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Computer algebra

?+3=12
T

~~—

» Equations are everywhere : differential equations, linear or polynomial
equations or inequalities, recurrences, equations in groups, algebras or
categories, tensor equations etc.

» There are two ways of solving such equations: approximately or exactly
» Oversimplified, 'numerical analysis studies efficient ways to get approximate
solutions; 'computer algebra wants ' exact solutions
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Com

To get started, an example from chemistry
Watch out for three steps:

» create a mathematical model
> “solve” the model (enter e.g. computer algebra)

» interpret the solution

H o/ H
We will see CsHi> next, so here it is: H—=C C—H
Based on a conjecture of Sachse ~1890 ‘ ‘
and a solution by Levelt ~1997
H—C\ /C—H
H ,° H
7\
H H
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Computer algebra

chair:

one boat:

» CsHio occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

» Chair occurs far more frequently than the boats

» Chair is |stiff while the boats can twist into -
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Computer algebra

chair:

Mathematical modeling is difficult
so it happens often that one needs to
go back and modify the approach
This happened here as the first solution attempt was not helpful

é

» CeHio occurs in incongruent conformations: chair (one) and boats (many) mod mirrors

» Chair occurs far more frequently than the boats

» Chair is |stiff while the boats can twist into -
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Computer algebra

N
H c H
| | a as
H—C/ \C—H
R
H—C C—H
|\ /| ag as
H / \ H
Ton Length between
ayxda) =dy*xday =+ —a(,*a(,:l bonds
a) *dy = ar*xdzy = —a*a—l Angle =
s = N — =
1 2 2 3 6 1 3 109°

ay+a+---+ag = 0. Cyclic

» They then modeled the bods as vectors a; and a; x aj=inner product
» Model S;; = a; x a; as variables

» One gets polynomial variables subject to the relations above = get solution
via Grobner bases

A primer on computer algebra Or: Faster than expected April 2023 2 /5



One gets that the inflexible solution chair is an isolated point
Comp . .
while the boats lie on a curve:
- — \\‘
02 ~ ) P
04 | \\\ //
~ -
s ~.
0.7 \\\\ -~ ‘ ,/////
Y o
,nT\NK ,,v«—;’ AT EEE
B
Chair won't move
> T and boats can be twisted
when build from tubes
> M .
» O
Vi

{lution
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Comp

One gets that the inflexible solution chair is an
while the boats lie on a curve:

— —

isolated point

-02
03

04

0

Grobner bases are an essential part of computer algebra

so this is a fabulous example
of the usage of computer algebra

Chair won't move

and boats can be twisted

> T
when build from tubes
> M
» O {ution
Vi
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Computer algebr
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Computer algebra

What we are using throughout is worst-case-analysis using:

cg(n)

f(n)
feo(g):

Careful This is different from:

» The
» Mo » Average-case-analysis

» Ondp Computational implications due to overhead plution
via Grobner bases
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ComputeA Grobner basis of an ideal /| C R[Xi, ..., X;3] and a monomial order
is a set G C / such that (/t(G)) = (/t(/)); lt=leading term
Theorem (Buchberger ~1965) Grobner bases exist
can be computed algorithmically
and can be used to solve:
» ideal membership
» ideal containment
» properties of V(/), eg. V(I) =0« G = {1}
Problem Grébner € O(poly in d2n) for d=largest degree
» They
» Mod logplot
» One ’ solution
via *
5 10 15 20 25
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Computer algebra

» Now two more examples from representation theory that | recently learned

» Watch out for ' success and failure of experimenting with computer algebra
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Computer algebra

e o8

tion (Alperi, Kovacs ~1979)

V a rep of a finite group is called algebraic if

3 polynomial f € N[X] such that f([V]) =0
equivalently {V®d|d € N} contains only finitely many indecomposables

One can think of this as a measurement of difficulty of V

» Now two more examples from representation theory that | recently learned

» Watch out for success and failure of experimenting with computer algebra
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Compute| Success A computer can check that for you (Craven ~2015)

V any simple of G = ST»(IF«) over characteristic p is algebraic
eg p=5 K=TFs k=2, V= (Fxs)*
[

