# Minimal representations of monoids 

Or: The smallest nontrivial

Daniel Tubbenhauer



Joint with M. Khovanov and M. Sitaraman

## Where do we want to go?



- Green, Clifford, Munn, Ponizovskiĩ ~1940++ + many others Rep theory of (finite) monoids
- Monoids reps have a slightly different flavor than group reps


## Where do we want to go?



- Green, Clifford, Munn, Ponizovskiī ~1940++ + many others Rep theory of (finite) monoids
- Monoids reps have a slightly different flavor than group reps


## Where do we want to go?



- Green, Clifford, Munn, Ponizovskiĩ ~1940++ + many others Rep theory of (finite) monoids
- Goal Describe "minimal" monoid reps


## Where do we want to go?



## Monoids are everywhere



- Associativity $\Rightarrow$ reasonable theory of matrix reps
- Southeast corner $\Rightarrow$ reasonable theory of matrix reps

Monoi Adjoining identities is "free" and there is no essential difference between semigroups and monoids
The main difference is monoids vs. groups
I will stick with the more familiar monoids and groups


- Associativity $\Rightarrow$ reasonable theory of matrix reps
- Southeast corner $\Rightarrow$ reasonable theory of matrix reps


$$
\text { In a monoid information is destroyed }
$$

The point of monoid theory is to keep track of information loss

- Associativit
- Southeast


Adjoining identities is "free" and there is no essential difference between semigroups and monoids
The main difference is monoids vs. groups
I will stick with the more familiar monoids and groups

In a monoid information is destroyed
The point of monoid theory is to keep track of information loss
Monoids appear naturally in categorification

| Group-like structures |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Semigroupoid <br> Small category | Totality ${ }^{\alpha}$ Associativity |  | Identity <br> Unneeded | Invertibility Commutativity |  |
|  | Unneeded | Required |  | Unneeded | Unneeded |
|  | Unneeded | Required | Required | Unneeded | Unneeded |
| Groupoid | Unneeded | Required | Required | Required | Unneeded |
| Magma | Required | Unneeded | Unneeded | Unneeded | Unneeded |
| Quasigroup | Required | Unneeded | Unneeded | Required | Unneeded |
| Unital magma | Required | Unneeded | Required | Unneeded | Unneeded |
| Semigroup | Required | Required | Unneeded | Unneeded | Unneeded |
| Loop | Required | Unneeded | Required | Required | Unneeded |
| Inverse semigroup | Required | Required | Unneeded | Required | Unneeded |
| Monoid | Required | Required | Required | Unneeded | Unneeded |
| Commutative monoid | Required | Required | Required | Unneeded | Required |
| Group | Required | Required | Required | Required | Unneeded |
| Abelian group | Required | Required | Required | Required | Required |

## Monoids are everywhere

## Examples of monoids

Groups
Multiplicative closed sets of matrices (these need not to be unital, but anyway)
Symmetric groups $\operatorname{Aut}(\{1, \ldots, n\})$
(24138567) $\longleftrightarrow$


Transformation monoids $\operatorname{End}(\{1, \ldots, n\})$
(23135555) ↔u


- Southeast corner $\Rightarrow$ reasonable theory of matrix reps


## Monoids are everywhere



| Example (now with notation) |
| :---: |
| $\mathfrak{S}_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ is a group Symmetric group |
| $\mathfrak{T}_{n}=\operatorname{End}(\{1, \ldots, n\})$ is a monoid Transformation monoid |

- Associativity $\Rightarrow$ reasonable theory of matrix reps
- Southeast corner $\Rightarrow$ reasonable theory of matrix reps


## Finite groups are kind of random...

Mono

## A000001 Number of groups of order n. <br> (Formerly M0098 N0035)

$0,1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1$, $51,1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,13,1$, $2,4,267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1,15,1,2,1,12,1,10,1$,
$\log (\#)$


A058133 Number of monoids (semigroups with identity) of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
0, 1, 2, 6, 27, 156, 1373, 17730, 858977, 1844075697, 52991253973742 (list; graph; refs; listen; history;
$\log (\#)$


