> A finitary category M(1i) to each object i.

» A linear functor M(F) to each 1-morphism F
For simplicity, let us stay with monoidal categories,

» A natural tn
a.k.a. 2-categories with one object,

The ,1)].
for the rest of the talk.

’ [M(F)] are N-valued matrices in End([M]). ‘
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Example (¥ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

» As a category Vec(Z/2Z) is boring: two objects and no non-trivial homs.

id C 1 -1 Dida
» As a monoidal category this is not much more exciting:
a®b=ab, id,®id, =idp.
» As a fusion category this is still not complicated:

close C-linear, take @®-sums and let a* = a™*.

» Clearly, [Vec(Z/2Z)] = Z[Z/2Z)].
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Example (¥ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

The fusion category ¥ec(Z/2Z) has two evident 2-modules:
» The trivial 2-module V(1,1) given by the trivial 2-representation

M: Vec(Z/2Z) — Vec, “forget Z/2Z-grading”.
The N-matrices are 1,-1 ~ (1).
» The regular 2-module V(Z/2Z, 1) given by the regular 2-representation
M: Vec(Z/2Z) — Vec(Z/2Z), M(a)=a® _.

The N-matrices are 1 ~ (§9) and -1 ~ (93).
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Example (Vec(Z/27Z): the skeleton of Z/27Z-graded (C-)vector spaces).
The fusion category ¥ec(Z/27Z) has two evident 2-modules:
» The trivial 2-module V(1,1) given by the trivial 2-representation

NA. = (77 DT\ f LYy + 7 /DT P H go
Theorem (folklore?).

All 2-simples of ¥ec(Z/2Z) are of the form V(1,1) or V(Z/2Z,1).
These are non-equivalent.

M Vec(Z]2ZL) — Vecl4/2Z), WNa)=a® _.

The N-matrices are 1 ~» (19) and -1 ~» (0 1)
Note that ¥ec(Z/2Z) has only finitely many 2-simples.

This is no coincidence.
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Example (¥ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

» One can twist the ® by a sign:
id; ®id4 = —idy,
and get another fusion category ¥ec*(Z/27).

> Vec¥(Z/27) is skeletal with non-trivial associator.

» There is no trivial 2-module V(1, 1) since ¥ec has a trivial associator.
However, V(Z/2Z, 1) still makes sense.

» Moreover, [Vec(Z/27)] = Z[Z/2Z].
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Example (Vec(Z/27Z): the skeleton of Z/27Z-graded (C-)vector spaces).

> ( Theorem (folklore?).

All 2-simples of Vec*(Z/2Z) are of the form V(Z/2Z,1).
;

> Vec(Z/27Z) is skeletal with non-trivial associator.

» There is poteivial 9 madiula V(1 1\ cinca A/ap hac o +vivial aceqciator.

- Note that ¥ec”(Z/2Z) has only finitely many 2-simples.

» Moreovet This is no coincidence.
T T

T T 7T

Note: twisting, even in this toy example,

is non-trivial and affects the 2-representation theory.
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Example (Zep(G)).

> Let € = Zep(G) for G a finite group.
» For any \,N € 6, we have M® N € ¢:
g(m® n) =gm® gn
forall g € G, m €M, n€N. There is a trivial representation 1 = C.

» Thus, € is fusion.

» Example: the regular 2-representation M: ¢ — &nd(%6) is

M—M®_

J [

N————=>N®_
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Example (Zep(G)).

» Let K C G be a subgroup.
> Rep(K) is a 2-module of Zep(G), with 2-action

Res; @ : Rep(G) — &nd(Rep(K)),
which is indeed a 2-action because Resﬁ is a ®-functor.

» In words, ResS ® _ assigns to simple G-modules endofunctors on Rep(K).

» The decategorifications of these endofunctors are N-valued matrices.
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Example (Zep(G)).

