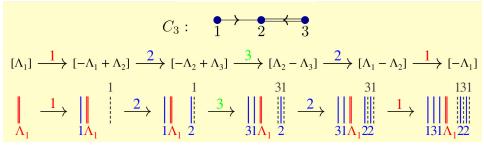
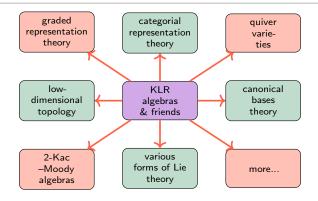
Or: From path to strings

Daniel Tubbenhauer



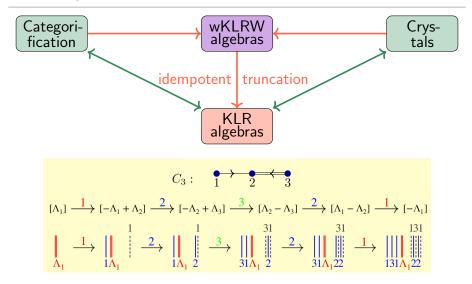
Joint with Andrew Mathas

December 2022

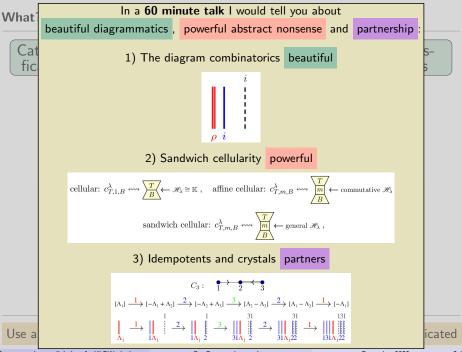


- ► Khovanov-Lauda-Rouquier ~2008 + many others (including many people here) KLR algebras are at the heart of categorical representation theory
 - Problem These are actually really complicated!
 - ► Goal Try to find nice ("cellular") bases for them

What? Why? How?



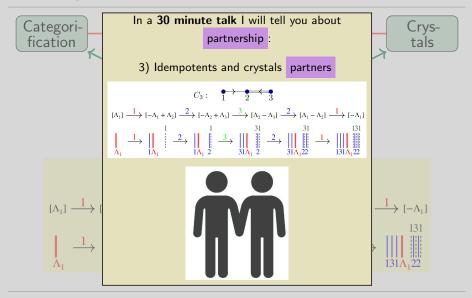
Use a richer combinatorics which is somewhat easier although more sophisticated



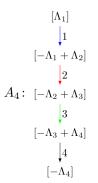
Or: From path to strings

2/5

What? Why? How?



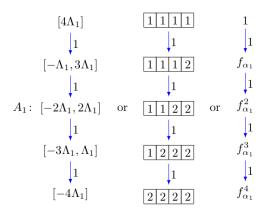
Use a richer combinatorics which is somewhat easier although more sophisticated



- ▶ In this talk, \mathfrak{g} is some Kac–Moody algebra with Chevalley generators e_i, f_i
- In essence, a crystal is a direct graph with colored edges, and it is the combinatorial shadow of a g-rep

vertices $\leftrightarrow \rightarrow$ weight spaces colored edges $\leftrightarrow \rightarrow$ action of the f_i

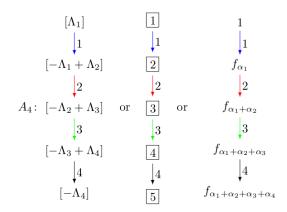
From crystals to cellularity of wKLRW algebras



Example (above) The simple \mathfrak{sl}_2 -rep $Sym^4\mathbb{C}^2$ via the vanilla, tableaux, PBW flavor

 Crystal magic Get rid of all funny coefficients and summands, and only keep the "main part" of g-reps

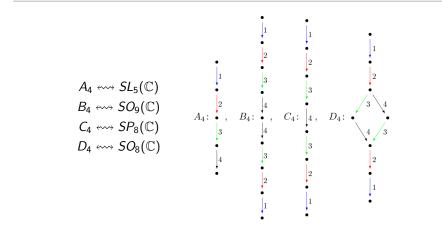
From crystals to cellularity of wKLRW algebras



Example (above) The simple \mathfrak{sl}_5 -rep \mathbb{C}^5 via the vanilla, tableaux, PBW flavor