## Finite groups are kind of random...

## A000001 Number of groups of order n. <br> (Formerly M0098 N0035)

$0,1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1$, $51,1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,13,1$, $2,4,267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1,15,1,2,1,12,1,10,1$, $\log (\#)$

## Monoids have almost no structure

 and there are zillions of them$\Rightarrow$ not clear that there is a satisfying (rep) theory of monoids
There is: Green's cell theory (not needed today but pulls the strings in the background)


## Monoids are everywhere

Cayley graphs of monoids might look weird:


- $S_{0, \ldots, n-1 ; 1}=$ monoid on $\{0, \ldots, n-1\} \cup\left\{1^{\prime}\right\}$
- $1^{\prime}$ is the unit and $a b=a$ otherwise
- One can check that $\mathbb{K} S_{0, \ldots, n-1 ; 1}$ is a split basic algebra whose quiver $\Gamma$ is of the form

$$
n=1: \Gamma=\bullet \bullet, \quad n=2: \Gamma=\bullet \rightarrow \bullet, \quad n=3: \Gamma=\bullet \rightrightarrows \bullet,
$$

i.e. two vertices and $n-1$ edges for $\mathbb{K} S_{0, \ldots, n-1 ; 1}$

## Monoids are everywhere



- In the theory of monoids the key are Green cells
- The monoid algebra $\mathbb{K} S$ is a bialgebra $\Rightarrow$ rep cat is monoidal
- Crucial $\mathbb{K} S$ is not a Hopf algebra $\Rightarrow$ rep cat is not rigid


## Minimal monoids representations



- $S=$ monoid, $G \subset S=$ group of units
- $S$ has two trivial reps, called bottom and top:

$$
1_{b}: S \rightarrow \mathbb{K}, \quad s \mapsto\left\{\begin{array}{ll}
1 & \text { if } s \in G, \\
0 & \text { else },
\end{array} \quad 1_{t}: S \rightarrow \mathbb{K}, \quad s \mapsto 1\right.
$$

- The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

- $S=$ monoid, $G \subset S=$ group of units
- $S$ has two trivial reps, called bottom and top:

$$
1_{b}: S \rightarrow \mathbb{K}, \quad s \mapsto\left\{\begin{array}{ll}
1 & \text { if } s \in G, \\
0 & \text { else },
\end{array} \quad 1_{t}: S \rightarrow \mathbb{K}, \quad s \mapsto 1 .\right.
$$

- The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top


# Minimal monoids representation 

Example
$S$ is a group
$\Leftrightarrow$
$S=G$
$\Leftrightarrow$
$1_{b}=1_{t}$

Example (the only monoid with one element)
$S=\{1\}$ is trivial
$\Rightarrow$
$1_{b}=1_{t}$ is the only simple $S$-rep

- $S=$ monoid, $G \subset S=$ group of units
- $S$ has two trivial reps, called bottom and top:

$$
1_{b}: S \rightarrow \mathbb{K}, \quad s \mapsto\left\{\begin{array}{ll}
1 & \text { if } s \in G, \\
0 & \text { else },
\end{array} \quad 1_{t}: S \rightarrow \mathbb{K}, \quad s \mapsto 1 .\right.
$$

- The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top


# Minimal monoids representation 

Example
$S$ is a group
$\Leftrightarrow$
$S=G$
$\Leftrightarrow$
$1_{b}=1_{t}$
or a bit more accurate:
Example (the only monoid with one element) $S=\{1\}$ is trivial

$$
\Rightarrow
$$

$1_{b}=1_{t}$ is the only simple $S$-rep

- $S=$ monoid, $G$
- $S$ has two trivi

$$
\text { Example (monoid } 1 \text { with two elements) }
$$

$S=S_{0 ; 1}=\left\langle a \mid a^{2}=a\right\rangle$ is essentially trivial
$1_{b} \neq 1_{t}$ are the only simple $S$-reps

$$
1_{b}: S \rightarrow \mathbb{K}, \quad s \mapsto\left\{\begin{array}{ll}
1 & \text { if } s \in G, \\
0 & \text { else },
\end{array} \quad 1_{t}: S \rightarrow \mathbb{K}, \quad s \mapsto 1\right.
$$

