A brief, incomplete, and mostly wrong history of quantum groups

Or: From ice to R-matrices

Daniel Tubbenhauer

Quantum Group

Website	Directions	Save
$2.2+*+\infty$	5 Google reviews	
Investment company in Chatswood, New South Wales		

Hmm, what a "quantum group" is appears debatable. Nevertheless, I'll give it a go!

Neither quantum nor group...?

Throughout

Please convince yourself that I haven't messed up while picking my quotations from my stolen material

Neither quantum nor group...?

Quantum groups arose in the 1980s from attempts to...

- ...construct solutions of the Yang-Baxter equation (YBE) Faddeev's school

```
More as we go!
```

- ...find examples of noncommutative+noncocommutative Hopf algebras via deforming $U(\mathfrak{g})$ Drinfel'd and Jimbo (in parallel)

Proceedings of the International Congress of Mathematicians
Berkeley, California, USA, 1986

Quantum Groups

V. G. DRINFEL'D

mutative) Hopf algebra. So the notions of Hopf algebra and quantum group are in fact equivalent, but the second one has some geometric flavor.
It is important that a quantum group is not a group, nor even a group object in the category of quantum spaces. This is because for noncommutative algebras the tensor product is not a coproduct in the sense of category theory.

A q-Difference Analogue of $\mathrm{U}(\mathrm{g})$ and the Yang-Baxter Equation

MICHIO JIMBO

Reseatch Institute for Mathematical Sciences, Kyoto University. Kyora, 606. Japan

Note added in Proof. After completing the manuscript, the author learned that the same algebra (3A-E) has also been introduced in the recent work of V. G. Drinfel'd (Doklady Akad. Nauk. SSSR, 1985). He would like to thank Prof. L. D. Faddeev for drawing his

Neither quantum nor group...?

Quantum gro History and Perspectives of Quantum Groups

Proceedings of the in
Berkeley, Callfornia,
...find ex deformin

L. D. Faddeev

The combination of terms "Quantum Group" was introduced by V. Drinfeld 20 years ago and appeared in his invited talk at the ICM 1986 in Berkeley ${ }^{1}[11]$. While universally adopted now, it was considered as a misnomer by many purists. Indeed the object in question is neither a group nor does it belongs to quantum theory. However Drinfeld used the term "quantization" as a synonym of "deformation", referring to the recent realization that the algebra of observables of a quantum mechanical system is a noncommutative deformation of the corresponding classical algebra of functions on symplectic phase space, see e.g. [4].

It is remarkable that a corresponding procedure was inspired by math-
algebras via

$\mathrm{U}(\mathrm{g})$ and the

 matical physics, more exactly by the theory of quantum integrable modelsQua
v.
mutative) Hopf algebra. So th in fact equivalent, but the seco [18] and exactly soluble models of statistical physics [3]. Altogether this history is an instructive example of the interinfluence of mathematics and mathematical physics.

Neither quantum nor group...?

Quantun Since their introduction quantum groups have appear "everywhere":
The theory of quantum groups developed in mid 1980s (Faddeev's school, Drinfeld, Jimbo) from attempts to construct and understand solutions of the quantum Yang-Baxter equation arising in quantum field theory and statistical mechanics. Since then, it's grown into a vast subject with deep links to many areas:
representation theory
the Langlands program
low-dimensional topology
category theory
enumerative geometry quantum computation
algebraic combinatorics
conformal field theory
integrable systems
integrable probability
but I won't go into this (my apologies)

This slide is
shamelessly stolen from:
A brief introduction to quantum groups

Pavel Etingof
MIT
May 5, 2020

Neither quantum nor oroun?

