Growth rates in tensor powers

Or: Jupiter and friends

AcceptChange what you cannot ehangeaccept

I report on work of Kevin Coulembier, Pavel Etingof and Victor Ostrik

Let us not count!

- 「 = any affine semigroup superscheme, $\mathbb{K}=$ any ground field, $V=$ any fin $\operatorname{dim} \Gamma$-rep- 「 has the notion of a tensor product
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim} V^{\otimes n}=(\operatorname{dim} V)^{n}$

Let us not count!

- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim} V^{\otimes n}=(\operatorname{dim} V)^{n}$

- $\Gamma=$ any affine semigroup superscheme, $\mathbb{K}=$ any ground field, $V=$ any fin $\operatorname{dim} \Gamma$-rep
- 「 has the notion of a tensor product
- Problem Decompose $V^{\otimes n}$; note that $\operatorname{dim} V^{\otimes n}=(\operatorname{dim} V)^{n}$

Examples

Any finite group, monoid, semigroup
Symmetric groups, alternating groups, cyclic groups, the monster, $G L_{N}\left(\mathbb{F}_{p^{k}}\right), \ldots$
Actually any group, monoid, semigroup
$G L_{N}(\mathbb{C}), G L_{N}(\mathbb{R}), G L_{N}\left(\overline{\mathbb{F}_{p^{k}}}\right)$, symplectic, orthogonal, braid groups, Thompson groups, \ldots
Super versions
$G L_{M \mid N}, O S P_{M \mid 2 N}$, periplectic, queer, \ldots
Slogan This is a very general setting

Let us not count!

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$, then

$$
\{1,1,2,3,6,10,20,35,70,126,252\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $2=\operatorname{dim} V: \sqrt[1000]{b_{1000}} \approx 1.99265$

Let us not count!

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $3=\operatorname{dim} V: \sqrt[1000]{b_{1000}} \approx 2.9875$

So let us come back to the general setting:
$\Gamma=$ affine semigroup superscheme
$\mathbb{K}=$ any field, $V=$ any fin dim 「-rep
$b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10 .
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}} \text { seems to converge to } 3=\operatorname{dim} V: \sqrt[100]{b_{1000}} \approx 2.9875
$$

Observation 1

Whatever is true for $S L_{2}$ over \mathbb{C} is true in general, right?
So let us come back to the general setting:
$\Gamma=$ affine semigroup superscheme
$\mathbb{K}=$ any field, $V=$ any fin dim 「-rep
$b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)

$1 .$| Observation 2 |
| :---: |
| $b_{n} b_{m} \leq b_{n+m} \Rightarrow$ |
| $\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ |
| is well-defined by a version of Fekete's Subadditive Lemma |

- $b_{n}=b_{n}^{\Gamma, V}=$ number of indecomposable summands of $V^{\otimes n}$ (with multiplicities)
- Example $\Gamma=S L_{2}, \mathbb{K}=\mathbb{C}, V=\operatorname{Sym} \mathbb{C}^{2}$, then

$$
\{1,1,3,7,19,51,141,393,1107,3139,8953\}, \quad b_{n} \text { for } n=0, \ldots, 10
$$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}} \text { seems to converge to } 3=\operatorname{dim} V: \sqrt[1000]{b_{1000}} \approx 2.9875
$$

$1 .$| Observation 2 |
| :---: |
| $b_{n} b_{m} \leq b_{n+m} \Rightarrow$ |
| $\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ |
| 1. |
| is well-defined by a version of Fekete's Subadditive Lemma |

Observation 3
$1 \leq \beta \leq \operatorname{dim} V$
$\beta=1 \Leftrightarrow V^{\otimes n}$ for $n \gg 0$ is 'one block'
$\beta=\operatorname{dim} V \Leftrightarrow$ summands of $V^{\otimes n}$ for $n \gg 0$ are 'essentially one-dimensional'
$\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}$ seems to converge to $3=\operatorname{dim} V: \sqrt[1000]{b_{1000}} \approx 2.9875$

Let us not count!

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim} V
$$

Exponential growth is scary

In other words, compared to the size of the exponential growth of $(\operatorname{dim} V)^{n}$ all indecomposable summands are 'essentially one-dimensional'

Sun

$$
(\operatorname{dim} v)^{n}
$$

The semisimple case and Jupiter

- $\Gamma=$ a finite group of order $|\Gamma|=1000, \mathbb{K}=\mathbb{C}$
- Every indecomposable Γ-rep Z has $\operatorname{dim} Z \leq|\Gamma|=1000$
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} / 1000 \leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The semisimple case and Jupiter

- $\Gamma=S L_{2}$ with $\mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$
- Every indecomposable G-rep Z in $V^{\otimes n}$ has $\operatorname{dim} Z \leq n+1$ (top is $S y m^{n} \mathbb{C}^{2}$)
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /(n+1) \leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The semisimple case and Jupiter