- The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

or a bit more accurate:
Example (the only monoid with one element) $S=\{1\}$ is trivial $\Rightarrow$
$1_{b}=1_{t}$ is the only simple $S$-rep
- $S=$ monoid, $G$

Example (monoid 1 with two elements)
$S=S_{0 ; 1}=\left\langle a \mid a^{2}=a\right\rangle$ is essentially trivial
$1_{b} \neq 1_{t}$ are the only simple $S$-reps


- The name cor and these are $1_{b}=1_{t}$ and $a \mapsto-1$ are the only simple $S$-reps


## Minimal monoids representations



- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap_{\mathbb {K}}}(S)=$ smallest dim of a nontrivial $S$-rep over $\mathbb{K} ;$ gap $p_{*}=\min$ of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write $\operatorname{gap}(S)$ if the difference doesn't matter


## Minimal monoids representations



- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial S-rep over $\mathbb{K}$; gap $p_{*}=$ min of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


## Minimal monoids representations

$\operatorname{gap}(S)$ is a measure of the complexity of $S$ $\operatorname{gap}(S)$ goes under different names in the literature

In particular for $S=$ group this is well-studied and goes back to the very early days of rep theory

One needs lower and upper bounds for gap(S), e.g.:
A large $\operatorname{gap}(S)$ is what one seeks for cryptography or expander graphs
A small $\operatorname{gap}(S)$ is what one seeks for group/monoid cohomology

- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap} \mathbb{K}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial $S$-rep over $\mathbb{K}$; gap $p_{*}=$ min of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


## Minimal monoids representations

## Mnemonic (not quite true but close)

Rep gap $\operatorname{gap} \boldsymbol{p}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial simple $S$-rep over $\mathbb{K}$ Rep gap $\operatorname{gap} p_{*}(S)=$ smallest dim of a nontrivial simple $S$-rep over all $\mathbb{K}$

- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial S-rep over $\mathbb{K}$; gap $p_{*}=$ min of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


## Minimal monoids representations

## Example/convention

For $S=\{1\}$ we define $\operatorname{gap}(S)=0$
For $S=S_{0 ; 1}=\{0,1\}$ we define $\operatorname{gap}(S)=0$
Why? These are the only monoids without any nontrivial reps so $\operatorname{gap}(S)$ would be infinite, but that is silly...


- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial S-rep over $\mathbb{K}$; gap $p_{*}=\min$ of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write $\operatorname{gap}(S)$ if the difference doesn't matter


## Minimal monoids representations

## Example/convention

For $S=\{1\}$ we define $\operatorname{gap}(S)=0$ For $S=S_{0 ; 1}=\{0,1\}$ we define $\operatorname{gap}(S)=0$

Why? These are the only monoids without any nontrivial reps so $\operatorname{gap}(S)$ would be infinite, but that is silly...

## Nontrivial reps

## Example (groups)

For $S=\mathbb{Z} / 2 \mathbb{Z}$ we have $\operatorname{gap}_{\mathbb{C}}(S)=1$
For $S=\mathfrak{S}_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ we have $\operatorname{gap}_{\mathbb{C}}(S)=1$
For $S=$ Monster we have $\operatorname{gap}_{\mathbb{C}}(S)=196883$ (Griess $\sim 1980$ and others)
For $S=S L_{2}\left(\mathbb{F}_{p}\right)$ we have $\operatorname{gap}(S) \geq \frac{p-1}{2} \quad($ Frobenius $\sim 1900)$

$$
\text { For } S=\mathbb{Z} / 2 \mathbb{Z} \text { we have } \operatorname{gap}_{*}(S)=1
$$