Quantum gr	my memory (horrible reference...)
$-\ldots$ const	In and around the origin of quantum groups.

ev's school

Vaughan F.R. Jones *

Statistical mechanics in a nutshell

- Statistical mechanics is a branch of physics that pervades all other branches
- Its exact incarnation is different in each quadrant, but the basics are identical
- Instead of microstates σ describe a set Ω of microstates, the macrostates

Box of Gas

Example Describe the behavior of gas molecules globally

- The point is to model a system at hand
- The models we will use are lattice models

Statistical mechanics in a nutshell

I will now motivate the whole story of statistical mechanics in general, although we will not use some of the involved notions

- Example Describe the behavior of gas molecules globally
- The point is to model a system at hand
- The models we will use are lattice models

Statistical mechanics in a nutshell

too complicated: $\left(x_{1}, y_{1}, z_{1}, p_{x 1}, p_{u 1}, p_{z 1}, \ldots x_{N}, y_{N}, z_{N}, p_{x N}, p_{u N}, p_{z_{N}}\right) \in \mathbb{R}^{6 N}$

Warning
V and N are replaced by different
quantities in different situations

- Position+momentum of N particles are 6 N values Often not doable
- Macroscopic we have fewer parameters needed to be solved
- Example For a box filled with gas we have U (energy), V (volume) and N

Statistical mechanics in a nutshell

- System S, macrostate set Ω of microstates σ
- An energy E_{σ} is assigned to $\sigma \in \Omega$ according to the model Fixed numbers
- Partition function $Z_{S}(T)=Z_{S}=\sum_{\sigma \in \Omega} \exp \left(-E_{\sigma} / k T\right)=\sum_{\sigma \in \Omega} \exp \left(-\beta E_{\sigma}\right)$

Statistical mechanics in a nutshell

Enter, the partition function

Z_{S} has many amazing properties. For one, it can be used to write an endless number of clever identities

Example Expected energy $\langle E\rangle=U=-\partial / \partial \beta \log Z_{S}$
Example Entropy $S_{S}=k(1-\beta \partial / \partial \beta) \log Z_{S}$
System S Solving the model $=$ finding a good expression of Z_{S}

- An energy E_{σ} is assigned to $\sigma \in \Omega$ according to the model Fixed numbers
Partition function $Z_{S}(T)=Z_{S}=\sum_{\sigma \in \Omega} \exp \left(-E_{\sigma} / k T\right)=\sum_{\sigma \in \Omega} \exp \left(-\beta E_{\sigma}\right)$

Statistical mechanics in a nutshell

- Often models involve collections of locally interacting sites on some lattice
- The partition function Z_{X} makes sense for a finite subset X of the lattice
- Then consider an increasing family of subsets whose union is the whole system

Statistical mechanics in a nutshell

- In these models often state $=$ "colors on edges" for X with N sides
- Energy of σ is $\prod_{\text {edges }} E\left(\sigma_{x}, \sigma_{y}\right.$, color $) \Rightarrow$ Local partition function Z_{X}
- Goal Find a good expression of $\lim _{X \rightarrow S} Z_{X}$

Statistical mechanics in a nutshell

Goal Find a good expression of $\lim _{X \rightarrow S} Z_{X}$

The ice-type vertex model

- Ice-type = each edge gets an orientation
- Makes sense for any lattice but lets restrict to the square lattice \mathbb{Z}^{2}
- Want to compute Z_{X}
The Warning \quad Strictly speaking there are a few variants

We will come back to this 6 -vertex version later

- Vlakes sense tor any lattıce but lets restrict to the square lattice \mathbb{Z}^{2}
- Want to compute Z_{X}

The ice-type vertex model

- This models ice lattices and other real crystals with hydrogen bonds
- Lieb found an exact solution for $\mathbb{Z}^{2} \sim 1967 ; \mathbb{Z}^{3}$ is still open

Residual Entropy of Square Ice
Elliott H. Lieb
Phys. Rev. 162, 162 - Published 5 October 1967

Warning

Actually hexagonal lattices would be better but they are harder so lets ignore them

Most common ice lattice:

