What is...the dimension of a variety?

Or: A space in a space in a space...

Dimension in general

- Dimension = measurement of "size" of a thing
- The precise definition varies depending on the problem
- Today Dimension for varieties (over arbitrary fields)

Nested spaces

- Nesting strategy $=$ Put a point in a line in a plane in ...
- The space \mathbb{R}^{3} is then 3d since it contains maximally three smaller objects
- Why is that good? Makes intuitively sense and is field independent

An algebra version

- Krull dimension $=$ maximal length of chains of prime ideals in an algebra A :

$$
I_{0} \varsubsetneqq I_{1} \varsubsetneqq \ldots \varsubsetneqq I_{n}=A
$$

- Example The above is the variety version of the coordinate ring inclusions:

$$
(0) \subset(x) \subset(x, y) \subset(x, y, z)=\mathbb{R}[x, y, z]
$$

- This is very similar to the notion from the previous slide

For completeness: A formal statement

On the variety side for $V \neq \emptyset:$

- Consider chains of closed irreducible subvarieties $\neq \emptyset$:

$$
V_{0} \varsubsetneqq V_{1} \varsubsetneqq \ldots \varsubsetneqq V_{n}=V
$$

- Then $\operatorname{dim} V=\sup \{$ length of all such chains $\} \in \mathbb{N} \cup\{\infty\}$

$$
\text { On the algebra side for } A \neq \emptyset:
$$

\triangleright Consider chains of prime ideals $\neq \emptyset$:

$$
I_{0} \varsubsetneqq I_{1} \varsubsetneqq \ldots \varsubsetneqq I_{n}=A
$$

\triangleright Then $\operatorname{dim} A=\sup \{$ length of all such chains $\} \in \mathbb{N} \cup\{\infty\}$
These agree $\operatorname{dim} V=\operatorname{dim} \mathbb{K}[V]$

Pure dimensional spaces

- V is of pure dimension n if every irreducible component is of dimension n
- Examples Curves are pure 1d, surfaces are pure 2d
- Careful This depends on \mathbb{K}, e.g. a complex curve is of real dimension two

Thank you for your attention!

I hope that was of some help.

