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Abstract vs. real life
I Abstract
I 1

People and objects are eventually known by their actions.

Incarnation

Numbers . . . .
Representation theory studies the right-hand side
using the power of linear algebra.

Finite groups S4 = (s, t, u | some relations)

SL, ={(25%) | ad — bc = 1} ,':':':'::::‘:“.: ‘

Lie groups

More
(Lie algebras, ) '
W=(X,Y | XY =YX+1) or AP ax or...

algebras,)
- Wamerim
foOxf Diibuton

categories...)
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Abstract vs. real life

Abstract

Incarnation

Numbers

People and objects are eventually known by their actions.

Representation theory studies the right-hand side
using the power of linear algebra.

Finite groups

Lie groups

More
(Lie algebras,
algebras,)
categories...)

an action
GCX
’.-:‘

new *

Problem involving

insights?."-..

linearize

a

Decomposition of
the problem
into simple/elements

The representation theory approach.

Reduce a non-linear problem to questions in linear algebra.

Problem involving

linear action
K[G]CKx

=

or...
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What are modules?

Frobenius ~1895+, Burnside ~19004++. is the study
of linear actions of G (a finite group, a reductive group, an algebra...)

M: G — End(V),

with V being some vector space. (Called modules or representations.)

Examples.
SLa(R) — End(R2), eg. (23) = (2 41) SLa(R) = End(R%), eg. (351) = (8-10)
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Question. What can we say about finite-dimensional modules of SL;...

e __.in the context of the representation theory of classical groups? ~» The
modules and their structure.

e ...in the context of the representation theory of Hopf algebras? ~+ Fusion rules
i.e. tensor products rules.

e ...in the context of categories? ~» Morphisms of representations and their

structure.
The most amazing things happen if the characteristic of the underlying field K = K
of SLy = SLy(K) is finite, and we will see fractals, e.g.

Mod 3
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Question. What can we say about finite-dimensional modules of SL;...

e ...in the context of the representation thearv of classical sroupns? ~~+ The
modu Spoiler: What will be the take away?

® ...in t{Well, in some sense modular (char p < o) representation theory rusion rules

i.e. t§  so much harder than classical one (char co a.k.a. char 0)

o _int because secretly we are doing fractal geometry. \d their

struct

In my toy example SL> we can do everything explicitly. i —
The mOSt ﬂllldLllls LIIIIIED IIG}J}JCII T I CrraraCtTristic UT I ullucllyllls IIeld K = K

of SLy = SLy(K) is finite, and we will see fractals, e.g.

Mod 3
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Weyl ~1923. The SL, Weyl modules A(v—1).

A(1-1) x0y0

A2—1) x1y0 x0y1

A(B-1) x2y0 x1yl x0y2

A(4—1) x3y0 x2yl x1y2 x0y3

A(5—1) x4y0 x3yl x2y?2 x1y3 x0y4

A6—1) x5y0 x4yl x3vy2 x2y3 x1y4 x0y5
A(T—1) x6y0 x5yl x4v2 x3vy3 x2y4 x1y® x0y®

(25) — matrix who's rows are expansions of (aX + cY)"~/(bX + dY) 1.
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Example A(7-1) =KX°Y° @ .- @ KX°Y®.

a® 6a°c 15a* 2 202° 15a% c* 6ac® ®

a°b  sa'bcsa’d 10a’bcl+satcd 10a’bc’+10a’ < d sabct+10al S d b isactd  Sd

(a b) acts as a:bi Aa;b:c~2a:bzd 5a§biczofaibcd‘a:dzl !da!bzc3‘Zlizazbczld‘da;cd; , biczoaabcsj‘fazcidzi 2bc;d1.5ac’1d2! c:dj
cd b 32%b%c 3207 d 3ab> 21922 b cd-3a7bd? BB L9ablcPd.9a’bed? add® 3b P digabcld? 32’ cd® 3bPdlL3ac’ A 4
a’b* 2ab*ci4a’b’d  b*c?isab’cd.6a’ b’ d? ap’c?d.12ab’cd?.aa’bd’ 6b2c?d’s8abcd®ia’d*  abc?d®iz2acdt Fdt

sb*cds10ab’ d? 10b° cd? +10ab? ¥ 10b?cd’+5abd sbed*iad®  cd®

ab® b cesabtd
20b° & 1562 d* &b dd d°

L b® 6b°d 15b* o

The rows are expansions of (aX 4+ cY)’~/(bX + dY)~. Binomials!