GModule of dimension 1 over GF(5),
Godule of dimension 4 over GF(5),

GModule of dimension 4 over GF(5)

GModule of dimension 6 over GF(S)

GModule of dimension 8 over GF(S)

GModule of dimension 9 over GF(S),

H . . GModule of dimension 10 over GF(5),
simples in Zep(G,K): Gl ot tivenion 12 over arior.
Glodule of dimension 16 over GF(S),

GModule of dimension 16 over GF(S),

GlModule of dimension 20 over GF(5),

GModule of dimension 24 over GF(5),

GModule of dimension 25 over GF(5),

GModule of dimension 30 over GF(5),

GModule of dimension 40 over GF(5)

G:=SpeciallLinearGroup(2,5°2);
indecomposables in Zep(G,K): Iscvelic(Sylowsubgroup(G,5));
false

Godule of dimension 1 over GF(S),
Godule 1 of dimension 4 over GF(5),

GHodute o dinension 4 over GF(5),

Godule of dinension & over GF(5),

Godule of dinension 12 over GF(5),

Godule of dimension 8 over GF(S),

Godule of dinension 9 over GF(5),

. . ®d Godule of dimension 16 over GF(5),

indecom posa bles in { \V4 |d c N} Godule of dinension 10 over GF(S),

Godute of dinension 24 over GF(5),

Godule of dinension 20 over GF(5),

Godule of dinension 20 over GF(5),

GHodute of dinension 16 over GF(S),

> NOW GModule of dimension 30 over GF(S),
GModule of dimension 46 over GF(5),

Godule of dinension 20 over GF(5),

Godule of dinension 40 over GF(5),

» Watc

+a few more (45 in total)

learned

algebra

A primer on computer algebra Or: Faster than expected April 2023

2/5



Computer algebra

Failure But what if the program does not hold? (Craven ~2015)

V' = 4d natural rep of G = SP4(IF ) over F« is 'maybe algebraic

For all other V' = natural rep it is easy to see that they are not algebraic
But this case remains open since the program does not hold

» Now two more examples from representation theory that | recently learned

» Watch out for success and failure of experimenting with computer algebra
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Compl tar alachra
Class| 1 2 3 4 5 6 7 8 9 10
Size | 1 165 440 990 1584 1320 990 996 720 720
Order | 1 2 3 4 5 6 8 8 11 11
p = 2 1 1 3 2 5 3 4 4 10 9
p = 3 1 2 1 4 5 2 7 8 9 10
p = 5 1 2 g 4 1 6 8 7 9 10
p =11 1 2 3 4 5 6 7 8 1 1
chartableof Myt 1 &+ 1 1 11 1 111 1 1
X.2 + 10 2 1 2 & 1 2 0_ -1 -1
X3 o 10 -2 1 6. 0 1 71-21 -1 -1
X4 © 10 -2 1 6 06 1-21 21 -1 -1
X.5 + 11 3 2 -1 1 L -1 -1 _@_ _0
X6 0 16 0 -2 0 1 o 8 0o 12228
X7 © 16 6 -2 6 1 o 0 262 22
X.8 + 44 4 -1 0 -1 1 0 0 0 ]
X9 + 45 -3 0 1 06 0 -1 -1 1 1
X.10 + 55 1 1 -1 L -1 1 1 - &
» We now discuss finite groups G with fd reps over C
» Burnside ~1911 Every >1d simple character has |zeros
» Nd » |Question Determine where the zeros are rned

» Watch out for |success and failure of experimenting with computer algebra
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Computer algebra

Class | 1 2 3 4 5
Size | 1 3 6 8 6
Order | 1 2 2 3 4

char table of $4: P = 3 1 2 3 1 5
X.1 + 1 1111
X.2 + 1 1-1 1-1
X.3 + 2 2 i-l 2
X4 + 3-1-1 0 1
X.5 + 3-1 1.20-1

» Problem Determine for which g € G we have x(g) =0 Too hard!

