Representations of braids and Howe duality

Or: Large = good

AcceptChange what you cannot ehangeaccept

> THE STRUCTURE OF DNA WAS ORIGINALLY DISCOVERED BY A GROUP OF ESPECIALLY COOL MIDDLE SCHOOL RESEARCHERS.

I report on work of Abel Lacabanne and Pedro Vaz

Braids and representations

- Braid groups have been around for Donkey's years
- It took a while until braid got formalized; e.g. Artin ~1925
- What makes them so tantalizing is that they are in the intersection of topology and algebra, and difficult and easy at the same time

Braids and representations

```
\(1 \quad B=\) BraidGroup (3)
SageMath
\(b=B([1,2,1])\)
b. LKB_matrix(variables='q,t')
\(\begin{aligned} & \text { [ } \\ & {[ }\end{aligned} 0-q^{\wedge} 4 * t+q^{\wedge} 3^{*} t\)
\(\left.-q^{\wedge} 4 * t\right]\)
0 ]
\(c=B([2,1,2])\)
c. LKB_matrix(variables='q,t')
[ - 0 - \(\mathbf{q n}^{\wedge * t+q^{\wedge} 3 * t ~}\)
\[
0-q^{\wedge} 4^{*} t+q^{\wedge} 3^{*} t
\]
\[
\left.-q^{\wedge} 4 * t\right]
\]
\[
\begin{array}{rr}
0 & -q^{\wedge} 3 * t \\
-q^{\wedge} 2 * t & q^{\wedge} 3 * t-q^{\wedge} 2 * t \tag{0}
\end{array}
\]
- Laurence-Krammer-Bigelow (LKB) ~ 2001 Braid groups are linear
- I.e. there is a way to associate matrices \(M(\beta)\) to braids \(\beta\) such that
\[
\beta=\gamma \Leftrightarrow M(\beta)=M(\gamma)
\]

\section*{Braids and repre}

This is pretty darn awesome!


\section*{Braids and representations}

PRIMCEION LANDNARKS II Mathematics

\author{
Weyl ~1946:
}

\section*{The Classiatel Iroups \\ Iheilluxiainht ind Reprearatioins}
- Howe ~1989++ Schur-Weyl duality approach to classical invariant theory
- Howe took Weyl's, quote, "wonderful and terrible book" on classical invariant theory and reformulated it in terms of double centralizers


\section*{Braids and representations}

\section*{Example Howe ~1989 continued}

Adamovich-Rybnikov ~1996 argued that this version of Howe duality is tilting theory We won't need this
but this essential means that you can tilt your head and things look the same

- Howe took Weyl's, quote, "wonderful and terrible book" on classical invariant theory and reformulated it in terms of double centralizers

\section*{Braids and representations}

\section*{Example Howe ~1989 continued}

Howe showed even more: the copies of the simple \(\mathrm{GL}_{m}\)-module \(L_{m}(\lambda)\) appearing in \(\Lambda^{\bullet}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)\) form a \(\mathrm{GL}_{n}\)-module \(L_{n}\left(\lambda^{T}\right)\) and vice versa with picture:

\(\mathrm{GL}_{m}\) - \(\mathrm{GL}_{n}\) - bimodule decomposition \(\Lambda^{\bullet}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right) \cong \bigoplus_{\lambda} L_{n}(\lambda) \otimes L_{m}\left(\lambda^{T}\right)\)

\section*{Braids and representations}

- Let us focus on \(\mathrm{GL}_{m}\) - \(\mathrm{GL}_{n}\) dualities
- Example Howe \(\boldsymbol{\sim} \mathbf{1 9 8 9}\) continued Every \(\mathrm{GL}_{m}\)-weight space carries an action of the \(n\)-strand braid group \(B r_{n}\) Braid reps

- Let us focus on \(\mathrm{GL}_{m}-\mathrm{GL}_{n}\) dualities
- Example Howe \(\sim \mathbf{1 9 8 9}\) continued Every \(\mathrm{GL}_{m}\)-weight space carries an action of the n -strand braid group \(B r_{n}\) Braid reps


\section*{Braids and representations}

\section*{\(\mathrm{GL}_{n}\)-action}

of the n-strand braid group \(B r_{n}\) Braid reps

\section*{Where does the LKB representation come from?}
\[
\begin{aligned}
& B=B r a i d G r o u p(3) \\
& b=B([1]) \\
& b \cdot L K B \text { matrix }\left(\text { variables='q, } t^{\prime}\right) \\
& {\left[\begin{array}{ccc}
-q^{\wedge} 2^{*} t & 0 & \left.q^{\wedge} 2-q\right] \\
{[ } & 0 & 0 \\
{[ } & 0 & 1
\end{array}-q+1\right]}
\end{aligned}
\]
- The LKB rep has two variables \(q, t\)
- It is easy to guess that \(q\) is a quantum group parameter
- But what is \(t\) ?

