Categorical representation theory and applications

Or: Functors, not matrices

Daniel Tubbenhauer

Where are we?

Functors, not matrices

Categorical representation theory = representation theory + categories

- ► Categorification = replace set-theoretical structures by category-theoretical ones
- ► Categorifcation reveals hidden structures "Shadow vs. real object"

Goal Combine categorification and representation theory

Functors, not matrices

Categorical representation theory and applications

Categorical representation theory = representation theory + categories

Cat rep of a group : group elements \mapsto functors , relations \mapsto nat trafos

▶ Representation theory = study of actions of groups/algebras/Lie algebras/etc.

Cat representation theory = study of actions of (2-)categories

Cat rep of a group : group elements \mapsto functors , relations \mapsto nat trafos

Representation theory = study of actions of groups/algebras/Lie algebras/etc.

Cat representation theory = study of actions of (2-)categories

• Goal of chemistry Find the periodic table of elements

► Goal of group theory Find the periodic table of simple groups

• Goal of (cat) rep theory Find the periodic table of simple reps

Functors, not matrices

Categorical representation theory and applications

Instead of G-reps study (G-rep)-reps

Instead of G-reps study (G-rep)-reps

Examples instead of formal defs

- ▶ Let $\mathscr{C} = \mathscr{R}ep(G)$ (G a finite group)
- ▶ \mathscr{C} is part of the theory. For any $M, \mathbb{N} \in \mathscr{C}$, we have $M \otimes \mathbb{N} \in \mathscr{C}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G, m \in M, n \in \mathbb{N}$. There is a trivial representation $\mathbbm{1}$

▶ The regular cat representation $\mathscr{M} : \mathscr{C} \to \mathscr{E}nd(\mathscr{C})$:

▶ The decategorification is the regular representation

- Let $K \subset G$ be a subgroup
- ▶ $\mathcal{R}ep(K)$ is a cat representation of $\mathscr{R}ep(G)$, with action

 $\mathcal{R}es^{G}_{K} \otimes _: \mathscr{R}ep(G) \to \mathscr{E}nd(\mathcal{R}ep(K)),$

which is indeed a cat action because $\mathcal{R}es^{G}_{K}$ is a \otimes -functor

► The decategorifications are N-representations

- Let $K \subset G$ be a subgroup
- ▶ $\mathcal{R}ep(K)$ is a cat representation of $\mathscr{R}ep(G)$, with action

$$\mathcal{R}\textit{es}^{\mathcal{G}}_{\mathcal{K}}\otimes _:\mathscr{R}\mathrm{ep}(\mathcal{G})
ightarrow \mathscr{E}\mathrm{nd}(\mathcal{R}\mathrm{ep}(\mathcal{K})),$$

which is indeed a cat action because $\mathcal{R}es^{\mathcal{G}}_{\mathcal{K}}$ is a \otimes -functor

► The decategorifications are N-representations

Instead of G-reps study (G-rep)-reps

- ► Symmetric group $\stackrel{generalize}{\longleftarrow}$ Hecke algebras $\stackrel{categorify}{\longleftarrow}$ Hecke categories
- ▶ We used the \Re ep(G, \mathbb{C})-result to classify simple reps of the Hecke categories
- ► This categorifies rep theory of Hecke algebras

Functors, not matrices

Categorical representation theory and applications

Applications of categorical representation theory

From Burnside's book Theory of Groups of Finite Order

first edition ~1897	It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of repre- sentation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.
	$\mathbf{V}_{\text{finite order have been made since the appearance of the}^{\text{ERY considerable advances in the theory of groups of finite order have been made since the appearance of the}$
second	first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and
edition	important investigations by several writers; and the reason given in the original preface for omitting any account of it no
\sim 1911	longer holds good. In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representa-
	tion of a group as a group of linear substitutions. There is

▶ Rep theory is everywhere in math & the sciences but it took a while to get started

Short and long terms goal Find applications of categorical rep theory

Rep theory is everywhere in math & the sciences but it took a while to get started

Short and long terms goal Find applications of categorical rep theory

Functors, not matrices

Applications of categorical representation theory

ANY 2800 X/K

- ► Symmetric group (generation Hecke algebras (subgostly Hecke categories ▶ We used the \Re ep(G, C)-result to classify simple reps of the Hecke categories
- This categorifies rep theory of Hecke algebras Factory, and matrices. Galogadod representation theory and applications

Categorical representation theory = representation theory + categories

There is still much to do...

ANY 2800 X/K

Categorical representation theory = representation theory + categories

Thanks for your attention!

▶ We used the \Re ep(G, C)-result to classify simple reps of the Hecke categories This categorifies rep theory of Hecke algebras

Factory, and matrices. Galogadod representation theory and applications