The ice-type vertex model

$$
R(a, b \mid c, d)=\exp (-\beta \varepsilon, c, b)
$$

- There a sixteen local configurations
- $Z_{X}=\sum_{\text {states }} \prod_{\text {vertices }} R(a, b \mid c, d)$

The ice-type vertex model

- There a sixteen local configurations
- $Z_{X}=\sum_{\text {states }} \Pi_{\text {vertices }} R(a, b \mid c, d)$

Transfer matrices

$$
X=\underset{\sim}{\mathrm{a}} \mathrm{~b}, \mathrm{~d}
$$

$$
Z_{X}=\sum_{a, b, c, d} R(a, b) R(b, c) R(c, d)
$$

$$
R=\left(\begin{array}{cccc}
0 & R(a, b) & 0 & 0 \\
R(a, b) & 0 & R(b, c) & 0 \\
0 & R(b, c) & 0 & R(c, d) \\
0 & 0 & R(c, d) & 0
\end{array}\right), \quad T=\sum_{a, b, c, d} R
$$

$$
a-d \text { entry of } R^{3} \text { is } R(a, b) R(b, c) R(c, d)
$$

- Toy-model: ice-type for \mathbb{Z} with fixed boundary
- Slogan Summation over indices in Z_{X} becomes the summation over indices in matrix multiplication
- The boundary entry of R^{N} encodes the partition function

Transfer matrices

$$
X=a, b, d
$$

$$
Z_{X}=\sum_{a, b, c, d} R(a, b) R(b, c) R(c, d)
$$

Upshot

$R=\binom{R\left(a \left\lvert\, \begin{array}{c}\text { Use linear algebra to understand } Z_{X} \\ \text { and study the asymptotic behavior of } \\ \text { Keyword: Largest eigenvalue }\end{array}\right.\right.}{R^{N}}=\sum_{a, b, c, d} R$

$$
a-d \text { entry of } R^{3} \text { is } R(a, b) R(b, c) R(c, d)
$$

- Toy-model: ice-type for \mathbb{Z} with fixed boundary
- Slogan Summation over indices in Z_{X} becomes the summation over indices in matrix multiplication
- The boundary entry of R^{N} encodes the partition function

Transfer matrices

- The boundary entry of R^{N} encodes the partition function

Transfer matrices

$$
T^{\text {row }}=\sum_{a_{i}} R\left(a_{n}, a_{1} \mid x_{1}, y_{1}\right) \ldots R\left(a_{n-1}, a_{n} \mid x_{n}, y_{n}\right)
$$

- For \mathbb{Z}^{2} with periodic boundary use transfer matrix above
- Problem Computing the largest eigenvalue becomes infeasible

Commuting transfer matrices

- Idea (Baxter ~1975) Use only commuting transfer matrices
- Upshot Have a common eigenvector and, using it, are relatively easy to study

Commuting transfer matrices

- First Invertibility
- Second Yang-Baxter equation (YBE)

Commuting transfer matrices

These two relations ensure commutativity, see above

Commuting transfer matrices

These two relations ensure commutativity, see above

Yang-Baxter equation

$$
R(a, b \mid c, d)=\exp \left(-\beta \varepsilon_{a, b}^{c, d}\right) \leftrightarrow a \rightarrow \underbrace{\frac{\mathrm{c}}{\mathrm{c}}}_{\mathrm{d}} \mathrm{~b} \text { for } a, b, c, d \in\{\uparrow, \downarrow\}
$$

$$
R \text { ma } V \int_{V}^{V} \lambda
$$

nowadays more often drawn as

- The R-matrix can be interpreted as a map $V \otimes V \rightarrow V \otimes V$
- $V=$ vector space with basis $\{\uparrow, \downarrow\}$

Yang-Baxter equation

The YBE can be interpreted as an equation of maps $V \otimes V \otimes V \rightarrow V \otimes V \otimes V$