\section*{Where does the LKB representation come from？}


\section*{b．LKB matrix（variables＝＇q，t＇）}

－The LKB rep has two variables \(q, t\)
－It is easy to guess that \(q\) is a quantum group parameter
－But what is \(t\) ？

\section*{Where does the LKB representation come from?}
\[
\mathbb{C}=\text { indexing set for simples }
\]

- Verma+Bernstein-Gelfand-Gelfand \(\sim 1966++\) there exists a category \(\mathcal{O}\) of \(\mathfrak{s l}_{2}(\mathbb{C})\)-modules whose simple objects \(L(t)\) are indexed by \(t \in \mathbb{C}\)
- There is a similar statement for other semisimple Lie algebras

\section*{Where does the LKB representation come from?}
\[
\mathbb{C}=\text { indexing set for simples }
\]

- There is a similar statement for other semisimple Lie algebras

\section*{Where does the LKB representation come from?}

- For \(t \notin \mathbb{N}\) the simples are so-called Verma modules \(\Delta(t)\)
- These are free modules where \(E=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\) and \(F=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\) act freely up to a highest weight condition
- \(H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\) acts diagonally

\section*{Where does the LKB representation come from?}
\[
\begin{gathered}
\begin{array}{c}
\text { Liouville's Constant } \\
- \text { The earliest transcendental number - }
\end{array} \\
L=\sum_{n=1}^{\infty} \frac{1}{10^{n!}}=0.110001000 \ldots \\
\begin{array}{ll}
\ln [2]:= & \mathbf{1}+\mathbf{P i}+\mathbf{P i} \wedge \mathbf{2} \\
\text { Out }[2]= & \mathbf{1}+\pi+\pi^{2}
\end{array}
\end{gathered}
\]
- Folklore ~??? Transcendental numbers are essentially variables
- Mathematica for example treats \(\pi\) as a variable unless specified otherwise
- Hence, why not take \(\Delta(t)\) for \(t\) transcendental?

