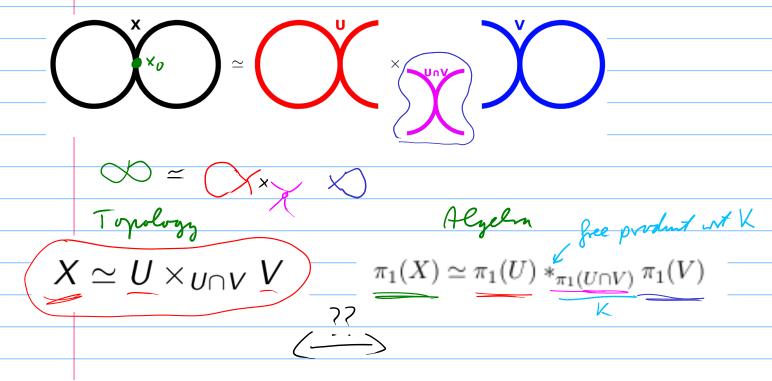
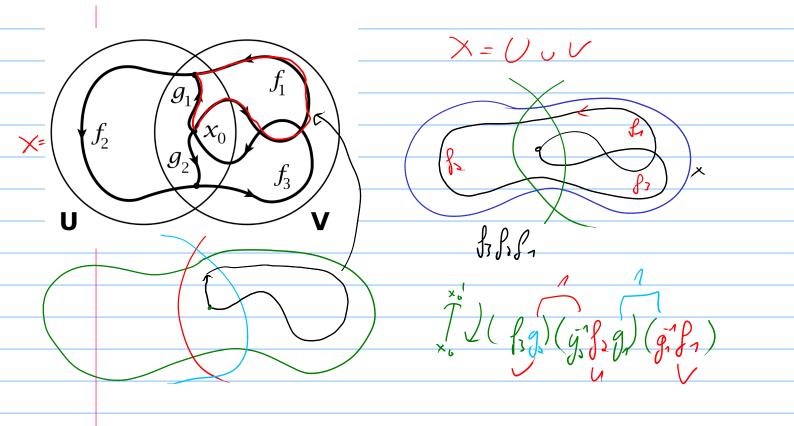
Seifert - van Kumpen ?



Lemma 1.15. If a space X is the union of a collection of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$ and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then every loop in X at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .



Questin: How is herma 1.15 eflected in Algebra??

Given two groups G and H, construct a group G * H by demanding that:

- (a) G, H are subgroups of G * H
- (b) G * H is generated by G, H
- (c) Any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from G * H to KG * H

 $T_{1}(u) *_{T_{2}}(v) \longrightarrow T_{1}(x)$ $g * g' \longleftarrow f$ $G \to K \leftarrow H$

Si Si Se ES

6 * H "free product of 6 and H"

G * H exists and is uniquely determined by these properties

If $G = \langle S_G \mid R_G \rangle$, $H = \langle S_H \mid R_H \rangle$, then $G * H = \langle S_G \cup S_H \mid R_G \cup R_H \rangle$ G * H has the relations of G, H and nothing more

G= (SG/RG)

Eset S= {51,115n}

finith many

group strutus wow' = wu'
eg. (5,52) v (5,51) = 5,525,51

The file crushed here and my save got lost, sorry for that! Please check the video for the slides.