» Let i) € H?>(K,C*). Let V(K1) be the category of projective K-modules
with Schur multiplier v, i.e. vector spaces V with p: K — End(V) such that

p(&)p(h) = ¥(g, h)p(gh), for all g, h € K.
» Note that V(K, 1) = Rep(K) and
®: V(K,0) RV(K, ) = V(K, ¢b).
> V(K, ) is also a 2-representation of 6 = Zep(G):

Res§ XId
_—

Rep(G) ® V(K, 1)) Rep(K) B V(K, 1) 2 V(K, ¥).

» In short, one can twist the 2-representations Res,G<.
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Example (Zep(G)).

Theorem (folklore?).

> All 2-simples of Zep(G) are of the form V(K,1). ahs .
a
We e V(K1) V(K )
=

the subgroups are conjugate and v’ = 1€, where ¢&(k, ) = 1 (gkg ™", glg™").

> TNOUTT TTTdt l/\l\7 J.} — /\,\,1)\!\} drma

Note that Zep(G) has only finitely many 2-simples.

> V(K, ) is

This is no coincidence.

Res§XId
—_—

Rep(G) X V(K, 1) Rep(K) K V(K, 1) = V(K, ).

» In short, one can twist the 2-representations Resﬁ.

Daniel Tubbenhauer 2-rep i of Soergel bi March 2020 5/8



Example (Zep(G)).

Theorem (folklore?).

> All 2-simples of Zep(G) are of the form V(K,1). ahs .
a
We e V(K1) V(K )
=

the subgroups are conjugate and v’ = 1€, where ¢&(k, ) = 1 (gkg ™", glg™").

> TNOUTT TTTdt l/\l\7 J.} — /\A,l)\!\) drma

Note that Zep(G) has only finitely many 2-simples.
> V(K,) is

This is no coincidence.

G d )
Rep(G) K V(K. ) Rese™ld, Ren(K) R V(K 1) 2 V(K, ).

Note: twisting, also in this example,

» In short, on

is non-trivial and affects the 2-representation theory.
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Example (Zep(G)).

> Let ¢ € HOcneanu rigidity (Etingof-Nikshych—Ostrik ~2004).p K-modules
with Schu (V) such that
If 6 is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

» Note that V(K, 1) = Rep(K) and

I Problems in general. ‘

2 If € is non-semisimple, then things get complicated:
There can be uncountably (twists giving uncountably) many 2-simples.
Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.
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Is the case of Soergel bimodules hopeless?

Theorem (Soergel-Elias—Williamson ~1990,2012).

There exists a , graded, fiat category & = &¥(W) such that:

(1) For every w € W, there exists an indecomposable object C,,.

(2) The Cy,, for w € W, form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

(3) The identity object is Cy, where 1 is the unit in W.

(4) &V categorifies the Hecke algebra with [C,] = ¢, being the KL basis;
forgetting the grading ["] = Z[W]

(5) grdim(homyv(cv, VkCW)) = (5‘,7,,,,(507;(. (Soergel's hom formula a.k.a. positively graded.)
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Is the cas Examples (W = S,).

Theorem
There exis

(1) Fore

(2)

The

In this case &" has n! indecomposable objects up to shifts.

Beyond some very small cases, they may be difficult to describe.

d The classification problem appears to be very hard.

th that:

hic

indecomposable objects up to shifts.

The

identity object is Cy, where 1 is the unit in W.

LV
forg
grdj

Examples (W of type Eg).

In this case & has 696729600 indecomposable objects up to shifts.

Beyond some very small cases, they are difficult to describe.

The classification problem appears to be hopeless.

raded.)
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Is the cas

Theorem
There exis

(1)
(2)

For e

The ¢
indec

The i
SV
forget

grdin

By the way: Why should one care, a.k.a. motivation for &".

1) & categorifies the Hecke algebra.
Its 2-representation theory categorifies the
representation theory of Hecke algebras.

2) & originates from projective functors acting on category O,
and proj(Oo) is a 2-module of .
This was already used to solve questions in Lie theory.

3) &Y and its 2-representations
appear in low-dimensional topology
and we are working on applications therein.

4) &' and its 2-representations
appear in quantum and modular representation,
which albeit needs affine Weyl groups.

5) & and its 2-representations
are helpful to study braid groups

as they tend to give faithful representations.