> _ P(x(g) =0) or P(x(C) =0) (probability) for randomly

chosen g € G or conjugacy class C
» VVatch out for [success and failure of experimenting with computer algebra
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Computer algebra

char table of 57:

Class | 12 3 45 6 7 8 910 11 12 13 14 15
Size | 121 185 105 70 280 210 630 504 210 420 B4Q 720 504 420
Order | 12 2 23 3 4 4 5 6 6 6 7 10 12
P

p

P

P

X1 + 111 11 1 1 1 1 1 1 1 1 1
X.2 o+ 11 -1 11 1-1 11 1-1-1 1-1-1
X3+ 6-4 6 23 @0 -2 0 1 -1 -1 e}-1 1
X.4 o+ 64 6 23 8 2 0 1 -1 1 G‘—l SIRNET
X5 + 146 2 22 -1 6 8 -1 2 0 -1 0 1 @
X6 + 14-6 -2 22 -1 6 © -1 2 € 1 6 -1 ©
X7 + 14-4 6 2-1 2 2 0 -1 -1 -1 ey 6 1 -1
X8 + 144 6 2-1 2 -2 0 -1 -1 1 egpe6 -1 1
X9 + 155 -3 -13 @ 1 -1 0 -1 -1 ejJ1 o 1
X119 + 155 3 -13 @ -1 -1 0 -1 1 ef1 o -1
X.11 + 20 BI e -4 2 2 6 0 0 2 0 ©6J-1 0 @
Xx12 + 221 -3 1-3 @ -1 -1 1 1 1 eje 1 -1
X113 + 22-1 3 1-3 @ 1 -1 1 1 -1 eje -1 1
X114 + 3-5 -1 -1-1 -1 1 1 @6 -1 1 -1 & o 1
X155 + 3 5 1 -1-1 -1 -1 1 @ -1 -1 1 @ o -1

» Now two more examples from representation theory that | recently learned

» Watch out for |success and failure of experimenting with computer algebra
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Here is P(x(g) = 0):
Computer algebra wr'For S, =0.716

Here is P(x(C) = 0):
*“ForS,,: =0.378

0.2

My silly 10-min-code only made it to Si7, pathetic , sorry for that!
Alexander Miller computed these up to Ssg

» Now Anyway, we can guess from here for P(x(g) = 0)
> Watd but the data is not good enough for P(x(C) = 0)
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Fast multiplication

(x-3)(4x - 5)
X -3
4x | 4x? | -12x
-5 -5x 15

4x% -12x—5x + 15

4x% -17x + 15

-1

x2 -4x -2
Ixt8r |
-x’| 4x%| 2x
x| dx |2

» Given two polynomials f and g of degree < n; we want | fg

» Classical polynomial multiplication needs n? multiplications and (n — 1)?

additions; thus 'mult(poly) € O(n?)

» It doesn't appear that we can do faster

A primer on computer algebra
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Fast multiplication

a + b a+b

x x X

c + d c+d

(a+b)(c+d)
ac + bd ac+bd
><X2
acx
xX
X

acx? + bex + adx + bd
= (ax+b)(cx+d)

» Karatsuba ~1960 It gets faster!
» Reduce multiplication cost even when potentially increasing addition cost

» Second, apply | divide-and-conquer
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Fast multiplication

a + b a+b
x x X
c + d c+d
(a+b)(c+d)

ac + bd ac+bd
x X2

acx bc+ad

XX
)C 4 ‘ X

acx? + bex + adx + bd
= (ax+b)(cx+d)

We compute ac, bd, u= (a+ b)(c+d), v=ac+ bd, u—v
with 3 multiplications and 4 additions = 7 operations
The total has increased, but a recursive application will drastically reduce the overall cost

- We only have 3 multiplications not 4

» Reduce multiplication cost even when potentially increasing addition cost

» Second, apply | divide-and-conquer

A primer on computer algebra Or: Faster than expected April 2023 /5



Fast multiplication

ALGORITHM 8.1 Karatsuba’s polynomial multiplication algorithm.

Input: f,g € R[x] of degrees less than n, where R is a ring (commutative, with 1)
and n a power of 2.

Output: fg € R[x].