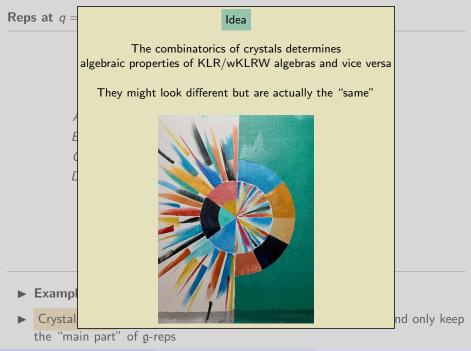
 Crystal magic Get rid of all funny coefficients and summands, and only keep the "main part" of g-reps

From crystals to cellularity of wKLRW algebras



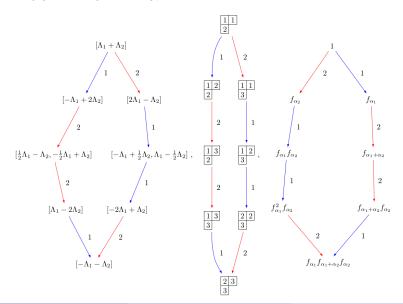
- **Example (above)** The simple reps $L(\Lambda_1)$ of classical types
- Crystal magic Get rid of all funny coefficients and summands, and only keep the "main part" of g-reps

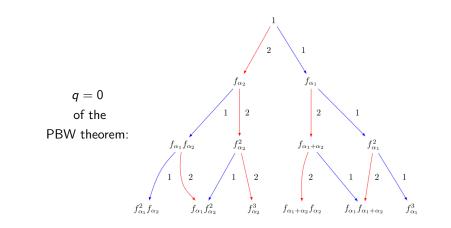




Reps at q = 0

Let us enjoy some crystals in type A_2 :





In finite type one can cut out all crystals from a general PBW crystal

 Idea If the partnership between crystals and KLR algebras works, then finite type KLR algebra should be quite special

From crystals to cellularity of wKLRW algebras

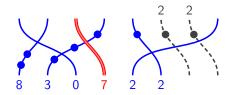
Placing strings: crystals and KLR (of level one – for convenience only)

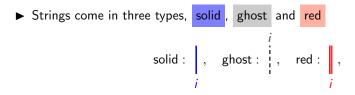
► We now play a string placing game

- Only certain "good" configurations give nice tones
- ▶ The "good" configurations come from paths in crystal graphs

From crystals to cellularity of wKLRW algebras

Placing strings: crystals and KLR (of level one - for convenience only)

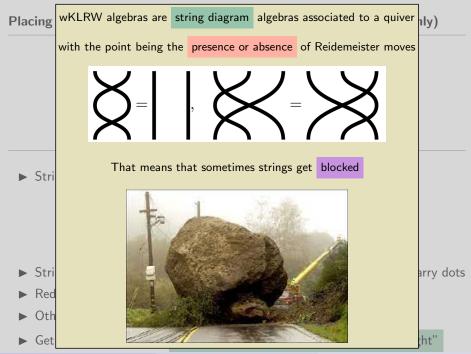




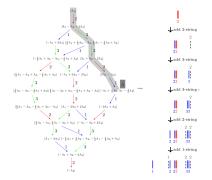
- ► Strings are labeled by simple roots, and solid and ghost strings can carry dots
- ▶ Red strings anchor the diagram (# red strings ↔ level)
- ▶ Otherwise no difference to symmetric group diagrams

• Get wKLRW diagrams: "solid string = f_i , red strings = highest weight"

From crystals to cellularity of wKLRW algebras

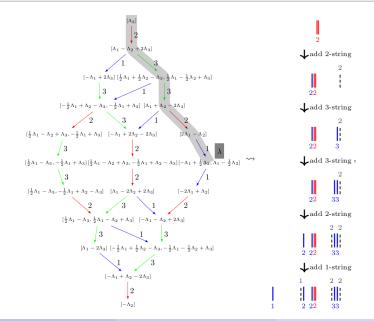


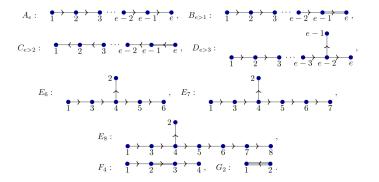
Placing strings: crystals and KLR (of level one - for convenience only)