For $S=\mathfrak{S}_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ we have $\operatorname{gap}_{*}(S)=1$
For $S=$ Monster we have $\operatorname{gap}_{*}(S) \leq 196882$ (Griess-Smith $\sim 1994$ )
For $S=S L_{2}\left(\mathbb{F}_{p}\right)$ we have gap $(S)=2$ since we can act on $\mathbb{F}_{p}^{2}$
of gap $\mathbb{K}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter

## Minimal monoids representations



- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
- Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial S-rep over $\mathbb{K}$; gap $p_{*}=$ min of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


## Minimal monoids representations

## Example (monoids)

For $S=S_{0, \ldots, n-1,1}$ and $n>1$ we have $\operatorname{gap}_{*}(S)=2$
Why? Well, $S$ has only the trivial reps
But nontrivial extensions of $\operatorname{dim} 2$

## Example (monoids)

There will be some results for diagram monoids momentarily

- Call all

- Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial $S$-rep over $\mathbb{K}$; gap $=\min$ of $\operatorname{ga} p_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


Alternatively, and studied in group theory since the early days (under various names) and by e.g. Mazorchuk-Steinberg ~2011 in monoid theory one could use faithfulness as a measure of complexity (using the same notation):

$$
\text { Faithfulness faith }(S)=\text { smallest dim of a faithful rep }
$$

- Call all $S$-reps $1_{t}^{\oplus m} \oplus 1_{b}^{\oplus n}$ trivial
$\rightarrow$ Rep gap $\operatorname{gap}_{\mathbb{K}}(S)=$ smallest dim of a nontrivial $S$-rep over $\mathbb{K}$; gap $p_{*}=$ min of $\operatorname{gap} p_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write gap $(S)$ if the difference doesn't matter


Alternatively, and studied in group theory since the early days (under various names) and by e.g. Mazorchuk-Steinberg ~2011 in monoid theory one could use faithfulness as a measure of complexity (using the same notation):

Faithfulness faith $(S)=$ smallest dim of a faithful rep

## Examples

For $S=\mathfrak{S}_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ for $n \geq 5$ we have faith $C_{C}(S)=n-1$ (Burnside $\sim 1902$ )
For $S=\mathfrak{T}_{n}=\operatorname{End}(\{1, \ldots, n\})$ we have faith $(S)=n$ (Mazorchuk-Steinberg $\sim \mathbf{2 0 1 1}$ )
For $S=\mathfrak{S}_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ for $n \geq 5$ we have faith $h_{*}(S)=n-2$ (Dickson $\sim 1908$ ) For $S=\mathfrak{T}_{n}=\operatorname{End}(\{1, \ldots, n\})$ we have faith $(S)=$ ??

## Minimal monoids representations

Theorem (easy)
Under some silly nontriviality assumptions on $S$ :

$$
\operatorname{gap}(S) \leq \operatorname{faith}(S) \leq|S|
$$

## Example (infinite group but still...)



- Call all S-re For the braid group $B r_{n}$ on $n$ strands we have $\operatorname{gap}_{\mathbb{Q}(q, t)}\left(B r_{n}\right) \leq n-1$, faith $_{\mathbb{Q}(q, t)}\left(B r_{n}\right) \leq n(n-1) / 2$
- Rep gap $g \quad \operatorname{dim}$ Burau $=n-1, \operatorname{dim} L K B=n(n-1) / 2 \quad$ r $\mathbb{K} ;$ gap $=\min$ of $\operatorname{gap}_{\mathbb{K}}(S)$ over all fields $\mathbb{K}$; write $\operatorname{gap}(S)$ if the difference doesn't matter


## Rep gap and monoidal categories

Schur-Weyl duality relates two objects


- For any monoidal category $\mathcal{C}$ we get a family of monoids $S_{n}=\operatorname{End}_{\mathcal{C}}\left(V^{\otimes n}\right)$
- Schur-Weyl duality suggests that $S_{n}$ should have a big rep gap
- Dim simple of $S_{n}$ " $\Leftrightarrow$ " \# of indecomposables in $V^{\otimes n}$ and these grow fast