1. ifn=1thenreturn /- g € R

2. let f = FiX"> + Fy and g = G1x™/? + Gy, with Fy, Fi, Go, G € R[x] of degrees
less than n/2

3. compute FyGo, Fi1Gy, and (Fo+ F1)(Go+ Gy) by a recursive call

4. return F,Gix" + ((Fy + F1)(Go + G1) — FyGo — FiG1 )x"? + FyGy

Example

f=g=x>+x>+x+1lisequalto i + Fp = (x +1)x®> +x+1
F& = F? = (x+1)? and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops

Classical we need 4% + (4 — 1)? = 25 ops

A primer on computer algebra Or: Faster than expected April 2023
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This applies recursively , so we actually save a lot:

m.
ative, with 1)

Fast multiplicat]

ALGORITH
Input: f,g €

and n a pow
Output: fg €R

e classical iteration
l.ifn=1t
2. let f=F [x] of degrees
less than
3. compute
3. compute 11
4 I'Ctllrll [j1 2 iterations 3 iterations (;“

Example %&h
f=g=x3+x° :h
2 _ 2
Fo =Ff =(x+ b B
To get fg we the 4 iterations 5 iterations
Classical we need :8.2: Cost (= black area) of Karatsuba’s al gorithm for increasing recursion depths
1ge approaches a fractal of dimension log

A primer on computer algebra Or: Faster than expected April 2023



Fast multiplication

ALGORITHM 8.1 Karatsuba’s polynomial multiplication algorithm.
Input: f,g € R[x] of degrees less than n, where R is a ring (commutative, with 1)

and n a power of 2.
Output: fg € R[x].

1. ifn=1thenreturn f-g € R

Theorem (Karatsuba ~1960)
For n = 2 we have mult(poly) € O(n"*°) (1.59 = log(3); always: log = log,)

3. compute FyGo, Fi1Gy, and (Fo+ F1)(Go+ Gy) by a recursive call

4. return F1Gx" + ((FE) + F )(G() aF Gl) — Gy —F1Gy )X”’/Z + [y Gy

Example
f=g=x3+x>+x+1lisequalto i + Fp = (x+1)x®> +x+1
FZ = F2 = (x+1)? and (2x + 2)(2x + 2) need 7 ops = 21 ops
To get fg we then need two more ops = 23 ops

Classical we need 42 + (4 — 1)? =

A primer on computer algebra April 2023
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Fast multip

Theorem (Karatsuba ~1960)

For n = 2% we have mult(poly) € O(n**°) (1.59 = log(3))

ALGORITH
Input: f.g € R
and n a pow| 10000

Output: fg€H ..

1. if n =11 s000

2. let f=F| *®
less than| 2000

This is much faster than before:

n1.59
3. compute 0 40 60 80 100
4. return 4
n1.59
Example
f=g=x3+x3
F2=F2=(x+
To get fg we thd 4/ logplot

Classical we nee

20 40 60 80 100

m.
tive, with 1)

x] of degrees
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Fast multiplication

Binary system

—
e v TR
ya’ragl’f&'a

Replace x* by e.g. 2% and do the same as before

» Karatsuba ~1960 Using k-adic expansion, this works |for numbers as well

» Theorem (Karatsuba ~1960) For n = 2 we have ‘mult € O(n*>°)

» Multiplication is everywhere so this is |fabulous

A primer on computer algebra Or: Faster than expected April 2023 /5



Fast multiplication

My silly 5 minute Python code:

1 from math import ceil, floor
2  #math.ceil(x) Return the ceiling of x as a float, the smallest integer value greater than or equal to x.
3 #math.floor(x) Return the floor of x as a float, the largest integer value less than or equal to x.