Yang-Baxter equation

The YBE reads

$$
R_{12}(\lambda) R_{23}(\rho) R_{12}(\mu)=R_{23}(\mu) R_{12}(\rho) R_{23}(\lambda)
$$

where $R(x)=$ transfer matrix for x

Yang-Baxter equation

The YBE reads

$$
R_{12}(\lambda) R_{23}(\rho) R_{12}(\mu)=R_{23}(\mu) R_{12}(\rho) R_{23}(\lambda)
$$

where $R(x)=$ transfer matrix for x

Yang-Baxter equation

- The equations represented by the diagram form a huge system of highly non-linear equations
- The YBE involves only three vertices

Yang-Baxter equation

Strategy

Ignore how to proceed once we have commuting transfer matrices (that is actually hard) just focus on solving the YBE

Crucial

The most importation question is whether there exists any solution at all

- The equations represented by the diagram form a huge system of highly non-linear equations
- The YBE involves only three vertices

Solving YBE (for the six vertex model)

$$
\begin{gathered}
R(z)=\frac{1}{z q-z^{-1} q^{-1}}\left(\begin{array}{cccc}
z q^{-1}-z^{-1} q & 0 & 0 & 0 \\
0 & z^{-1}\left(q^{-1}-q\right) & z-z^{-1} & 0 \\
0 & z-z^{-1} & z\left(q^{-1}-q\right) & 0 \\
0 & 0 & 0 & z q^{-1}-z^{-1} q
\end{array}\right) \\
z=\exp (-\lambda), q=\exp (\theta) \\
R=\lim _{z \rightarrow 0} R(z) \\
R=\left(\begin{array}{cccc}
q^{2} & 0 & 0 & 0 \\
0 & q^{2}-1 & q & 0 \\
0 & q & 0 & 0 \\
0 & 0 & 0 & q^{2}
\end{array}\right)
\end{gathered}
$$

- The above is a solution for the YBE
- The matrix R is what one often sees in quantum groups $\lambda=\infty$ limit
- I will now explain where this solution comes from

Solving YBE (for the six vertex model)

$$
\begin{array}{l}
R(z)=\frac{1}{z q-z^{-1} q^{-1}}\left(\begin{array}{ccc}
z q^{-1}-z^{-1} q & 0 & 0 \\
0 & z^{-1}\left(q^{-1}-q\right) & z-z^{-1} \\
0 & z-z^{-1} & z\left(q^{-1}-q\right)
\end{array} \quad 0\right. \\
\text { Note that } R \text { is not a } \\
\text { solution to the YBE in general (since } \lambda=\infty) \\
\text { but only satisfies the braid relations: } \\
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} \\
\text { With general parameters we want } R_{12}(z) R_{23}(y z) R_{12}(y)=R_{23}(y) R_{12}(y z) R_{23}(z)
\end{array} \underbrace{0} \begin{array}{llll}
0 & 0 & q^{2}
\end{array}) .
$$

- The above is a solution for the YBE

The matrix R is what one often sees in quantum groups $\lambda=\infty$ limit

- I will now explain where this solution comes from

Solving YBE (for the six vertex model)

	$\left(z q^{-1}-z^{-1} q\right.$			${ }_{-1}^{0}$	0	$\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ -z^{-1} q \end{array}\right)$
$R(z)=$	$R(z)$ is a solution for the six vertex model					
				$\frac{1}{4}+\frac{1}{5}$		
		$\uparrow \uparrow$	$\uparrow \downarrow$	$\downarrow \uparrow$	\downarrow	
	$\uparrow \uparrow$	$z q^{-1}-z^{-1} q$	0	0	0	
	$\uparrow \downarrow$	0	$z^{-1}\left(q^{-1}-q\right)$	$z-z^{-1}$	0	
- Tho	$\downarrow \uparrow$	0	$z-z^{-1}$	$z\left(q^{-1}-q\right)$	0	
Th	\downarrow	0	0	0	$z q^{-1}-z^{-1} q$	

