

Proposition 1.30. Given a covering space $p: \widetilde{X} \to X$, a homotopy $f_t: Y \to X$, and a map $\widetilde{f}_0: Y \to \widetilde{X}$ lifting f_0 , then there exists a unique homotopy $\widetilde{f}_t: Y \to \widetilde{X}$ of \widetilde{f}_0 that lifts f_t .

Proposition 1.31. The map $p_*: \pi_1(\widetilde{X}, \widetilde{x}_0) \to \pi_1(X, x_0)$ induced by a covering space $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ is injective. The image subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ in $\pi_1(X, x_0)$ consists of the homotopy classes of loops in X based at x_0 whose lifts to \widetilde{X} starting at \widetilde{x}_0 are loops.

Example: X = 51 core is R In the abelia case ghy = gg & = h Tom has tur type of cores
- T ta 1 - fold my ~- m Questin: Are there any other covers? Isomorphism classes of subgroups of $\pi_1(\text{torus}) \simeq \mathbb{Z}^2$ and associated \tilde{X} up to \cong of topological spaces: (a) $\mathbb{Z}^2 \longleftrightarrow S^1 \times S^1 \leftarrow \mathbb{Z} \times \mathbb{Z}$ (b) $\mathbb{Z} \longleftrightarrow S^1 \times \mathbb{R} \leftarrow \mathcal{A} \times 1$ (c) $1 \leftrightarrow \mathbb{R} \times \mathbb{R}$ $\longleftarrow 1 \times 1$

There are however ∞ many conjugacy classes of subgroups of $\pi_1(\text{torus}) \simeq \mathbb{Z}^2$

Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally simply-connected. Then there is a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ and the set of subgroups of $\pi_1(X,x_0)$, obtained by associating the subgroup $p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$ to the covering space $(\widetilde{X},\widetilde{x}_0)$. If basepoints are ignored, this correspondence gives a bijection between isomorphism classes of path-connected covering spaces $p:\widetilde{X}\to X$ and conjugacy classes of subgroups of $\pi_1(X,x_0)$.

Given a path-connected, locally path-connected, semilocally simply-connected space X with a basepoint $x_0 \in X$, we are therefore led to define

$$\widetilde{X} = \{ [y] \mid y \text{ is a path in } X \text{ starting at } x_0 \}$$

How to go from a give onlying to coverings?

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

X = {

- ▶ The surface M_{11} of genus 11 has a $G = \mathbb{Z}/5\mathbb{Z}$ symmetry Groups action
- ▶ Identifying along orbits gives $M_{11}/G \simeq M_3$ the surface of genus 3 Quotient
- $lacktriangledown M_{11}$ has a projection map to $M_{11}/G \simeq M_3$ Covering

yne i) anothert spures ii) Coverings

- ▶ S^2 has a $G = \mathbb{Z}/2\mathbb{Z}$ symmetry given by $x \mapsto -x$ Groups action
- ▶ Identifying along orbits gives $S^2/G \simeq \mathbb{R}P^2$ the real projective plane Quotient
- ▶ S^2 has a projection map to $S^2/G \simeq \mathbb{R}P^2$ Covering

This implies IT, (IPP2) = Z/2Z

An action of a group G on a topological space X is a homomorphism

 $G o \operatorname{Homeo}(X) = \{f \colon X o X \mid f \text{ homeomorphism}\}$

6(x) in Hable

GOX

g >> Ant (X) artin of 6 on a get

*

- ▶ The quotient of a covering action $p: X \to X/G$ is a covering
- If X is additionally path-connected and locally path-connected, then $G \cong \pi_1(X/G)/p_*(\pi_1(X)) \qquad \rho_* \left(\widehat{\iota_n} (x) \right) \subseteq \operatorname{result} \subseteq \widehat{\iota_n} (X/G)$
- Special cases of good actions are Deck transformations: $f \in \operatorname{Homeo}(\tilde{X})$ with $p \circ f = p$ for $p \colon \tilde{X} \to X$

$$G = \pi_1(x/G)/\rho_*(\pi_1(x))$$
=> $G = \pi_1(x/G)$

Form a topological space X/G whose points are orbits $\{g.x \mid g \in G\}$

A cover $p: \tilde{X} \to X$ is normal if for all $x \in X$, and all $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x)$ there exists $\phi \in \text{Homeo}(\tilde{X})$ with $\phi(\tilde{x}_1) = \tilde{x}_2$

Proposition 1.39. Let $p:(\widetilde{X},\widetilde{x}_0) \to (X,x_0)$ be a path-connected covering space of the path-connected, locally path-connected space X, and let H be the subgroup $p_*(\pi_1(\widetilde{X},\widetilde{x}_0)) \subset \pi_1(X,x_0)$. Then:

- (a) This covering space is normal iff H is a normal subgroup of $\pi_1(X, x_0)$.
- (b) $\underbrace{G(\widetilde{X})}_{H \text{ in } \pi_1(X, x_0)}$ is isomorphic to the quotient N(H)/H where N(H) is the normalizer of

In particular, $G(\widetilde{X})$ is isomorphic to $\pi_1(X, x_0)/H$ if \widetilde{X} is a normal covering. Hence for the universal cover $\widetilde{X} \to X$ we have $G(\widetilde{X}) \approx \pi_1(X)$.

- top-bottom approach to Tis

- normal actions (> normal onlyman

b

5151

TI_((51) > 2 * Z

buye and has many

