Or: Topology via algebra



Braids in mathematics?

Braids are around for millennia, but how to _?
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Gauss’ handwritten notes ~1820: first appearance of braids in mathematics?



Braids in 2d
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Question. Can one describe the information |loss from 3d to 2d?



Its a group! gh is “stack g on top of h”

Braid group (| infinite ):
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Symmetric group (always finite):
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Enter, the theorem!

(a) Braids |(topology) on n strands form a group Br, (algebra)
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(c) Two elements in Br, represent the same braid if and only if they are related by
height moves or
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Consequences.

(b) The group Br, is generated by

» One gets a | purely algebraic way to study braids

» The symmetric group is a quotient, so one also gets a presentation for it



A purely algebraic way to study knots/links
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» Alexander theorem. Every knot/link arises in this way

» Markov theorem. Two closures represent the same knot/link if and only if they
are related by braid operations or




| hope that was of some help.