\section*{Where does the LKB representation come from?}
\(\mathbb{C}=\) indexing set for simples

- Jackson-Kerler ~2009 The LKB rep of \(B r_{n}\) can be constructed using
\[
\Delta(t)^{\otimes n} \text { for transcendental } t \in \mathbb{C}
\]
- This is a Reshetikhin-Turaev type construction (different from the original)

- Jackson-Kerler ~2009 The LKB rep of \(B r_{n}\) can be constructed using

\section*{\(\Delta(t)^{\otimes n}\) for transcendental \(t \in \mathbb{C}\)}
- This is a Reshetikhin-Turaev type construction (different from the original)

\section*{Where does the LY \(\begin{array}{r}\text { Jackson-Kerler } \sim 2009 \\ \begin{array}{r}\text { The construction of the LKB rep } \\ \text { involves only } R \text {-matrices and nothing fancy! }\end{array}\end{array}\)}

3
Kåhrström (and others) ~2007
The tensor product \(\Delta(t)^{\otimes n}\) naturally lives in \(\tilde{\mathcal{O}}\)
\(\tilde{\mathcal{O}}=\mathcal{O}\) but allow countable direct sums
The tensor product is \(\infty\) semisimple
Example \(\Delta(t)^{\otimes 2} \cong \bigoplus_{s \in \mathbb{N}} \Delta(2 t-2 s)\)
\(-4\)
- Jackson-Kerler ~2009 The LKB rep of \(B r_{n}\) can be constructed using

\section*{\(\Delta(t)^{\otimes n}\) for transcendental \(t \in \mathbb{C}\)}
- This is a Reshetikhin-Turaev type construction (different from the original)

\section*{Where does the LY Jackson-Kerler \(\sim 2009\)}

3
Kåhrström (and others) ~2007
The tensor product \(\Delta(t)^{\otimes n}\) naturally lives in \(\tilde{\mathcal{O}}\)
\(\tilde{\mathcal{O}}=\mathcal{O}\) but allow countable direct sums
The tensor product is \(\infty\) semisimple
Example \(\Delta(t)^{\otimes 2} \cong \bigoplus_{s \in \mathbb{N}} \Delta(2 t-2 s)\)
\(-4\)

structed using
- This is a Reshetikhin-Turaev type construction (different from the original)

\section*{Where does the LKB representation come from?}

- Jackson-Kerler \(\sim \mathbf{2 0 0 9}\) The \((I \in \mathbb{N})\) th LKB rep \(L K B^{n, I}\) of \(B r_{n}\) is
\[
L K B^{n, I}=\operatorname{ker}(E) \cap \operatorname{ker}(H-(n t-2 I))
\]

Examples \(I=0 \longleftrightarrow\) trivial, \(I=1 \leadsto\) red. Burau, \(I=2 \leadsto\) LKB


\section*{Verma Howe duality}

- Dense modules of \(\mathfrak{s l}_{n}(\mathbb{C})=\) weight + support equals a coset from \(\mathfrak{h}^{*} / Q\)
- The above are examples of dense \(\mathfrak{s l}_{2}(\mathbb{C})\)-module

\section*{Verma Howe duality}
simple:



\(E\) moves to the right, \(\quad F\) moves to the left, \(K\) is a loop.
- For \(\mathfrak{s l}_{2}(\mathbb{C})\) these can be classified: we only have three classes on \(\mathbb{Z}\)

\section*{Verma Howe duality}

- For higher rank these are grid-type modules; generic scalars \(\Rightarrow\) simple
- Fernando, Futorny ~1986 All simple weight modules are dense or are induced from dense modules


Dense modules \(=\) "biggest possible" weight modules
Although the simple dense modules are essentially classified (Mathieu ~2000) they still are mostly mysterious
induced from dense modules

\section*{Verma Howe duality}
(a) There are commuting actions

\section*{Commuting actions}
\[
U\left(\mathfrak{g l}_{2}\right) \odot \Delta^{\oplus \boldsymbol{\lambda}}=\bigoplus_{d \in \mathbb{Z}^{n}} \Delta^{\lambda_{1}+d_{1}} \otimes \ldots \otimes \Delta^{\lambda_{n}+d_{n}} \oslash U\left(\mathfrak{g l}_{n}\right)
\]
(b) Let \(\phi^{k}\) be the algebra homomorphism induced by the \(U\left(\mathfrak{g l}_{k}\right)\) actions from (a). Then, for admissible parameters \(\boldsymbol{\lambda}\) : Doulble centralizer
\[
\phi^{2}: U\left(\mathfrak{g l}_{2}\right) \rightarrow{ }_{d} \operatorname{End}_{U\left(\mathfrak{g r}_{n}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right), \quad \phi^{n}: U\left(\mathfrak{g l}_{n}\right) \rightarrow{ }_{d} \operatorname{End}_{U\left(\mathfrak{g r}_{2}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right) .
