Representations of braids and Howe duality

 $\mathsf{Or:} \ \mathsf{Large} = \mathsf{good}$

AcceptChange what you cannot changeaccept

THE STRUCTURE OF DNA WAS ORIGINALLY DISCOVERED BY A GROUP OF ESPECIALLY COOL MIDDLE SCHOOL RESEARCHERS.

I report on work of Abel Lacabanne and Pedro Vaz

Or: Large = good

Braids and representations

Braid groups have been around for Donkey's years

- \blacktriangleright It took a while until braid got formalized; e.g. Artin ${\sim}1925$
- What makes them so tantalizing is that they are in the intersection of topology and algebra, and difficult and easy at the same time

Braids and representations

1	B = BraidGroup(3)	SageMath
2	b = B([1, 2, 1])	
3	<pre>b.LKB_matrix(variables='q,t')</pre>	
4	[0 -q^4*t + q^3*t	-q^4*t]
5	[0 -q^3*t	0]
6	[-q^2*t q^3*t - q^2*t	0]
7	c = B([2, 1, 2])	
8	<pre>c.LKB_matrix(variables='q,t')</pre>	
9	[0 -q^4*t + q^3*t	-q^4*t]
10	[0 -q^3*t	0]
11	[-q^2*t q^3*t - q^2*t	0]

▶ Laurence–Krammer–Bigelow (LKB) ~ 2001 Braid groups are linear

▶ I.e. there is a way to associate matrices $M(\beta)$ to braids β such that

$$\beta = \gamma \Leftrightarrow \mathcal{M}(\beta) = \mathcal{M}(\gamma)$$

 \blacktriangleright Howe \sim 1989++ Schur–Weyl duality approach to classical invariant theory

Howe took Weyl's, quote, "wonderful and terrible book" on classical invariant theory and reformulated it in terms of double centralizers

Example Howe \sim 1989 continued

but this essential means that you can tilt your head and things look the same

Howe took Weyl's, quote, "wonderful and terrible book" on classical invariant theory and reformulated it in terms of double centralizers

Braids and representations

invariant theory and reformulated it in terms of double centralizers

Braids and representations

▶ Let us focus on GL_m -GL_n dualities

• Example Howe ~1989 continued Every GL_m -weight space carries an action of the n-strand braid group Br_n Braid reps

• Let us focus on GL_m - GL_n dualities

Example Howe \sim 1989 continued Every GL_m -weight space carries an action of the n-strand braid group Br_n Braid reps

 GL_n -action

Howe's approach in a nutshell

Commuting actions Double centralizer Bimodule decomposition Braids act on weight spaces

of the n-strand braid group Br_n Braid reps

1	<pre>B = BraidGroup(3)</pre>		
2	b = B([1])		
3	<pre>b.LKB_matrix(variables='q,t')</pre>		
4	[-q^2*t	0 q^2 - q]	
5	[0	0 q]	
6	[0	1 -q + 1]	

• The LKB rep has two variables q, t

▶ It is easy to guess that *q* is a quantum group parameter

But what is *t*?

- The LKB rep has two variables q, t
- ▶ It is easy to guess that *q* is a quantum group parameter

But what is *t*?

► Verma+Bernstein-Gelfand-Gelfand ~1966++ there exists a category \mathcal{O} of $\mathfrak{sl}_2(\mathbb{C})$ -modules whose simple objects L(t) are indexed by $t \in \mathbb{C}$

► There is a similar statement for other semisimple Lie algebras

- ► For $t \notin \mathbb{N}$ the simples are so-called **Verma modules** $\Delta(t)$
- ► These are free modules where $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ act freely up to a highest weight condition

▶
$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 acts diagonally

Liouville's Constant - The earliest transcendental number – $L = \sum_{n=1}^{\infty} \frac{1}{10^{n!}} = 0.110001000\dots$

In[2]:=
1 + Pi + Pi ^ 2
Out[2]=
1 +
$$\pi$$
 + π^2

► Folklore ~??? Transcendental numbers are essentially variables

• Mathematica for example treats π as a variable unless specified otherwise

• Hence, why not take $\Delta(t)$ for t transcendental?

► Jackson–Kerler \sim 2009 The LKB rep of Br_n can be constructed using

 $\Delta(t)^{\otimes n}$ for transcendental $t \in \mathbb{C}$

► This is a Reshetikhin-Turaev type construction (different from the original)

Jackson-Kerler ~2009 The LKB rep of Br_n can be constructed using Δ(t)^{⊗n} for transcendental t ∈ C
 This is a Reshetikhin-Turaev type construction (different from the original)

► This is a Reshetikhin–Turaev type construction (different from the original)

▶ Jackson–Kerler ~2009 The ($l \in \mathbb{N}$)th LKB rep $LKB^{n,l}$ of Br_n is

$$LKB^{n,l} = \ker(E) \cap \ker(H - (nt - 2l))$$

• Examples $l = 0 \iff$ trivial, $l = 1 \iff$ red. Burau, $l = 2 \iff$ LKB

Dense modules of $\mathfrak{sl}_n(\mathbb{C})$ = weight + support equals a coset from \mathfrak{h}^*/Q

▶ The above are examples of dense $\mathfrak{sl}_2(\mathbb{C})$ -module

▶ For higher rank these are grid-type modules; generic scalars \Rightarrow simple

► Fernando, Futorny ~1986 All simple weight modules are dense or are induced from dense modules

(a) There are commuting actions $U(\mathfrak{gl}_2) \ \bigcirc \ \Delta^{\oplus \lambda} = \bigoplus_{d \in \mathbb{Z}^n} \Delta^{\lambda_1 + d_1} \otimes \ldots \otimes \Delta^{\lambda_n + d_n} \ \bigcirc \ U(\mathfrak{gl}_n).$

(b) Let φ^k be the algebra homomorphism induced by the U(gl_k) actions from (a). Then, for admissible parameters λ:
φ²: U(gl₂) →_d End_{U(gl₁)} (Δ^{⊕λ}), φⁿ: U(gl_n) →_d End_{U(gl_n)} (Δ^{⊕λ}).

