Knots and algebra

Or: Quantum algebra $=$ geometry + algebra

Daniel Tubbenhauer

Knot theory

- We all sometimes get stuck within the knots of life
- Since the late 18th century knot theory studies these and other knots
- Knot theory is one of the most appealing and applicable fields of math

Knot theory

(+) 3
(+) 3

(+) 3
(+) 3

(+) 5 torus

$(+) 6$ granny

- There are many knots in the real-world: shoelaces, DNA, ...
- Knot theory is the mathematical study of all of these

Knot theory

- A mathematical knot is a rope with ends tied together
- That is a necessary because otherwise all knots can be undone
- In practice you can think of your shoelaces tied together

Too many shadows

- Knots are studied via their projections Shadows
- This reduces a 3d problem into a 2d one
- Knot theory deals with the information loss from 3d \rightarrow 2d

Too many shadows

- Problem A knot can be represented by many shadows
- Serious problem Every knot has nasty shadows
- Task Find a way to distinguish knots via their shadows

Enter, quantum algebra

- Knot theory then studies \square knot invariants
- That is, ones associate an algebraic object (number, polynomial, ...) I_{D} to a shadow D such that
D, D^{\prime} present the same knot $\Rightarrow I_{D}=I_{D^{\prime}}$

Enter, quantum algebra

- Knot invariants are powerful tools to distinguish knots
- But that is (k)not the whole story!

Enter, quantum algebra

J\#K

$$
\begin{aligned}
& J \rightsquigarrow q^{2}-q+1-q^{-1}+q^{-2}, K \rightsquigarrow q^{4}+q^{3}+q \\
& J \# K \rightsquigarrow\left(q^{2}-q+1-q^{-1}+q^{-2}\right)\left(q^{4}+q^{3}+q\right)
\end{aligned}
$$

- Another part of the story is that geometry and algebra reflect one another
- Example The geometric operation \# on knots corresponds to polynomial multiplication

Enter, quantum algebra

Jones was awarded the Fields Medal at Kyoto in 1990 for these breakthroughs.

ATIONAL CONGRESS OF MATHEMATCLANS 1990

Quantum algebras produces many good knot invariants But, more importantly, it does so by connecting different fields, e.g.
"algebra = geometry"
from the viewpoint of quantum algebra

- Another part of the story are the widespread applications
- Kyoto 1990 Jones gets the fields medal for the discovery of the Jones polynomial (the one we used on the previous slides)
- The new born field
quantum algebra has manifold connections beyond math

- We all semetimes gee stuck within the knots of life
- Since the late 18th century knot thoory studes these and other knots - Knot theory is one of the most appealing and applicable fields of math

Too many shadows

- Knots are studied via their projections Shadows
- This reduces a 3d problem into a 2 d one
- Knot thecry deals with the iifformation loses from $3 \mathrm{~d} \rightarrow 2 \mathrm{~d}$

Enter, quantum algebra

- Knot imariants are powerful tools to distinguish knots
- But that is (k) oot the whole storyl

- There are many knots in the real-wcold: stoolices, DNA
- Knot theory is the mathematical study of all of these

Too many shadows

- Problem A hnot can be represented by many shadom:
- Serious probiem Every knot has nasty shadows
- Task Find a way to distinguish knots via their shadows

Enter, quantum algebri

$1=q^{2}-q+1-q^{-1}+q^{-2} \cdot K=q^{4}+q^{3}+q$
$\psi \psi K=\left(q^{2}-q+1-q^{-1}+q^{-2}\right)\left(q^{+}+q^{3}+q\right)$

- Anocher part of the story is that geometry and algebra reflect one another

Knot theory

- A mathenutical knot is a rope with ends tied together
- That is a necessary because otherwise all knots can be undone - In practice you can think of your shoelaces tied together

Enter, quantum algebra

- Knot theory then studies knot invariants
-That is, ones assodiate an isgetraic object (number, polynomial, ,..) Io to a studow D such that

Enter, quantum algebra

Quyntum iletrara prodices many gocd knot imariants But, more importantly, it does so "elgebra - scometry Igebra - geometry from the viewpoint of quantum algebra

- Ancher part of the story are the widespread applications
- Kyoto 1990 Jones gets the fields medal foc the discovery of the lones
polymamial (the one we used on the previous slides)
- The new born field quantum algetra has manifold connections beyond math

There is still much to do

- We all semetimes get stuck within the knots of life
- Since the late 18th century knot theory studes these and other knots - Knot theory is one of the most appealing and applicable fields of math

Too many shadows

- Knots are studied via their projections Shadows
- This reduces a 3d problem into a 2 d one
- Knot theory deals with the iifformation looss from $3 \mathrm{~d} \rightarrow 2 \mathrm{~d}$

Enter, quantum algebra

- Knot imariants are powerful tools to distinguish knots
- But that is (k)not the whole stonyt
- Mons.

- There are many knots in the real-wcold: stoolices, DNA
- Knot theory is the mathematical study of all of these

- Problem A hnot can be represented by many shadom:
- Serious problem Every knot haz nasty shadows
- Task Find a way to distinguish knots via their shadows

Enter, quantum algebria

$1=q^{2}-q+1-q^{-1}+q^{-2} \cdot K=q^{4}+q^{3}+q$
$J \psi K=\left(q^{2}-q+1-q^{-1}+q^{-2}\right)\left(q^{+}+q^{3}+q\right)$

- Anocher part of the story is that geometry and algebra reflect one another

Knot theory

- A mathenutical knot is a rope with ends tied together
- That is a necessary because otherwise all knots can be undone - In practice you can think of your shoelaces tied together

Enter, quantum algebra

- Knot theory then studies knot invariants
-That is, ones assodiate an isgetraic object (number, polynomial, ,..) Io to a studow D such that

Enter, quantum algebra

Quantum algestras produces many gocd knot imariants But, mare impartantly, it does 50 "izgetra - geometry" from the viewpoint of quantum algebra

- Ancher part of the story are the widespread applications
- Kyota 1990 . Jones gets the fields medal for the discovery of the Jones
polynomial (the one we used on the previous slides)
- The new bom field quantum algetran has manifold connections beyond math

Thanks for your attention!