A(B-1) x2y0 x1yl x0y2

A(4—1) x3y0 x2yl xly2 xO0y3

A(5—1) x4v0 x3vyl x2y?2 xly3 x0y4

A(6—1) Xx5y0 SENAL x3y2 x2y3 xly4 x0y5
A(T—1) x6y0 x5yl x*v2 x3vy3 X2y x1y® x0y6

(25) — matrix who's rows are expansions of (aX + cY)"~/(bX + dY) 1.
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(25) acts as

Example A(7-1) =KX°Y° @ .- @ KX°Y®.

a® 6a°c 1524 2 2027 ¢ 1522 c* 6ac® <
a°b  sa‘bcea’d 10a’bc? +5atcd 10a’bc’i10a’cPd s5abci10a’ 3 d bc®isactd  cfd
aab? 31222 bcddad cd? b2cti8abc®d.6alc?d?  2bctdiaacddl cfd?

3 g

& d

a*b? 4a’b?c.2a'bd 6a?b?c?i8a’bced.at d?

a®b® 2a?b’c.32’b’d 3ab’c?.9a2b? cd3a’bd? b cP.9ab’Pd.9a’bed’ia’d® 3b?cPdigab?d?i3a’cd® 3bcidi3actd?

a’b* 2ab*ci4a’b’d  b*c?isab’cd.6a’ b’ d? ap’c?d.12ab’cd?.aa’bd’ 6b2c?d?i8abcd’ sa? dt
10b?cd’+5abd

abc?d®.2acdt 2t
sbed*iad®  cd®

ab® b cesabtd sb*cds10ab’ d? 10b° cd? +10ab? ¥
b° 6b°d 15b* d? 20b° d* 15b? d* 6bd® d®
The rows are expansions of (aX + cY)"~'(bX + dY)"~*. Binomials!
A(B—1) x2y0 xlyl x0y2
Example A(7—1), characteristic 0.
No common eigensystem = A(7—1) simple.
Example A(7—1), characteristic 2.
a® ] at c? o a? c* ] b
a®b  a'bcia’d atcd ] abct bc®iactd Sd
atb? ] at d? o b2 c* ] o d?
(3 b) acts as |a’v® a’b*cia’b’d ab’c?ia’blcdia’bd? bPcPiab’c?dia’bed?sa’d? b cd.abc?d’ va’cd® boPdliactd’ O
cd a? b 0 bt c? 0 a2 gt 0 2 gt
ab® biceabtd b cd ] abd? bed*iad®  cd®
o b? ¢t ] d®

b® ] bt d?

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule.
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Weyl ~1923. The SL;

A(l-1)

A@R-1)

A(B-1)

A(4—1)

INCES))

A6—1)

A(T—1)

When is A(v—1) simple?-
A(v—1) is simple
<~

v"y:ll) # 0 forall w < v

< (Lucas’s theorem)

x0y3

v = [a,0,...,0],.

4.0 1 1

Lucas ~1878.
“Binomials mod p are the product of
binomials of the p-adic digits":
() =ITi (5) mod p,

where a = [a,, ..., a0], = >/, aip’ etc.

v4

x0y5

Ly5 x0y6

(25) — matrix who's rows are expansions of (aX + cY)"~/(bX + dY) 1.
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Ringel, Donkin ~1991. There is a class of modules T(v—1) indexed by N. They
are a bit tricky to define, but:
e They have A- and V filtrations, which look the same if you tilt your head:

]} - “tilting symmetry”

e Play the role of projective modules.
o T(v—1) = L(v—1) = A(v—1) = V(v—1) over C.

e They are much more well-behaved than simples.
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EW.Y.¥ == c 1 AN - )

Ringel, Do
are a bit trig
e They h

How many Weyl factors does T(v— 1) have?

# Weyl factors of T(v—1) is 2X where

k = max{v,((! 1)) w < v}. (Order of vanishing of (¥~

1

determined by (Lucas’s theorem)

by N. They

our head:

1))

non-zero digits of v = [a,, ar—1, ..., a0]p-
I

e Play the rq

o T(v—1)=

Example T(220540—1) for p = 117
v = 220540 = [1,4,0,7,7, 1]u1;
Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;
(v7}) = (HUGE) = [...,#0,0,0,0,0]11.

= T(220540—1) has 2* Weyl factors.