4
5 v def karatsuba(x,y):

6 #base case

7v if x < 10 and y < 10: # in other words, if x and y are single digits

8 return x*y

10 n = max(len(str(x)), len(str(y)))

11 m = ceil(n/2) #Cast n into a float because n might lie outside the representable range of integers.
x_H = floor(x / 10%*m)

14 x L =x % (10%*m)

15

16 y_H = floor(y / 10**m)

17 y_L =y % (10%*m)

18

9 #recursive steps

20 a = karatsuba(x_H,y_H)

21 d = karatsuba(x_L,y L)

22 e = karatsuba(x H + x L, y H+y L) - a-d

23

24 return int(a*(10**(m*2)) + e*(10**m) + d)

v %stime karatsuba(3141592653589793238462643383279502884197169399375105820974944592,

[2718281828459045235360287471352662497757247093699959574966967627 )

P T TIE0rent (ndratsund ~IJOU) TOrim=—=< WE TTave Tt < UTTT J)

» Multiplication is everywhere so this is |fabulous
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My silly 5 minute code is still much slower than SageMath's:

Type some Sage code below and press Evaluate.
H = floor(y / 10%*m)
¥ % (16%*m)

cursive steps
karatsuba(x_H,y_H)

aratsuba(x_L,y_L}

= Karatsuba(x H + x L, yH+y L) -a-d

oaw

return int(a*(10%*(m*2)) + e*(10%*m) + d)
8462643383279502884197169399375105820974944592,, 2718281828459045235360287471352662497757247093699959574966967627)

323

stime karatsuba(314159265358979323:

Evaluate

CPU times: user 10.3 ms, sys: 412 ps, total: 10.7 ms

Wall time: 10.8 ms
8539734222673566957498846900491595793628487889746454950813687461572372213054499114931277629325900131223124341791952806582723184

Type some Sage code below and press Evaluate.
3141592653589793238462643383279502884197169399375105820974944592* 2718281828450045 23536028747 1352662497757 2470936999595749669676 27

stime

Evaluate

CPU times: user 55 us, sys: 22 ps, total: 77 ps

Wall time: 82.5 ps
8539734222673567065463550869546574495034888535765114961879601127067743044893204848617875072216249673013374895871952806582723184

Why is that? Well: (1) | am stupid = too much overhead

(2) Nowadays computer algebra systems have beefed-up versions of Karatsuba's algorithm build

in

A primer on computer algebra Or: Faster than expected April 2023
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Fast

multiplication

Toom—Cook algorithm ~1963 with O(n'*®) (1.46 ~ log(5/3))

Schonhage—Strassen algorithm ~1971 with O(nlog nlog log n)
Toom—Cook generalizes Karatsuba; Schonhage—Strassen is based on FFT

Actually in use today:

Maybe in use soon (?):

k 5 Harvey—van der Hoeven algorithm ~2019 with O(nlog n)
Annals of Mathematics 193 (2021), 563-617
https://doi.org/10.4007 /annals.2021.193.2.4
Integer multiplication in time O(n logn)
By DaviD HARVEY and JORIS VAN DER HOEVEN
> Conjecture (Schonhage—Strassen ~1971) O(nlog n) is the best possible
So maybe that's it!
> AY 7 AY
» Multiplication is everywhere so this is |fabulous
A primer on computer algebra Or: Faster than expected April 2023
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This is fantastic for large numbers:

1.59

1.46

nlog(n) log(log(n))

nlog(n)

: : : logplot

I
2000 4000 6000 8000 10000

Do not try for small numbers due to overhead

Ay 4 T 7

» Multiplication is everywhere so this is |fabulous
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Fast multiplication

Honorable mentions These also run on divide-and-conquer

Binary search (Babylonians ~200BCE, Mauchly ~1946, many others as well) € O(log n)

earch

%'.6 78910

!
Search: 9
Euclidean algorithm (Euclid ~300BCE) € O( log min(a, b))
Fast Fourier transform (Gauss ~1805, Cooley—Tukey ~1965) € O(nlog n)

Merge sort (von Neumann ~1945) € O(nlog n)

DI]

» Multiplication is everywhere so this is |fabulous

A primer on computer algebra Or: Faster than expected April 2023
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Fast multiplication

For example, binary search does much better than linear search

oL FFT+merg e':;.ci[@-p_f_f__,,-,-f--— nlog(n)

10tk // Linear search n
/ =1-by-1 search

1000 |
100

107’_’_’r log(n)

1k logplot

2(;00 4(;00 60‘00 80‘00 10 E)OO

» Multiplication is everywhere so this is |fabulous

A primer on computer algebra Or: Faster than expected
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Discrete and fast Fourier transform

