Two boundary centralizer algebras for $\mathfrak{gl}(n|m)$

U. of Oklahoma

Nov 2017, Bonn

Jieru Zhu Two Boundary

Introduction

Let $A,\,B$ be two algebras, W be a $\mathbb{C}\text{-vector}$ space. We study the centralizing actions

 $A \quad \overset{}{\smile} W \supset \quad B$

	A	W	В
Schur (1905)	$\mathfrak{gl}_n(\mathbb{C})$	$V^{\otimes d}$	sym. gp
Arakawa-	$\mathfrak{sl}_n(\mathbb{C})$	$M\otimes V^{\otimes d}$	degenerate
Suzuki (1998)			affine Hecke
			alg.
Daugherty	$\mathfrak{gl}_n(\mathbb{C})$	$M\otimes N\otimes V^{\otimes d}$	extend. degen-
(2010)	or $\mathfrak{sl}_n(\mathbb{C})$		erate Hecke alg
Hill-Kujawa-	$\mathfrak{q}_n(\mathbb{C})$	$M \otimes V^{\otimes d}$	affine Hecke-
Sussan (2009)			Clifford alg
our case	$\mathfrak{gl}_{n m}(\mathbb{C})$	$M\otimes N\otimes V^{\otimes d}$	extend. degen-
			erate Hecke alg

Background

The Lie superalgebra $\mathfrak{g} = \mathfrak{gl}(n|m)$ is the vector space $\operatorname{Mat}_{n+m,n+m}(\mathbb{C})$ with the following \mathbb{Z}_2 -grading

$$\mathfrak{g}_{\overline{0}} = \left\{ \begin{pmatrix} A & 0\\ 0 & D \end{pmatrix} | A \in \operatorname{Mat}_{n,n}, D \in \operatorname{Mat}_{m,m} \right\}$$
$$\mathfrak{g}_{\overline{1}} = \left\{ \begin{pmatrix} 0 & B\\ C & 0 \end{pmatrix} | B \in \operatorname{Mat}_{n,m}, C \in \operatorname{Mat}_{m,n} \right\}$$

and the Lie brackets

$$[x,y] = xy - (-1)^{i \cdot j} yx, \qquad \forall x \in \mathfrak{g}_{\overline{i}}, y \in \mathfrak{g}_{\overline{j}}$$

 $V = \mathbb{C}^{n+m}$: column vectors of height n + mg acts by matrix multiplication. polynomial representations: irreducible summands of $V^{\otimes d}$ (Sergeev, Berele-Regev) are indexed by Young diagrams inside a (n|m)-hook.

For $\mathfrak{gl}(1|3)$:

			_				
			_				
					×		

Jieru Zhu Two Boundary

Results

Let the degenrate two-boundary braid group \mathcal{G}_d be generated by

$$\mathbb{C}[x_1,\ldots,x_d], \quad \mathbb{C}[y_1,\ldots,y_d], \quad \mathbb{C}[z_0,\ldots,z_d], \quad \mathbb{C}\Sigma_d$$

under further relations.

Theorem

Let M, N be objects in category \mathcal{O} of $\mathfrak{gl}(n|m)$. There is a well-defined action

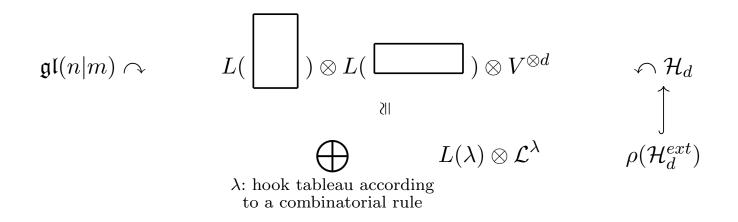
$$\mathcal{G}_d \to \operatorname{End}_{\mathfrak{gl}(n|m)}(M \otimes N \otimes V^{\otimes d})$$

The (two boundary) extended degenerate Hecke algebra \mathcal{H}_d^{ext} is a quotient of \mathcal{G}_d under further relations.

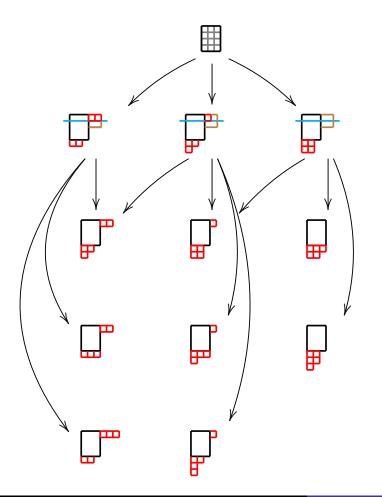
Theorem
Let
$$L(\square)$$
 and $L(\square)$ be two irreducible \mathfrak{g} -modules

labeled by arbituary rectangles inside the (n, m)-hook, the above action induces a further action

$$\rho: \mathcal{H}_d^{ext} \to \mathcal{H}_d = \operatorname{End}_{\mathfrak{gl}(n|m)}(L(\square) \otimes L(\square) \otimes V^{\otimes d})$$



where the isomorphism is as $(\mathfrak{gl}(n|m), \mathcal{H}_d)$ -bimodules.



Theorem

 \mathcal{L}^{λ} admits a basis

 $\{v_T \mid T : semistandard \ tableaux \ of \ the \ skew \ shape \ \lambda/\mu\}$

where μ is a diagram inside λ based on certain combinatorial rules.

Furthermore, the polynomial generators z_i act by eigenvalues

$$z_o.v_T = \alpha + \beta |\mathfrak{B}| + \sum_{b \in \mathfrak{B}} 2c(b)$$
$$z_i.v_T = c(i)$$

Where c(*) denotes the content of the box, \mathfrak{B} is a certain set of boxes in λ .

$$\rho: \mathcal{H}_d^{ext} \to \mathcal{H}_d = \operatorname{End}_{\mathfrak{gl}(n|m)}(L(\square) \otimes L(\square) \otimes V^{\otimes d})$$

Theorem

 $\operatorname{Res}_{\mathcal{H}_{d}^{ext}}^{\mathcal{H}_{d}} \mathcal{L}^{\lambda} \text{ is irreducible. Therefore, } \rho(\mathcal{H}_{d}^{ext}) \text{ is a large} subalgebra of } \mathcal{H}_{d}.$

An explicit example..