\]

That is, the two actions densely-generate the others centralizer.
(c) For admissible parameters \(\boldsymbol{\lambda}\) we have the decomposition of the \(U\left(\mathfrak{g l}_{2}\right)-U\left(\mathfrak{g l}_{n}\right)\) bimodule \(\Delta^{\boldsymbol{\lambda}}\) into
\[
\Delta^{\oplus \boldsymbol{\lambda}} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z} \geq 0}} \Delta^{\Sigma \lambda_{n}+g-t, t} \otimes \mathrm{D}^{g-t, t} .
\]

The various \(\Delta^{\Sigma \lambda_{n}+g-t, t}\) and \(\mathrm{D}^{g-t, t}\) are nonisomorphic simple \(U\left(\mathfrak{g l}_{2}\right)\) modules respectively \(U\left(\mathfrak{g l}_{n}\right)\) modules.
- The above is Verma Howe duality
- Admissible parameters \(\Leftrightarrow\) generic/transcendental

\section*{Verma Howe duality}
(a) There are commuting actions
\[
U\left(\mathfrak{g l}_{2}\right) \odot \Delta^{\oplus \boldsymbol{\lambda}}=\bigoplus_{\boldsymbol{d} \in \mathbb{Z}^{n}} \Delta^{\lambda_{1}+d_{1}} \otimes \ldots \otimes \Delta^{\lambda_{n}+d_{n}} \oslash U\left(\mathfrak{g l}_{n}\right) .
\]
(b) Let \(\phi^{k}\) be the algebra homomorphism induced by the \(U\left(\mathfrak{g l}_{k}\right)\) actions from (a). Then, for admissible parameters \(\boldsymbol{\lambda}\) :
\[
\phi^{2}: U\left(\mathfrak{g l}_{2}\right) \rightarrow_{d} \operatorname{End}_{U\left(\mathfrak{g}_{n}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right), \quad \phi^{n}: U\left(\mathfrak{g l}_{n}\right) \rightarrow_{d} \operatorname{End}_{U\left(\mathfrak{g r}_{2}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right) .
\]

That is, the two actions densely-generate the others centralizer.
(c) For admissible parameters \(\boldsymbol{\lambda}\) we have the decomposition of the \(U\left(\mathfrak{g l}_{2}\right)-U\left(\mathfrak{g l}_{n}\right)\) bimodule \(\Delta^{\boldsymbol{\lambda}}\) into
\[
\Delta^{\oplus \boldsymbol{\lambda}} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z} \geq 0}} \Delta^{\Sigma \lambda_{n}+g-t, t} \otimes \mathrm{D}^{g-t, t}
\]

The various \(\Delta^{\Sigma \lambda_{n}+g-t, t}\) and \(\mathrm{D}^{g-t, t}\) are nonisomorphic simple \(U\left(\mathfrak{g l}_{2}\right)\) modules respectively \(U\left(\mathfrak{g l}_{n}\right)\) modules.
- Moreover, there is a surjective braid group action on the marked part
- All higher LKB reps shows up infinitely many times
- This "immediately" implies that all higher LKB reps are simple

\section*{Verma Howe duality}
(a) There are commuting actions
\[
U\left(\mathfrak{g l}_{2}\right) \odot \Delta^{\oplus \boldsymbol{\lambda}}=\bigoplus_{\boldsymbol{d} \in \mathbb{Z}^{n}} \Delta^{\lambda_{1}+d_{1}} \otimes \ldots \otimes \Delta^{\lambda_{n}+d_{n}} \wp U\left(\mathfrak{g l}_{n}\right)
\]
(b) Let \(\phi^{k}\) be the algebra homomorphism induced by the \(U\left(\mathfrak{g l}_{k}\right)\) actions from (a). Then, for admissible parameters \(\boldsymbol{\lambda}\) :
\[
\phi^{2}: U\left(\mathfrak{g l}_{2}\right) \rightarrow_{d} \operatorname{End}_{U\left(\mathfrak{g l}_{n}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right), \quad \phi^{n}: U\left(\mathfrak{g l}_{n}\right) \rightarrow_{d} \operatorname{End}_{U\left(\mathfrak{g l}_{2}\right)}\left(\Delta^{\oplus \boldsymbol{\lambda}}\right) .