 $\varphi : \mathcal{O}(\mathfrak{gl}_2) \twoheadrightarrow_d \operatorname{End}_{\mathcal{O}(\mathfrak{gl}_n)}(\Delta^-), \quad \varphi : \mathcal{O}(\mathfrak{gl}_n) \twoheadrightarrow_d \operatorname{End}_{\mathcal{O}(\mathfrak{gl}_2)}(\Delta^-)$ That is, the two actions densely-generate the others centralizer.

(c) For admissible parameters λ we have the decomposition of the $U(\mathfrak{gl}_2)$ - $U(\mathfrak{gl}_n)$ bimodule Δ^{λ} into **Bimodule decomp.**

$$\Delta^{\oplus \lambda} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z}_{\geq 0}}} \Delta^{\Sigma \lambda_n + g - t, t} \otimes \mathbb{D}^{g - t, t}.$$

The various $\Delta^{\Sigma\lambda_n+g-t,t}$ and $\mathbf{D}^{g-t,t}$ are nonisomorphic simple $U(\mathfrak{gl}_2)$ modules respectively $U(\mathfrak{gl}_n)$ modules.

► The above is Verma Howe duality

► Admissible parameters ⇔ generic/transcendental

- (a) There are commuting actions $U(\mathfrak{gl}_2) \ \bigcirc \ \Delta^{\oplus \lambda} = \bigoplus_{d \in \mathbb{Z}^n} \Delta^{\lambda_1 + d_1} \otimes \ldots \otimes \Delta^{\lambda_n + d_n} \bigcirc \ U(\mathfrak{gl}_n).$
- (b) Let φ^k be the algebra homomorphism induced by the U(gl_k) actions from (a). Then, for admissible parameters λ:

$$\phi^2 \colon U(\mathfrak{gl}_2) \twoheadrightarrow_d \operatorname{End}_{U(\mathfrak{gl}_n)}(\Delta^{\oplus \lambda}), \quad \phi^n \colon U(\mathfrak{gl}_n) \twoheadrightarrow_d \operatorname{End}_{U(\mathfrak{gl}_2)}(\Delta^{\oplus \lambda}).$$

That is, the two actions densely-generate the others centralizer.

(c) For admissible parameters λ we have the decomposition of the $U(\mathfrak{gl}_2)$ - $U(\mathfrak{gl}_n)$ bimodule Δ^{λ} into

$$\Delta^{\oplus \lambda} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z}_{\geq 0}}} \Delta^{\Sigma \lambda_n + g - t, t} \otimes \mathbb{D}^{g - t, t}.$$

The various $\Delta^{\Sigma\lambda_n+g-t,t}$ and $\mathbb{D}^{g-t,t}$ are nonisomorphic simple $U(\mathfrak{gl}_2)$ modules respectively $U(\mathfrak{gl}_n)$ modules.

- Moreover, there is a surjective braid group action on the marked part
- ► All higher LKB reps shows up infinitely many times
- ► This "immediately" implies that all higher LKB reps are simple

(a) There are commuting actions

$$U(\mathfrak{gl}_2) ~~\bigcirc~ \Delta^{\oplus \boldsymbol{\lambda}} = \bigoplus_{\boldsymbol{d} \in \mathbb{Z}^n} \Delta^{\lambda_1 + d_1} \otimes \ldots \otimes \Delta^{\lambda_n + d_n} ~~\bigcirc~ U(\mathfrak{gl}_n).$$

(b) Let φ^k be the algebra homomorphism induced by the U(gl_k) actions from (a). Then, for admissible parameters λ:

$$\phi^2 \colon U(\mathfrak{gl}_2) \twoheadrightarrow_d \operatorname{End}_{U(\mathfrak{gl}_n)}(\Delta^{\oplus \lambda}), \quad \phi^n \colon U(\mathfrak{gl}_n) \twoheadrightarrow_d \operatorname{End}_{U(\mathfrak{gl}_2)}(\Delta^{\oplus \lambda}).$$

That is, the two actions densely-generate the others centralizer.

(c) For admissible parameters λ we have the decomposition of the $U(\mathfrak{gl}_2)-U(\mathfrak{gl}_n)$ bimodule Δ^{λ} into

$$\Delta^{\oplus \lambda} \cong \bigoplus_{\substack{g \in \mathbb{Z} \\ t \in \mathbb{Z}_{\geq 0}}} \Delta^{\Sigma \lambda_n + g - t, t} \otimes \mathsf{D}_{=-t, t}^{g - t, t} \cdot \blacksquare_{\mathbb{Z}_{\geq 0}}$$

The various $\Delta^{\Sigma\lambda_n+g-t,t}$ and $\mathbb{D}^{g-t,t}$ are nonisomorphic simple $U(\mathfrak{gl}_2)$ modules respectively $U(\mathfrak{gl}_n)$ modules.

There is also a quantum version Easy
 There is also a higher rank version Difficult (not done)
 There is also a nonsemisimple version Very difficult (not done)
 Representations of braids and Howe duality Or: Large = good May 2023 4 / 5

There is still much to do...

Thanks for your attention!