## Rep gap and monoidal categories

Schur-Weyl duality relates two objects


- For any monoidal category $\mathcal{C}$ we get a family of monoids $S_{n}=\operatorname{End}_{\mathcal{C}}\left(V^{\otimes n}\right)$
- Schur-Weyl duality suggests that $S_{n}$ should have a big rep gap
- Dim simple of $S_{n}$ " $\Leftrightarrow$ " \# of indecomposables in $V^{\otimes n}$ and these grow fast


## Rep gap and monoidal categories

Connect 4 points at the bottom with 4 points at the top without crossings, potentially turning back:


This is the Temperley-Lieb (TL) monoid $T L_{4}$ on $\{1, \ldots, 4\} \cup\{-1, \ldots,-4\}$ In combinatorics, these are crossingless perfect matchings

## Rep gap and monoidal categories



Fix some field $\mathbb{K}$ and $\delta \in \mathbb{K}$, evaluate circles to $\delta \Rightarrow \mathrm{TL}$ algebra $T L_{4}(\delta)$ The TL monoid is the non-linear version of $T L_{4}(1)$

Rep gap and n The TL monoid $T L_{n}$ arise (kicking out scalars) under Schur-Weyl duality as

$$
T L_{n} \cong \operatorname{End}_{U_{q}\left(g_{2}\right)}\left(\left(\mathbb{C}_{q}^{2}\right)^{\otimes n}\right) \text { for }-q-q^{-1}=1
$$




Fix some field $\mathbb{K}$ and $\delta \in \mathbb{K}$, evaluate circles to $\delta \Rightarrow \mathrm{TL}$ algebra $T L_{4}(\delta)$ The TL monoid is the non-linear version of $T L_{4}(1)$

$$
\text { Rep gap and } n \begin{gathered}
\text { The } T L \text { monoid } T L_{n} \text { arise (kicking out scalars) under } \\
\text { Schur-Weyl duality as } \\
T L_{n} \cong \operatorname{End}_{U_{q}\left(g_{2}\right)}\left(\left(\mathbb{C}_{q}^{2}\right)^{\otimes n}\right) \text { for }-q-q^{-1}=1
\end{gathered}
$$

The TL algebra goes back to Rumer-Teller-Weyl ~1932
Zur Theorie der Spinvalenz.

## Von

## Georg Rumer in Moskau.

Vorgelegt von H. Weyl in der Sitzung am 22. Juli 1932.
Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten.

Von
G. Rumer (Moskau), E. Teller und H. Weyl (Göttingen).

Vorgelegt von H. Weyl in der Sitzung am 28 Oktober 1932.

$$
{ }^{2} \longrightarrow
$$






It has been rediscovered many times

## Rep gap and monoidal categories



- Fact There is one simple $T L_{n}$-rep for each through strand $i \in\{n, n-2, \ldots$,
- Fact The simple dims are known recursively, see e.g. Andersen ~2017, Spencer ~2020
- Fact The simple dims behave as above, see e.g. A computer ~2021


## Rep gap and monoidal categories



- Fact There is one simple $T L_{n}$-rep for each through strand $i \in\{n, n-2, \ldots$,
- Fact The simple dims are known recursively, see e.g. Andersen ~2017, Spencer ~2020
- Fact The simple dims behave as above, see e.g. A computer ~2021


## Rep gap and monoidal categories



Theorem For $0 \leq k \leq 2 \sqrt{n}$ we have

$$
\begin{gathered}
\operatorname{rep}_{\mathbb{Q}}\left(T L_{n}^{k}\right) \geq \frac{4}{(n+2 \sqrt{n}+2)(n+2 \sqrt{n}+4)}\binom{n}{\frac{n}{2}-\sqrt{n}} \in \Theta\left(2^{n} n^{-5 / 2}\right) \\
\quad \text { faith }_{\mathbb{Q}}\left(T L_{n}^{k}\right) \geq \frac{6}{n+4}\binom{n}{\left\lfloor\frac{n}{2}-1\right\rfloor} \in \Theta\left(2^{n} n^{-3 / 2}\right)
\end{gathered}
$$