How to discover quantum $\mathfrak{s l}_{2}$

- The standard module $V=L(1)$ of $\mathfrak{s l}_{2}=\langle E, F, H\rangle$ has basis vectors \uparrow, \downarrow
- With respect to this basis

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- $\mathfrak{s l}_{2}$ has one simple module $L(n)$ per $n \in \mathbb{N}$
- For $n=4$ this module is

Before you ask: my ground field is \mathbb{C}

$$
E \mapsto\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), F \mapsto\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), H \mapsto\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

- The category of finite dimensional $\mathfrak{s l}_{2}$-modules is semisimple

How to discover quantum $\mathfrak{s l}_{2}$

- The standard module $V=L(1)$ of $U_{q}\left(\mathfrak{s l}_{2}\right)=\langle E, F, K\rangle$ has basis vectors \uparrow, \downarrow
- With respect to this basis

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), K=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right) \leadsto q^{H}
$$

- $U_{q}\left(\mathfrak{s l}_{2}\right)$ has one simple module $L(n)$ per $n \in \mathbb{N}$
- For $n=4$ this module is

Before you ask:
my ground field is $\mathbb{C}(q)$
for q a formal variable

$E \mapsto\left(\begin{array}{cccc}0 & {[1]} & 0 & 0 \\ 0 & 0 & {[2]} & 0 \\ 0 & 0 & 0 & {[3]} \\ 0 & 0 & 0 & 0\end{array}\right), F \mapsto\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ {[3]} & 0 & 0 & 0 \\ 0 & {[2]} & 0 & 0 \\ 0 & 0 & {[1]} & 0\end{array}\right), K \mapsto\left(\begin{array}{cccc}q^{3} & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & 0 & 0 & q^{-3}\end{array}\right)$

- The category of finite dimensional $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules is semisimple

$$
[n]=q^{n-1}+q^{n-3}+\ldots+q^{-n+3}+q^{-n+1}
$$

How to discover quantum $\mathfrak{s l}_{2}$

- $V \otimes V=\mathbb{C}(q)\{\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow\}$ (taken in this order); with respect to this basis

$$
E \mapsto\left(\begin{array}{cccc}
0 & 1 & q & 0 \\
0 & 0 & 0 & q^{-1} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), F \mapsto\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
q^{-1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), K \mapsto\left(\begin{array}{cccc}
q^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
q^{-2}
\end{array}\right)
$$

- The six vertex model gives

$$
R=\left(\begin{array}{ccccc}
* & 0 & 0 & 0 \\
0 & * & * & 0 \\
0 & * & * & 0 \\
0 & 0 & 0 & *
\end{array}\right)
$$

- Since it should commute with E and F it (up to scalars) has to be of the form

$$
R=\left(\begin{array}{cccc}
q^{2} & 0 & 0 & 0 \\
0 & q^{2}-q^{3} b & q^{2} b & 0 \\
0 & q^{2} b & q^{2}-q b & 0 \\
0 & 0 & 0 & q^{2}
\end{array}\right)
$$

- $b=q^{-1}$ is the solution from before! (Not quite - I messed up conventions along the way!)

How to discover quantum $\mathfrak{s l}_{2}$

\rightarrow Stop!
You used the coproduct here:
$\Delta(K)=K \otimes K, \Delta(E)=E \otimes K+1 \otimes E$ and $\Delta(F)=F \otimes 1+K^{-1} \otimes F$
Where does that come from?

- The six vertex model gives

I do not know!

Drinfel'd and Jumbo might say: "It makes $U_{q}\left(\mathfrak{s l}_{2}\right)$ a Hop algebra and there are not many options to achieve that"

But that is an "in hindsight" interpretation, egg. Faddeev writes: ${ }^{2}$ I can not help mentioning, that during my Les Houches lectures in 1982 Tierrie-Mieg, who was among the students, told me that the object I speak about is called Hopf algebra, but I unforgivenly neglected his comment.

Faddeev's school invented $U_{q}\left(\mathfrak{s l}_{2}\right)$ without knowing Hopf algebras!

