What is...a coin toss run?

Or: Why is this difficult?

Fair coin tossing

$$
p=1 / 2
$$

Fair coin toss $=$ heads $/$ tails with probability $1 / 2$

- Expectation "Everything" about coin tossing should be easy and well-understood
- This video Something obscurely difficult

- A classic Humans underestimate the length of runs in coin tossing
- This is often used to distinguish fake from real coin tosses
- Let's analyze runs mathematically - we will see a surprisingly strange answer

An innocent question

- What is the expected length of the longest run e_{n} (heads)?
- e_{n} (heads) $=$ here $n=$ number of coin tosses, and we only count head runs
- Sounds easy, right? Well, see above...

Enter, the theorem

e_{n} (heads) behaves roughly like $\log _{2} n-0.667254$:

$$
e_{n}(\text { heads }) \approx \log _{2} n-\left(\frac{2}{3}-\gamma / \ln 2\right)
$$

As before
but now with the expected value . \qquad

- As potentially expected, we get a log:

- Unexpected : the offset by $0.667254 \ldots$ ($\gamma=$ Euler-Mascheroni's gamma)

There is another error term...

- The real formula $e_{n}($ heads $)=\log _{2} n-\left(\frac{2}{3}-\gamma / \ln 2\right)+\delta(n)+o(1)$
- $\delta(n)$ is a oscillating and tiny error function: $|\delta(n)|<10^{-5}$
- Weird, but this happens often

Thank you for your attention!

I hope that was of some help.