- ► The highest weight of the crystal tells you the starting position i.e. the red string placement
- Fix a path and move along it, while doing so place strings so that they are blocked by the previous string
- \blacktriangleright This produced an idempotent 1_Λ associated to a crystal Λ

Placing strings: crystals and KLR (of level one – for convenience only)

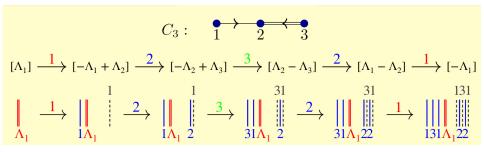




In finite types the PBW theorem for crystals implies that:

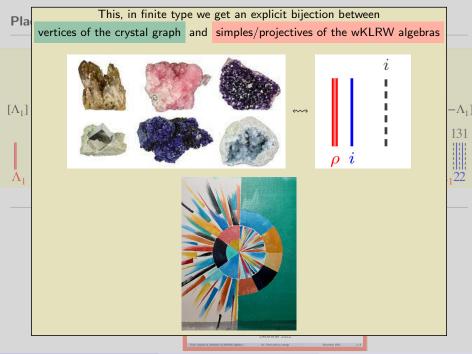
- ► For a fixed choice of path per vertex 1_Λ gives rise to a cell module with an associated simple
- ► All simples arise in this way
- Simples for different vertices are not equivalent

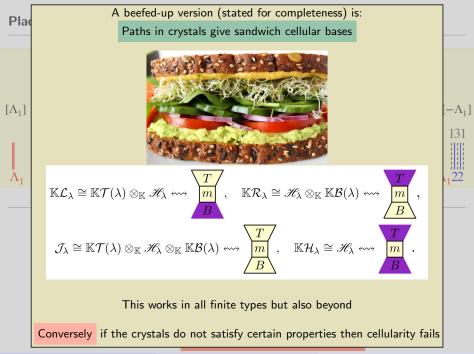
Placing strings: crystals and KLR (of level one – for convenience only)



This was the thumbnail $\begin{bmatrix} From crystals to cellularity of wKLRW algebras \\ Or: From path to strings \\ Data Tatestras \\ C_3 : \underbrace{1 \rightarrow \underbrace{2 \rightarrow 3}_{3}}_{1 \rightarrow \underbrace{1 \rightarrow 2}_{3} \rightarrow \underbrace{3}_{3}}_{1 \rightarrow \underbrace{1 \rightarrow 3}_{3} \rightarrow \underbrace{1 \rightarrow 3}_{3}}_{2 \rightarrow \underbrace{1 \rightarrow 3}_{3}}_{3 \rightarrow \underbrace{1 \rightarrow 3$

From crystals to cellularity of wKLRW algebras





 Khovanov-Lauda-Rouquier ~2008 + many others (including many people here) KLR algebras are at the heart of categorical representation theory

► Problem These are actually really complicated

· Goal Try to find nice ("cellular") bases for them

From anyonis to unitability of articities for From parts to articipa discussion 2000 2/15

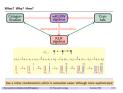
► Example (above) The simple reps L(As) of classical types

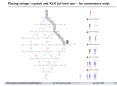
 Crystal magic Get rid of all furny coefficients and summands, and cely keep the "main part" of g-reps
 To graph and the set of t

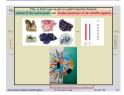
► We now play a string placing game

► Only certain "good" configurations give nice tones

The "good" configurations come from paths in crystal graphs
The spentrum states of attimum game
to free per summp
The spentrum spectrum game
A/S







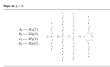
There is still much to do...

 Khovanov-Lauda-Rouquier ~2008 + many others (including many people here) KLR algebras are at the heart of categorical representation theory

► Problem These are actually really complicated

Goal Try to find nice ("cellular") bases for them

From anyonis to unitability of articities for From parts to articipa discussion 2000 2/15



► Example (above) The simple reps L(As) of classical types

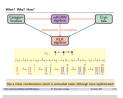
 Crystal magic the "main part" of g-reps

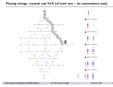
► We now play a string placing game

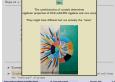
► Only certain "good" configurations give nice tones

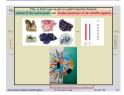
The "good" configurations come from paths in crystal graphs
The system sublexy of additionages
The system sublexy of additionages

4/5









Thanks for your attention!