How to discover quantum $\mathfrak{s l}_{2}$

The comultiplication is the point!

Representations of SL_{2}

With a caveat, the following representation theories are the same:

- Finite-dimensional representations of $S L(2, \mathbb{R})$;
- Finite-dimensional representations of $S U(2)$;
- Finite-dimensional analytic representations of $S L(2, \mathbb{C})$;
- Finite-dimensional complex representations of their Lie algebras $\mathfrak{s l}_{2}(\mathbb{R}), \mathfrak{s u}_{2}, \mathfrak{s l}_{2}(\mathbb{C})$;
- The enveloping algebras of these Lie algebras;
- The quantized enveloping algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$, where q is not a root of unity.

But they are not equivalent as monoidal categories!

How to discover quantum $\mathfrak{s l}_{2}$

- The $U_{q}\left(\mathfrak{s l}_{2}\right)$ R-matrix is:

$$
R=\left(\begin{array}{cccc}
q^{2} & 0 & 0 & 0 \\
0 & q^{2}-1 & q & 0 \\
0 & q & 0 & 0 \\
0 & 0 & 0 & q^{2}
\end{array}\right)
$$

- The R-matrix from before was

$$
R(z)=\frac{1}{z q-z^{-1} q^{-1}}\left(\begin{array}{cccc}
z q^{-1}-z^{-1} q & 0 & 0 & 0 \\
0 & z^{-1}\left(q^{-1}-q\right) & z-z^{-1} & 0 \\
0 & z-z^{-1} & z\left(q^{-1}-q\right) & 0 \\
0 & 0 & 0 & z q^{-1}-z^{-1} q
\end{array}\right)
$$

- The spectral parameter is still missing!

How to discover quantum $\mathfrak{s l}_{2}$

- The $U_{q}\left(\mathfrak{s l}_{2}\right)$ R-matrix is:

Idea

In order to have a spectral parameter
we need a quantum group with one two-dimensional module L_{z} for $z \in \mathbb{C} \backslash\{0\}$

- The R-matrix from before was
$R(z)=\frac{1}{z q-z^{-1} q^{-1}}\left(\begin{array}{cccc}z q^{-1}-z^{-1} q & 0 & 0 & 0 \\ 0 & z^{-1}\left(q^{-1}-q\right) & z-z^{-1} & 0 \\ 0 & z-z^{-1} & z\left(q^{-1}-q\right) & 0 \\ 0 & 0 & 0 & z q^{-1}-z^{-1} q\end{array}\right)$
The spectral parameter is still missing!

How to discover quantum $\mathfrak{s l}_{2}$

- The $U_{q}\left(\mathfrak{s l}_{2}\right)$ R-matrix is:

Idea

In order to have a spectral parameter we need a quantum group with one two-dimensional module L_{z} for $z \in \mathbb{C} \backslash\{0\}$

- The R-matrix from before was

$R(z)=$	$/ \mathrm{za}^{-1}-z^{-1} \mathrm{a}$	$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ -z^{-1} q\end{array}\right)$
	The affine quantum Lie algebra $U_{q}\left(\hat{\mathfrak{s}}_{2}\right)$ almost does the job! $U_{q}\left(\hat{\mathfrak{s l}}_{2}\right)$ can be constructed as a central extension of $\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$ and $X \otimes t^{k}$ acts on $v \in V$ as $z^{k} X . v$	
- The	$U_{q}^{\prime}\left(\hat{\mathfrak{s}}_{2}\right)=$ subalgebra supported on classical weights The R-matrix is then in $\operatorname{End}_{U_{q}^{\prime}\left(\hat{\mathfrak{s}}_{2}\right)}\left(L_{z} \otimes L_{z}\right)$	

How to discover quantum $\mathfrak{s l}_{2}$

- The $U_{q}\left(\mathfrak{S l}_{2}\right)$ R-matrix is:

How to discover quantum $\mathfrak{s l}_{2}$

- The $U_{q}\left(\mathfrak{s l}_{2}\right)$ R-matrix is:

The spectral parameter is still missing!

