AUFGABEN 4: VORLESUNG GRUNDLAGEN DER MATHEMATIK

Aufgabe 1. Sei $X = \{a, b, c\}$. Finden Sie alle möglichen Äquivalenzrelationen auf X.

Aufgabe 2. Sei X eine Menge. Bezeichne mit X^X die Menge der Abbildungen $X \to X$. Weiter bezeichne mit S(X) die Menge der bijektiven Abbildungen $X \to X$. Zeigen Sie:

- (a) Falls $f, g \in S(X)$, dann sind $g \circ f$ und $f \circ g$ auch in S(X).
- (b) Falls X mindestens zwei Elemente hat, dann ist X^X mit der Verknüpfung o nicht kommutativ.
- (c) Falls X mindestens drei Elemente hat, dann ist S(X) mit der Verknüpfung \circ nicht kommutativ.

Aufgabe 3. Seien X, Y Mengen, und seien \sim_X, \sim_Y Äquivalenzrelationen auf diesen Mengen. Weiter sei $f: X \to Y$ eine Abbildung so, dass

$$(\star): \qquad (x_1 \sim_X x_2) \Rightarrow (f(x_1) \sim_Y f(x_2)) \quad \forall x_1, x_2 \in X.$$

Zeigen Sie, dass es dann genau eine Abbildung [f] so gibt, dass

$$X \xrightarrow{f} Y$$

$$\downarrow^{p_X} \downarrow^{p_Y}$$

$$X/\sim_X \xrightarrow{[f]} Y/\sim_Y$$

kommutiert. Was passiert mit der Bedingung (\star) im Fall dass \sim_X die Identitätsrelation ist? (Das heisst $(x_1 \sim_X x_2) \Leftrightarrow (x_1 = x_2)$.)

Aufgabe 4. Es sei (X, \leq) eine geordnete Menge. Seien A und B nach oben beschränkte Teilmengen von X. Beweisen Sie folgende Aussagen, falls die entsprechenden Suprema und Infima existieren:

- (a) $\sup(A \cup B) = \sup(\sup(A), \sup(B)).$
- (b) Falls $A \subset B$, dann ist $\sup(A) \leq \sup(B)$.
- (c) Falls $A \cap B \neq \emptyset$, dann ist $\sup(A \cap B) \leq \inf(\sup(A), \sup(B))$.

Formulieren und beweisen Sie die entsprechenden Aussagen für nach unten beschränkte Teilmengen C und D von X.

Abgabe: 22.Okt.2018 vor der Vorlesung. Rückgabe: 25.Okt.2018 in den Übungen.