\V*J.} — I_\\V*J.} = \/\V*J.} OVTT

e They are much more well-behaved than simples.
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Ringel, Donkin ~1991. There is a class of modules T(v—1) indexed by N. They

are a bit tricky to define, but:
e They have A- and V filtrations, which look the same if you tilt your head:
Which Weyl factors does T(v—1) have a.k.a. the negative digits game?

Wey! factors of T(v—1) are

A([ar, £ar—1, ..., £a0]p—1) where v = [a, ..., a0,

Aly — 1) Az — 1) T
T(v Example T(220540—1) for p = 117 iting symmetry”

v = 220540 = [1,4,0,7,7, 1]11;

has Weyl factors [1,+4,0,+7,+7, £1]11;

e.g. A(218690 = [1,4,0,—7,—7,—1]11—1) appears.
e Play the role of projective modules.
e T(v—1) = L(v—1) = A(v—1) =2 V(v—1) over C.

e They are much more well-behaved than simples.
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Ringel, Donk The tilting-Cartan matrix a.k.a. (T(v—1): A(w—1))?fd by N. They
are a bit tricky ‘
e They hay ! ‘ t your head:
T( : he symmetry”
e Play the ‘ co .
This is characteristic 3.

e T(v—1)XLv—1)EA(v—1)=E V(v—1) over C.

e They are much more well-behaved than simples.
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General.
These facts hold in general, and
tilting modules form the “nicest possible” monoidal subcategory.

Tilting modules form a braided monoidal category Tilt.
Simple®simple#simple, Weyl®@Weyl£Weyl, but tilting®tilting=tilting.

The Grothendieck algebra [T1ilt] of Tilt is a commutative algebra with basis
[T(v — 1)]. So what | would like to answer on the object level, i.e. for [Tilt]:
e What are the fusion rules?

e Find the N, € N[0] in T(v — 1) ® T(w — 1) = P, N}, T(x —1).
> For [T1ilt] this means finding the structure constants.

e What are the thick ®-ideals?
> For [T1ilt] this means finding the ideals.
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Tilting modules form a braided monoidal category 7Tilt.
Simple®simple#simple, Weyl®@Weyl£Weyl, but tilting®tilting=tilting.

The Grothendieck algebra [T1ilt] of Tilt is a commutative algebra with basis
[T(v — 1)]. So what | would like to answer on the object level, i.e. for [Tilt]:
e What are the fusion rules?

e Find the N, € N[0] in T(v — 1) ® T(w — 1) = P, N}, T(x —1).
> For [T1ilt] this means finding the structure constants.

e What are the thick ®-ideals?
> For [T1ilt] this means finding the ideals.
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All of this generalizes to...

e __higher ranks, e.g. SL3, where higher dimensional fractals show up. (\We are
very far away from understanding this!)

e ...quantum groups, e.g. quantum SL,, where “distorted” fractals show up.

(We do understanding this!)

Two distorted fractals:
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Abstract va. res e What are modues?
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There is still much to do...
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Ty = (1lv-Dv= )
@ There 53 chain of c-ideals Tl = 73 2, > T 2 . The ol i OB s e
e he stongly connectd components of [1 ey
Example (5 ). Example (5~ 3).
Kl =

« Py tne

o T0-1) ST AR =5

T o o e i ko o i D

Thanks for your attention!
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It may then be asked why, in a book which professes to leave
all applications on one side, & iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou;
of linear transformations.

ERY considerable advances in the theory of groups of

finite order bave been made since the appearance of the

first edition of this book. In particular the theory of groups

of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason

given in the original preface for omitting any account of it no
longer holds good.

In fact it i now more true to say that for further advances

in the abstract theory one must look largely to the representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is d d to
substitution groups: while other particular modes of repre-

More than 120 years since its debut, representation theory has

served as a key ingredient in many discoveries in mathematics,

e.g. in the theory of groups.

of linear transformations.

X TERVY 1d, Ll in the thearv of oronng of
I will however take a different stance:

Representations are sometimes more interesting than groups.

Today. SL, (easy) vs. its representations (fun).
mn € al T&C! eory one must 100! arge! e _representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



a biased and not fully faithful map this lives on
of pure mathematics
(based on a map by
Alex Sarlin and
Tnnokentij Zotov)

cryptography
combinatorics

discrete maths

discrete probability
CE/ graph theory

e I

Figure: The map of mathematics. My home (solid) and what | like to study via
representations (dashed).