6) More...

hSis:

graded.)
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The “crystal limit”

Theorem (Lusztig, Elias—Williamson ~2012).
There exists a (multi)fusion bicategory .&/® = .&/%(W) such that:

(1) For every w € W, there exists a simple object A,,.

(2) The A, for w € W, form a complete set of pairwise non-isomorphic simple
objects.

(3) The local identity objects are A4, where d are Duflo involutions.

(4) .o/° categorifies the asymptotic Hecke algebra with [A,] = a, being the
degree zero of the KL basis.

(5) .0 is the degree zero part of &"; roughly:

° =add({v*C, | w € H,k > 0})/add({v*Cy | w € H, k > 0}).
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The “crystal limit” (ignoring some details, sorry).

The main statement:

Why is this awesome? Because this...

» ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

» ...implies that there are finitely many equivalence classes of graded 2-simples
of &V, by Ocneanu rigidity (“uniqueness of categorification statement”).

» ...provides a complete classification of the 2-simples in the Weyl types.

» ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.
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Example (¥c(2/22) the skleton of /27

dd (C-Juector spaces)

Example (¥c(2/22): the skeleton of 722 graded (C-Jvector spaces)

- Ae 3 category oe(2/22) i bring: o objctsand v - b
e 1o

> A5 3 moncidalcategory tis s ot much e exciing

> s 3 fusion category s s sl complicate

dose s, take s and ot

> ey [ec(z/22)]

Example (¥e(7/22): the skeeton of 7/27-graded (C-Juetor spaces)
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dd (C-Juector spaces)

Example (¥c(2/22): the skeleton of 722 graded (C-Jvector spaces)
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou;
of linear transformations.

ERY considerable advances in the theory of groups of

finite order bave been made since the appearance of the

first edition of this book. In particular the theory of groups

of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason

given in the original preface for omitting any account of it no
longer holds good.

In fact it i now more true to say that for further advances

in the abstract theory one must look largely to the representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in a book which professes to leave
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|Nowadays representatlon theory is pervasive across mathematlcs, and beyond.|
of Tinear transformations.
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Example (G = S3).

# of subgroups (up to conjugacy), Schur multipliers H? and ranks rk of the
2-simples.
K| 1| zpz| 2z s

# || 1 1 1 1
H2 || 1 1 1 1
rk || 1 2 3 |3

Example (K = S3); the N-matrices.

o |m™| B |Hd
oo || oo H E
P | P |orf| B
HIB| B |os




Example (Taft Hopf algebra).
Let T, = C(g,x)/(g? =1, x> =0, gx = —xg) 2 C[Z/27Z] ® C[x]/(x?).
» To-projisa , weakly fiat category with [T2-proj| = Z[Z/2Z)].

» It has only two indecomposable objects:

1-dim. g.m==m, 2-dim. N S
simples - St 3- {X.m =0, pr.in. Pr=gP-= Sy

» Two evident 2-simples V. obtained via:
Py ® _: Ty-proj — Tr-proj.

Looks harmless, but:
» Twisted by A € C gives other 2-simples V3.

» One gets two one-parameter families of 2-simples.

» [V1] = [V], ie. this is not detectable on the Grothendieck level.



Another aspect of the main theory.

For W being a Weyl group, the classification problem for & reduces to the
classification problem for ¥ec(G) and Zep(G) where G is (Z/2Z)*, Sz, Sy, or Ss.
We have seen that 2-simples of ¥ec(G) and Zep(G) are classified by subgroups
H C G and ¢ € H*(H,C*), up to conjugacy.

‘Thus, this is a numerical problem. ‘

For example, for Zep(Ss) (appears in type Eg) we have:

K | 1 |2z | zse | ez | @ezy | zse | s |zsz| oo | 05 | A | D5 |eans) | s | A | s
#1] 2 1 1 2 1 2] 1 1 1 1 1 1 1 1 1
1] 1 1 1 | zez | 1 | 1| 1 |zpezlzez| ez |zez| 1 |zjez | zjez | 2z

rk 1 2 3 4 4,1 5 3 6 5,2 4,2 4,3 6,3 5 5,3 54 7,5
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