Evaluation

Time O(n"2)
O(n log n) with FFT Point-value representation

Coefficient vectors
(a0, ..., an-1)
(b0, ..., bn-1)

{(x0, A(x0), . . . ,(x2n-1, A(x2n-1))
{(x0, B(x0), . . . ,(x2n-1, B(x2n~1))

}
N

Ordinary Pointwise
multiplication multiplication
Time O(n*2) Time O(n)

Point-value representation
of product

Coefficient vector

of product Tnterpolation {(x0, A(x0)B(x0), . . ., (x2n-1,
(c0, ..., c2n-2) Time O(n log n) A(x2n-1)B(x2n-1))}
with FFT

» Assume that there is an operation | DFT,, such that:

fg = DFT,*(DFT,(f)DFT,(g))

with DFT,, and DFT;*! and_being cheap

» Then compute fg for polynomials f and g is “cheap”

A primer on computer algebra Or: Faster than expected
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Discrete and fast Fourier transform

» In the following in need |primitive roots of unity w in some field R

» You can always assume R = C and w = exp(27k/n)

A primer on computer algebra Or: Faster than expected April 2023 4 /5



Discrete and fast Fourier transform

N2 DFT,xDFT,
(ﬂﬂﬂx—”) - R'XR

cyclic pointwise

convolution multiplication

Y Y

R[x]/{x" —1) R"

Y

DFT,,

The R-linear map

DFT,(f) = (1, f(w), f(w?), ..., F(w"™ 1))

that evaluates a polynomial at w' is called the Discrete Fourier transform (DFT)

A primer on computer algebra Or: Faster than expected April 2023 4 /5



Discrete and fast Faurier transform
Theorem (Fast Fourier transform (FFT) Cooley—Tukey ~1965)

DFT., can computed in ' O(nlog n)

R"
Theorem (FFT and Vandermonde ~17707)

DFT. ! can computed in

Cy I lJUlJ.J.l, YV IOW
convolution multiplication
R[x]/{x" —1) T s R"

The R-linear map

DFTw(f) = (1., f(w), f(w2)7 f(wn—l))

that evaluates a polynomial at w' is called the 'Discrete Fourier transform (DFT)

A primer on computer algebra Or: Faster than expected April 2023 4 /5



Discrete

and fact Fanrior trancfarm

Theorem (Fast Fourier transform (FFT) Cooley—Tukey ~1965)

DFT,, can computed in | O(nlog n)

R"
Theorem (FFT and Vandermonde ~17707)

DFT;" can computed in | O(nlog n)
(./Vl../ll\./ PVUIIITVVIOW
The Vandermonde matrix, matrix of the multipoint evaluation map DFTw,
11 1 EER|
1 w w? W't
Vo =VDM(L,w,...,w" )= | 1 & Wl
1 Lu”" ;Jzo,fl) (;,(,,71)
is easy to invert V,,V,,—1 = nld
T 11 1 1 11 1 1
4 4 i —1 —i O I e A S
VisVDM(Li—t=0=1 | o | Y Tgl o
1 —i -1 i 1 i -1 —i
that evaluates a polynomial at w15 called the | DJISCrete Fourier transtorm (DF 1
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Discrete and fast Fourier transform

2 DFT,, x DFT,,
(RIx)/ 0= 1)) - R'xR
cyclic pointwise
convolution multiplication
A Y
Rlx]/(x" —1) S
DFT,,
Cyclic convolution of f = f,_1x" 1 4+ ... and g = g,_1x"" 1 + ... is
h=fx,g= ZO§/<nh/X/7 hy = Zj+k5/ mod n1i8k
We see in a second why this is [eyclic
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Discrete an Slogan Convolution = area obtained by sliding f through g

Input Signal, F Impulse Response, G

2 2

1 1

10 5 0 chvowtidnLiveBpersion © 5 f w R"
: S

1

0 8 6

cycli “

tnnviﬁuti nnDLive Butpuf © c i

convoly 7 7 /‘

o o '
o ) R"
Cyclic conv .o e
T o
. .
05 05 . .
K '.. ..‘. n
We see in a We have a cyclic version of this
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Discrete and fast Fourier transform

