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Field extensions and subgroups of the Galois group, e.g.
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Proposmon 1.30. Given a covering space p: X —X,a homotopy fi:Y—X, and a
map fo Y—X lifting f,, then there exists a unique homotopy ft Y—X of fo that

lifts f;.




Proposition 1.31. The map p,. (X, Xy) — 1, (X, x) induced by a covering space

p:(X,X,)— (X,x,) is injective. The image subgroup p. (1t;(X,%,)) in 1, (X, x,)
consists of the homotopy classes of loops in X based at x, whose lifts to X starting

at X, are loops.

% 1, ( X )
% T, (x)
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Proposition 1.32. The number of sheets of a covering space p : (X , X)) — (X, x()
—— || with X and X path-connected equals the index of p.(m ()?,)?0)) in (X, x,) .
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Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally
simply-connected. Then there is a bijection between the set of basepoint-preserving \
isomorphism classes of path-connected covering spaces p - ()? , )Nco) — (X, x,) and the v
set of subgroups of 1, (X, x,), obtained by associating the subgroup p. (11, (X, X)) d °

to the covering space (X, X,). If basepoints are ignored, this correspondence gives a .
bijection between isomorphism classes of path-connected covering spaces p X—X
and conjugacy classes of subgroups of 1, (X;x,)-

N

/ e Moy A ol -

N (LD CBR ot oot

&G &6,

N\ g .
)

T (X C> @égﬁ (:é 4

%’V e Y, !( (%)

MV/:%MAZMMW” J

Mﬂm( WW”‘]OJ)( !




|

= m— i — T
v Ay Py I TN
P N S S GO
!‘/ - T o
Ua]
/ N y
é/’—.

'l

Y

/
/ — S
‘V L\
- )

L e
1™

h)
™

/T{hwl»WW OQMM

- IT?X LMWY‘-Q WW)

Isomorphism classes of subgroups of 71 (torus) ~ Z= and associated X up to = of topological spaces:

(a) Z2 ew S x ! ¢~ BXZ
(b) Z «s S xR &— A x1

() 1ewRxR ¢— /1%

There are however oo many conjugacy classes of subgroups of  (torus) ~ Z?2
A

/
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|| Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally
simply-connected. Then there is a bijection between the set of basepoint-preserving

isomorphism classes of path-connected covering spaces p : (X, Xy)— (X, x,) and the

set of subgroups of 1,(X, x,), obtained by associating the subgroup p, (1, (X, Xy))
|| to the covering space (X, X,) . If basepoints are ignored, this correspondence gives a

bijection between isomorphism classes of path-connected covering spaces p X—X

and conjugacy classes of subgroups of 1, (X, x;) -

Given a path-connected, locally path-connected, semilocally simply-connected

space X with a basepoint x, € X, we are therefore led to define

X={ly] | y is a path in X starting at x, }
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Given a set U € U and a path y in X from x, to a point in U, let

Uy = {[y-n] | nisapathin U with n(0) = y(1) }
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Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally

simply-connected. Then there is a bijection between the set of basepoint-preserving

isomorphism classes of path-connected covering spaces p : (X, Xy)— (X,x,) and the

set of subgroups of 1, (X, x,), obtained by associating the subgroup p., (1,(X,%,))

to the covering space X, X,) . If basepoints are ignored, this correspondence gives a

bijection between isomorphism classes of path-connected covering spaces p: X—X
and conjugacy classes of subgroups of 1, (X, x).
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» The surface My; of genus 11 has a G = Z/5Z symmetry Groups action
—_—  —
» Identifying along orbits gives M;;/G ~ Mj the surface of genus 3 Quotient =

» My has a projection map to M1 /G ~ M;  Covering /
E— — &

—
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———— » 52 has a projection map to $2/G ~ RP? Covering -

» S2has a G = Z/27 symmetry given by x — —x  Groups action C/

y
» Identifying along orbits gives $2/G =~ RP? the real projective plane Quotient “—
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An action of a group G on a topological space X is a homomorphism

@eo(X) ={f- X—=>X|f homeomorphis@
N
N
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» The quotient of a covering action p: X — X/G is a covering

» If X is additionally path-connected and locally path-connected, then
=m(X/G)/p(m(X))  py (T (X)) & ronveme L T, (XSG
» Special cases of good actions are Deck transformations: f € Homeo(X) with
pof=pforp: X - X

~
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=> éCTT,, X%

—— Form a topological space X/G whose points are orbits {g.x | g € G}
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@: X — X is normal if for all z € X, and all 1,7 € p~1(z) there exists ¢ € Homeo(X) with ¢(21) = T2

ey

— Proposition 1.39. Let p: (X ,Xo)— (X,xy) be a path-connected covering space of

the path-connected, locally path-connected space X, and let H be the subgroup

p, (m(X,%,)) c m(X,x,). Then:

(@) This covering space is normal iff H is a normal subgroup of 1, (X, x,).

|| ) G(X) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of
H in (X, x).

In particular, G(X) is isomorphic to (X, x,)/H if X is a normal covering. Hence

for the universal cover X — X we have G (X) ~ T, (X).
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