Statistical mechanics in a nutshell
STATISTICAL MECHANICS

- Statistical mechanics is a branch of phyics that pervades all othe branches
- Its eact incarnation is different in each quadrant, but the basics are identical
- Instead of microstates σ discribe a set Ω of microstates, the macrostates

Commuting transfer matrices

- Idea (Baxter ~1975) Use only commuting tranfer matrices
- Upshot Have a common eigenvector and, using it, are relatively easy to study

The ice-type vertex madel

- This models ice lattices and other real crsstals with hydrogen bonds
- Lieb found an evact solution for $Z^{2} \sim 1967$; Z^{3} is still open nesidial Entropy of Squate k

Commuting transfer matrices

- Fisst Invertibility
- Second Yang-Exaxter equation (YBE)

```
How to discover quantum \(\mathrm{sl}_{2}\)
- The standard module \(V=L(1)\) of \(U_{q}\left(s L_{2}\right)-(E, F, K\}\) has basis wectors \(\uparrow\).
```

- With respect to this bass

- The category of finite dimensional $U_{\uparrow}\left(s b_{2}\right)$-modules is semisimple
$[n]=q^{-1}+q^{-1}+\ldots+q^{-n+1}+q^{-n-1}$

Thy entry of R^{N} encocodes the partition function

Commuting transfer matrices

These two relations ensure commutativity, see abowe
How to discover quantum st,
The commilipleation is the poinet
Representations of SL_{2}
same:

- Fintie-dimensional represematatons of SL(2, R):
- Finite-dimensional representations of $\operatorname{SU}(2)$:
- Finite-dimensional comple leresemiations of SLa
algetras $s l_{2}(\mathbb{R}), s u_{2}, a l(\mathrm{C})$:
- The enveloping algebcras of these Lie algebras
- The quantized emveloping algebra $U_{q}((b))$, where q is not a
root of unily.
But they are not squimalent as moneidet catagrives

There is still much to do...

Statistical mechanics in a nutshell
STATISTICAL MECHANICS

- Statitstical mechanics is a branch of phyics that pervades all othe branches
- Its eact incarnation is different in each quadrant, but the basics are identical
- Instead of microstates σ discribe a set Ω of microstates, the macrostates
rintiat
Commuting transfer matrices

- Idea (Baxter ~1975)

Use only commuting transfer matrices

- Upshot Have a comman eigenvector and, using it, are relatively easy to study

The ice type vertex model

- This models ice lattices and other real crsstals with hydrogen bonds
- Lieb found an evact solution for $Z^{2} \sim 1967$; Z^{3} is still open nesidial Entropy of Squate k

Commuting transfer matrices

- First Invertibility
- Second Yang-Exaxter equation (YBE)

- The category of finite dimensional $U_{+}($sid $)$-modules is semisimple
$[[]]=q^{-1}+q^{-1}+\ldots+q^{-n+1}+a^{-n+1}$

The entry of $R^{\prime \prime}$ encodes the partaicon function

Commuting transfer matrices

These two relations ensure commutativity, see abowe


```
How to discover quantum st?
            The comultipkation is the poine!
```

Representations of SL_{2} :
Whin a caveat, the lollowing representation theories are the
same:
- Finite-dimensional represemtations of $S L(2, k)$
- Finite-dimensional representiations of $S U(2)$:
- Finite-dimensional analytic representations of SL2,CY
- Finite-dimensional complextrepresentations of their Le
algetras $s l_{2}(\mathbb{R}), s u_{2}, a l(\mathrm{C})$.
- The enveloping algebras of these Lie algebras
- The quantized emveloping algebra $U_{q}(\sqrt[b]{ })$, where q is not a
root of unity.
But they are met squivalent as moncide categorisal

Thanks for your attention!