- $\Gamma=S L_{2}$ with $\mathbb{K}=\mathbb{C}, V=\mathbb{C}^{2}$
- Every indecomposable G-rep Z in $V^{\otimes n}$ has $\operatorname{dim} Z \leq n+1$ (top is $S y m^{n} \mathbb{C}^{2}$)
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /(n+1) \leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The semisimple case and Jupiter

- $\Gamma=S L_{M}$ with $\mathbb{K}=\mathbb{C}, V=$ any fin $\operatorname{dim} \Gamma$-rep
- Every indecomposable G-rep Z in $V^{\otimes n}$ has $\operatorname{dim} Z \leq$ some poly in weights (Weyl's dim formula, e.g. $\left.\operatorname{dim} V_{m_{1}, m_{2}}=\frac{1}{2}\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)\right)$
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /$ some poly in weights $\leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The semisimple case and Jupiter

- $\Gamma=S L_{M}$ with $\mathbb{K}=\mathbb{C}, V=$ any fin $\operatorname{dim} \Gamma$-rep
- Every indecomposable G-rep Z in $V^{\otimes n}$ has $\operatorname{dim} Z \leq$ some poly in weights (Weyl's dim formula, e.g. $\left.\operatorname{dim} V_{m_{1}, m_{2}}=\frac{1}{2}\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)\right)$
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /$ some poly in weights $\leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The semisimple case and Jupiter

The semisimple case and Jupiter

- $\Gamma=G L_{M \mid N}$ with $\mathbb{K}=\mathbb{C}, V=\mathbb{C}^{M \mid N}$
- Every indecomposable G-rep Z in $V^{\otimes n}$ has $\operatorname{dim} Z \leq$ some poly in weights (Theorem (Berele-Regev ~ 1987) $V^{\otimes n}$ is semisimple!)
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /$ some poly in weights $\leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The sem Summary (semisimple case)
We 'know' the characters and dimensions of the indecomposables They do not grow fast enough to compete with exponential growth Dividing by Jupiter (= worst case) proves

$$
\beta=\operatorname{dim} V
$$

- 「 =
- Ever
summands-Jupiter
$(\operatorname{dim} \mathbf{V})^{\mathrm{n}}$
(Theorem (Berele-Regev ~1987) $V^{\otimes n}$ is semisimple!)
- Assume every Z is Jupiter $\Rightarrow(\operatorname{dim} V)^{n} /$ some poly in weights $\leq b_{n} \leq(\operatorname{dim} V)^{n} \Rightarrow$ Done!

The sem Summary (semisimple case)
We 'know' the characters and dimensions of the indecomposables They do not grow fast enough to compete with exponential growth Dividing by Jupiter (= worst case) proves

$$
\beta=\operatorname{dim} V
$$

Turns out that the nonsemisimple case is not much different

- Assume

The nonsemisimple case and Jupiter

-「 $=$ a finite group

- Theorem (Bryant-Kovács ~1972) Essentially all summands of $V^{\otimes n}$ are 'projective' The projective cone
- Every indecomposable projective Γ-rep P has $\operatorname{dim} P \leq|\Gamma|$
- Non-projective summands 'do not matter' and play the Jupiter argument

-「 = a finite group
- Theorem (Bryant-Kovács ~1972) Essentially all summands of $V^{\otimes n}$ are 'projective' The projective cone
- Every indecomposable projective Γ-rep P has $\operatorname{dim} P \leq|\Gamma|$
- Non-projective summands 'do not matter' and play the Jupiter argument

The projective cone

"projective \otimes anything $=$ projective"
Bryant-Kovács: eventually there will be some projective in $V^{\otimes k}$ (say for V faithful) \Rightarrow essentially all summands of $V^{\otimes n}$ are projective for $n \gg 0$

Example (the picture you just saw)

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, \mathbb{K}=\overline{\mathbb{F}_{5}}, V=Z_{3}=3 \mathrm{~d}$ indecomposable, $P=Z_{5}=5$ d projective, $V \otimes P=P^{\oplus 3}=3 \cdot P$

$$
\begin{aligned}
& Z_{4} \rightarrow m+\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) Z_{5} m+\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \\
& V^{\otimes 2} \cong 1 \cdot \mathbb{1} \oplus 1 \cdot V \oplus 1 \cdot P \text { write }(1,1,1) \\
& V^{\otimes 3} \longleftrightarrow(1,2,4), V^{\otimes 4} \longleftrightarrow(2,3,14), V^{\otimes 5} \longleftrightarrow(3,5,45) \\
& V^{\otimes 6} \leadsto(5,8,140), V^{\otimes 7} \leadsto(8,13,428), V^{\otimes 8} \leadsto(13,21,1297)
\end{aligned}
$$

The nonsen Theorem (Bryant-Kovács ~1972; correctly interpreted)

For any finite group Γ, any field \mathbb{K} and any fin $\operatorname{dim} \Gamma$-rep V : $b_{n} \sim A \cdot(\operatorname{dim} V)^{n}$ for $A \in \mathbb{R}_{>0}$