2 DFT,, x DFT,,
(R[x] /(" — 1)) - R'XR"
cyclic pointwise
convolution multiplication
\ Y
R x'—1 - n
[/ (= 1) S R

Example Take f =x3 +1and g =2x3 +3x> +x +1
fe =2x° +3x° +x* £33 +3x2 £ x +1

= (27 4 3x + 1)(x" 1) +3x> +5x° + 4x + 2 = f *4 g mod (x* — 1)
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Discrete and fast Fourier transform

N2 DFT,xDFT,
(R[x]/(x—l)) - R'XR

cyclic pointwise

convolution multiplication
In general, fg = f *, g mod (x" — 1)
Thus, fg = f %, g if deg(fg) < n

Computation of fg is computation of f *,
R[x] g g

‘ ’ DFT,, k

Example Take f =x3 +1and g =2x3 +3x> +x +1
fo =2x° +3x° +x* +3x° +3x* + x+1

= (27 4 3x + 1)(x" 1) +3x> +5x° + 4x + 2 = f *4 g mod (x* — 1)
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Discrete and fast Fourier transform

2 DFT,, x DFT,,
(R[x] /(" — 1)) - R'XR"
cyclic pointwise
convolution multiplication
A Y
Rix|/(x"—1 = R"
/(= 1) e
Final lemma we need
DFTw(f *n g) = DFTw(f) ‘pointwise DFTw(g)
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Discrete and fast Fourier transform

2 DFT,, x DFT,
(R[x] (" — 1>) - R'XR"
| |

Theorem (Cooley—Tukey ~1965)
Computing fg is in O(nlogn) for deg(fg) > n

“Proof”
Take n so that deg(fg) > n
Then fg = f %, g, so it remains to show that computing f %, g is in O(nlog n)
But f %, g = DFT* (DFT.(f) “pointwise DFT.,(g))
DFT,(f) and DFT,,(f)~" is in O(nlog n)

Final lemma we need

DFT,(f *p g) = DFT,(f) “pointwise DF Tes(g)
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Discrete and fas This is much faster than before:

10000 P

(R[x R" % R"

6000

cyclic e

convolutiof o a0 [ION

20 40 60 80 100

R[j | R

Final lemma we

logplot

The overhead is however pretty large
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Discrete and fast Fourier transform

Evaluation
Time O(n"2)
O(n log n) with FFT

» Assume n = 2% and note that, using Euclid’s algorithm, writing
f=q(x"?>=1)+r=aq(x"?+1)+n gives

) o). R

» Writing r1(_)* = ri(w_) we can use divide-and-conquer since w
(n/2)th root of unity:
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Discrete an Theorem (Cooley—Tukey ~1965) FFT runs in ' O(nlog n)

What

classical

1 iteration

» Assume

2 iterations 3 iterations

» Writing is a primitive
(n/2)th

4 iterations S iterations
ro(c
o\4

FIGURE 8.5: Cost of the FFT for increasing recursion depths. The black area is propor-
tional to the total work.

sive call

A primer on computer algebra

Or: Faster than expected April 2023 4 /5



Computer sgebra

Computer sgebra

v T Rl S0 TR e P
i ot b b on 5 ore
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soluions: EAPUBH SgRBA] s (BB sotsions . e the o
Computer algebea Fast mutptcation
o= X2 4x 2

2x%| 20| -8x | -4
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axtesee1s 1| -x? 4x | 2
PN
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Discrste Discrse an
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| xR
what
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, —_— convol
r ! » As
I
logplot
oF e cam B
e
> Molipicaion s everyuher o this s [

There is still much to do...
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Computer sgebra

numerca st
soluions: EAPUBH SgRBA] s (BB sotsions

ha tabie of 5,

Computer sgebra

v T Rl S0 TR e P

comef i ot b b on 5 ore

Fast mtiptcation

ey ¥ 4y 2
P s
ax  ax? 12
x| =¥ 4x%| 2x
5 -5x 15
axtesee1s 1| -x? 4x | 2
atanes

> Gven v polnomils { and g of deg

logplot

A primer on computer algebra
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Thanks for your attention!
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