Weyl ~1923. The SL; simples L(v—1) in A(v—1) for p = 5.

A(3—1) | x2y0 | | xlyt | | x0y2 | L(3—1)
A(4—1) |x3y° | |x2y1 | |X1Y2 | |x°v3 | L(a—1)
A(5—1) | x4y0 | | x3yl | | x2y2 | | xly3 | | x0y4 | L(5—1)

o= [ [evz] [ave] Lave]
so-y [ [evz] Lev] [er]

A(7—-1) has (its head) L(7—1) and L(3—1) as factors.



Weyl ~1923. The SL, simples L(v—1) in A(v—1) for p = 5.

A(
A

A(:

A(

A(T

A(7—1) h

Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.

1

[£]

1)

[£]

1)

]




Two notions of “elements”

No substructure ‘ Does not decompose

Simples ‘ Indecomposables

(FVCL=V=0or V=L [TEVOW=V=0or V=T

Both are legit elements of which one would like a periodic table.

G finite group, K[G] the regular module (G acting on itself).

No substructure Does not decompose
Simples Projective indecomposables
(%) @-summands of K[G]

SLy, A(1) the regular module (matrices acting by matrices).

No substructure Does not decompose
Simples Tilting modules
(%) @®-summands of A(1)%%




Two notions of “elements”

No substructure ‘ Does not decompose

Simples ‘ Indecomposables

(FVCL=V=0or V=L [TEVOW=V=0or V=T
I In good Iclals.els:

Simple=indecomposable
G finite group, K[G] the reg but not always. n itself).

Both are legit elements of wir' riodic table.

No substructure Does not decompose
Simples Projective indecomposables
(%) @-summands of K[G]

SLy, A(1) the regular module (matrices acting by matrices).

No substructure Does not decompose
Simples Tilting modules
(%) @®-summands of A(1)%%




Fusion graphs.

The fusion graph I', = 'y, 1) of T(v — 1) is:
o Vertices of [, are w € N, and identified with T(w — 1).
o kedges w 5 x if T(x — 1) appears k times in T(v — 1) ® T(w — 1).
e T(v — 1) is a ®-generator if [', is strongly connected.

e This works for any reasonable monoidal category, with vertices being
indecomposable objects and edges count multiplicities in ®-products.

Baby example. Assume that we have two indecomposable objects 1 and X, with
X®2 = 1 @ X. Then:

n=ci1 XD Ix=1—XD

not a ®-generator a ®-generator



. ~ T2 —
Fusion graphs. The fusion graph of T(1) = K for p = oc:

The fusion graph I

e Vertices of ',

o k edges w ®T(w —1).

e T(v—1)isa

e This works for| vertices being
indecomposab n ®-products.

The fusi h of T(1) = K? for p = 2:
Baby example. A e fusion graph of T(1) orp objects 1 and X, with

X®2 = 1 @ X. Then

[y X D

or




Fusion graphs.

The fusion graph I
e Vertices of ',
e k edges w LR
e T(v—1)isa

e This works for
indecomposab

Baby example. A
X®2 = 1 @ X. Then

Iy

The fusion graph of T(1) = K? for p = co:

The fusion graph of T(1) = K? for p = 2:

® T(w —1).

<

In general, there is are
cycles of length p
with edges jumping
1=p° pt, p?,..., units,
reaping every
1=7p° pt, p?..., steps.

>

K >

or




Thick ®-ideal = generated by identities on objects.

®-ideals of Tilt are indexed by prime powers. @-ideal — generated by any sets of morphism.

e Every ®-ideal is thick, and any non-zero thick ®-ideal is of the form
T ={T(v—-1) | v > pk}.

e There is a chain of ®-ideals Tilt = J1 D J, D J2 D .... The cells, i.e.
Jpk | Tps1, are the strongly connected components of I'.

Example (p = 3). A



®-ide Prime power Verlinde categories.

The ideal J,« C Tilt/ Tk is the cell of projectives.
The abelianizations Ver « of Tilt/J 1 are called Verlinde categories.
4 : . k _ k=1 :
The Cartan matrix of Ver,« is a p“ — p*~ -square matrix

® lwith entries given by the common Weyl factors of T(v = 1) and T(w —1).}

Jp ka+1, are th

—

Example (Cartan matrix of Ver34)

Example (p = 3).
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