Or: Why is this difficult?



Fair coin tossing
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» Fair coin toss = heads / tails with probability 1/2

» Expectation “Everything”" about coin tossing should be easy and well-understood

» This video Something obscurely difficult
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» A classic Humans underestimate the length of runs in coin tossing
» This is often used to distinguish fake from real coin tosses

» Let's lanalyze runs mathematically — we will see a surprisingly strange answer



An innocent question
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Toss a coin :

300 times 8
Count the

longest 0-run
Repeat 300 times 4
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» What is the expected length of the |longest run e,(heads)?

> ey(heads) = here n=number of coin tosses, and we only count head runs

» Sounds easy, right? Well, see above...



Enter, the theorem
en(heads) behaves roughly like log, n — 0.667254:

en(heads) ~ log, n — (3 — v/ In2)

As before
but now with
the expected value |

» As potentially expected, we get a log:
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» Unexpected : the offset by 0.667254... (v = Euler—-Mascheroni's gamma)



There is another error term...
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> _ en(heads) = log, n— (3 —~/In2) + 6(n) + o(1)

» &(n) is a oscillating and tiny error function: |§(n)| < 107°

> - but this happens often



| hope that was of some help.