## Rep gap and monoidal categories



## Summary

- Similar formulas hold for gap and faith but details are unknown
- The rep gap of monoids from monoidal categories is often large
- This is in particularly true for most of the "Schur-Weyl monoids" above


## Rep gap and monoidal categories



## Summary

- Similar formulas hold for gap $p_{*}$ and faith* but details are unknown
- The rep gap of monoids from monoidal categories is often large
- This is in particularly true for most of the "Schur-Weyl monoids" above

* Green, Clifford, Munn, Ponizovskil $\sim 1940+$ + + many others Rep theory
of (finte) moncids
- Monoids repas havo a sightly different flavor than group reps

Minimal monoids representations


- 5 - monoid, GCS - group of units
- S has two trivial reps. called bottom and top:

$$
\mathrm{I}_{\mathrm{b}}: s \rightarrow \mathrm{~K}, \quad s \mapsto\left\{\begin{array}{lll}
1 & \text { if } s \in G, \\
0 & \text { rlse. }
\end{array} \quad 1_{\mathrm{t}}: s \rightarrow \mathrm{~K}, \quad s \mapsto 1 .\right.
$$

- The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

Rep gap and monoddal categoric


- For any monoidal catogory C we get a family of monoids $S_{s}$ - Enice(il $V^{8 n}$
- Schur-Weyl duality suggests that $S_{8}$ should have a big ree gap
- Dim simple of $S_{s}$ " $\rightarrow$ " \#\# of indecomposables in ver and these grow fast

- Associativity $\rightarrow$ reasonable theory of matrix reps
- Southeast corner $\rightarrow$ reasonable theory of matnix reps


- Rep gap gape(S) - smallest dim of a nontrivial S-rep over X; gap. $=$ min of $G 2 p_{\mathrm{K}}(S)$ over all fidds $K$; write $g$ gap ( $S$ ) if the difference dossn't matter.

- Fact There is one simple $T L_{\text {rrep }}$ for each through strand $i \in(n, n-2, \ldots)$
- Fact The simple dims are known recursivdy, see eg. Andersen $\sim 2017$
- Fact The simpla
Spencer $\sim 2020$
- Fact The simple dims behave 2 a above, see e.g. A computer $\sim 2021$






There is still much to do


- Green, Clifford, Munn, Ponizovshīi $\sim 1940++$ + many others Rep theory
of (finte) moncids
- Monoids repas havo a sightly different flavor than group reps

Minimal monoids representations


- 5 - monoid, GCS - group of units
- S has two trivial reps. called bottom and top:

$$
\mathrm{I}_{\mathrm{b}}: s \rightarrow \mathrm{~K}, \quad s \mapsto\left\{\begin{array}{lll}
1 & \text { if } s \in G, \\
0 & \text { rlse. }
\end{array} \quad 1_{\mathrm{t}}: s \rightarrow \mathrm{~K}, \quad s \mapsto 1 .\right.
$$

-The name comes from the fact that simple monoid reps are partially ordered and these are at bottom/top

Rep gap and monoidal categorics


- For any monoidal catogory C we get a family of monoids $S_{s}$ - Enile(lis $V^{8 n}$
- Schur-Weyl duality suggests that $S_{e}$ sthould have a big reep gap
- Dim simple of $S_{s}$ " $\rightarrow$ " \#\# of indecomposables in ver and these grow fast

[^0]Monoids are everywhere


- Assocativity $\rightarrow$ reasomable theory of matrix rees
- Southeast corner $\rightarrow$ reasonable theory of matnix reps


- Rep gap gape( $S$ ) - smallest dim of a nontrivial S -rep over $\mathrm{X}_{i}$ gap. - min of gapap (S) over all fidds K ; write gap( $S$ ) if the difference dossn't matter

- Fact There is one simple $T L_{\text {n-rep }}$ for each through strand $i \in(n, n-2, \ldots)$
- Faet The simple dims are known recursividy, see eg. Andersen $\sim 2017$
- Spencer $\sim 2020$
- Fart The simple dims behave 22 above, see e.g. A computer $\sim 2021$.on







## Thanks for your attention!


[^0]:    enemer