\]

That is, the two actions densely-generate the others centralizer.
(c) For admissible parameters \(\boldsymbol{\lambda}\) we have the decomposition of the \(U\left(\mathfrak{g l}_{2}\right)-U\left(\mathfrak{g l}_{n}\right)\) bimodule \(\Delta^{\boldsymbol{\lambda}}\) into
\[
\Delta^{\oplus \boldsymbol{\lambda}} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z}}} \Delta^{\Sigma \lambda_{n}+g-t, t} \otimes \mathrm{D}^{g-t, t} \cdot
\]

The various \(\Delta^{\Sigma \lambda_{n}+g-t, t}\) and \(\mathrm{D}^{g-t, t}\) are nonisomorphic simple \(U\left(\mathfrak{g l}_{2}\right)\) modules respectively \(U\left(\mathfrak{g l}_{n}\right)\) modules.
- There is also a quantum version Easy
- There is also a higher rank version Difficult (not done)
- There is also a nonsemisimple version Very difficult (not done)

\section*{Ve}


Think of a ceiling with a Verma module ( \(=\infty\) cone) hanging at each point Every Verma module carries all higher LKB reps

Take a direct sum over \(\mathbb{Z} \times \mathbb{N} \infty\)
That large beast is the module in Verma Howe duality

Braids and representations
and and for Dankeys yers

What makes them so tantalizing is that they are in the intersection of topology and algebra, and difficult and easy at the same time


Where does the LKB representation come from?


Jackson-Kerler \(\sim 2009\) The ( \(\left(f \in \mathrm{~N}\right.\) ) th \(L K B\) rep \(\left.L K B^{n}\right)\) of \(\mathrm{Br}_{\mathrm{a}}\) is
- Examples \(f-0\) mortrivial, \(I-1\) m... red. Burau, \(/-2 \mathrm{~m}\) LKB


- For sla (C) these can be classified: we only have three classes on Z


Braids and representations

- Howe \(\sim 1989++\) Schur-Weyl duality approach to clascizal invariant theon
- Howe took Wey's, qucte, "wonderfil and terrible book" on classical invariant theory and reformulated it in terms of double contralizers

Braids and representations

- Let us focus on GL. \(\mathrm{KL}_{\mathrm{m}} \mathrm{GL}_{\mathrm{n}}\) dualities
- Example Howe ~ 1989 continued Every GL.-weight space carries an axtion of the n-strand braid group \(B_{0}\). Braid repps


There is still much to do..

Braids and representations
- It took a while until braid goe formaized; eg. Artin \(\sim 192\)
- What makes them so tantalizing is that they are in the intersection of topology and algebra, and difficult and easy at the same time


Where does the LKB representation come from?


Jackson-Kerler \(\sim 2009\) The ( \(\left(f \in \mathrm{~N}\right.\) ) th \(L K B\) rep \(\left.L K B^{n}\right)\) of \(\mathrm{Br}_{\mathrm{a}}\) is

- For sl2 (C) these can be classified: we only have three classes on \(Z\)


Braids and representations

- Howe \(\sim 1989++\) Schur-Weyl duality approach to clascizal invariant theon
- Howe took Wey's, qucte, "wonderfill and terrible hook" on classical invariant thecry and reformulated it in terms of double contralizers

Braids and representations

- Let us focus on GL. GL. \(\mathrm{GL}_{\mathrm{n}}\) dualities
- Example Howe \(\sim 1989\) continued Every GL.w-weight space carries an axtion of the n-strand braid group \(B_{0}\) Braid reps


Thanks for your attention!```