Example (the picture you just saw)

$\Gamma=\mathbb{Z} / 5 \mathbb{Z}, \mathbb{K}=\overline{\mathbb{F}_{5}}, V=Z_{3}=3 \mathrm{~d}$ indecomposable, $P=Z_{5}=5$ d projective, $V \otimes P=P^{\oplus 3}=3 \cdot P$

The nonsemisimple case and Jupiter

- $\Gamma=G L_{N}, \mathbb{K}=$ any field, $V=$ vector rep
- Theorem (Folklore ~1970, Andersen ~2017, Coulembier-Ostrik ~2023) Essentially all summands of $V^{\otimes n}$ are linked to the Steinberg weight ST
The Steinberg cone
- 「-reps linked to ST have 'known' dimensions
- Non-Steinberg summands 'do not matter' and play the Jupiter argument

The nonsemisimple case and Jupiter

The nonsemisimple case and Jupiter

The embedding trick

Case 1Γ is an affine group scheme

$$
\begin{gathered}
\Rightarrow \Gamma \hookrightarrow G L(V) \\
\Rightarrow b_{n}^{G L(V), V} \leq b_{n}^{\Gamma, V} \\
\Rightarrow \text { Done }
\end{gathered}
$$

Case 2Γ is an affine semigroup scheme

$$
\Rightarrow \Gamma \hookrightarrow E N D(V)
$$

$$
p=\Rightarrow\left(b_{n}^{E N D(V), V} \leq b_{n}^{\Gamma, V}\right)+\text { use }\left(b_{n}^{G L(V), v^{\prime}}=b_{n}^{E N D(V), V}\right)(\text { omitted })
$$

$$
\Rightarrow \text { Done }
$$

Case 3Γ is something super
\Rightarrow 'a multiple of $G L_{M \mid N}$ ' Now live

$$
\Rightarrow \text { Done }
$$

The nonsemisimple case and Jupiter

- $\Gamma=G L_{M \mid N}, P=G L_{M} \times G L_{N}$
- Theorem (Folklore ~???, Coulembier-Ostrik ~2023) \exists constant A such that dim of every indecomposable of Γ is bounded by $A \cdot \operatorname{dim}$ of an associated indecomposable of P
- Example $A=4$ for $G L_{1 \mid 1}$, thus every indecomposable $G L_{1 \mid 1}$-rep is at most four dimensional since $G L_{1} \times G L_{1}$ is boring
- Hence, the main theorem for Γ reduces to P (still the Jupiter argument)

The nonsemisimple case and Jupiter

We have now survived the whole proof!

- $\Gamma=G L_{M \mid N}, P=G L_{M} \times G L_{N}$
- Theorem (Folklore ~???, Coulembier-Ostrik ~2023) \exists constant A such that dim of every indecomposable of Γ is bounded by $A \cdot \operatorname{dim}$ of an associated indecomposable of P
- Example $A=4$ for $G L_{1 \mid 1}$, thus every indecomposable $G L_{1 \mid 1}$-rep is at most four dimensional since $G L_{1} \times G L_{1}$ is boring
- Hence, the main theorem for Γ reduces to P (still the Jupiter argument)

The nonsemisimple case and Jupiter

- Summary Few summands have high multiplicity, take these and play the Jupiter argument
- As an example: Theorem (Khovanov-Sitaraman ~2021) For $S L_{2}$ take only summands with highest weight $<\sqrt{n}$ and get $2^{n} / n^{5 / 2}$ as a lower bound for b_{n}

Results for $S L_{2}$ beyond Jupiter

- Simple $S L_{2}$-reps over \mathbb{C} are 'lines' i.e. Sym ${ }^{k} \mathbb{C}^{2}$
- Their character is $q^{-k+1}+q^{-k+3}+\ldots+q^{k-3}+q^{k-1}$
- In particular, up to parity, they have an unique factor q^{0} or q^{1}

Results for $S L_{2}$ beyond Jupiter

- For $V=\mathbb{C}^{2}$ the character of $V^{\otimes n}$ is $\left(q^{-1}+q\right)^{n}$
- Theorem (Folklore ~1930, Coulembier-Ostrik ~2023) $b_{n}=\binom{n}{\lfloor n / 2\rfloor}$
- Stirling's formula $\Rightarrow b_{n} \sim \sqrt{2 / \pi} \cdot 2^{n} / \sqrt{n}$ with $\sqrt{2 / \pi} \approx 0.798$

Results for $S L_{2}$ beyond Jupiter

- Indecomposable (tilting) $S L_{2}$-reps over $\overline{\mathbb{F}_{p}}$ are patchworks of simples over \mathbb{C}
- Theorem (Donkin ~1993, Sutton-Wedrich-Zhu ~2021) Very nice character formula for the indecomposable $S L_{2}$-reps
- Theorem (Etingof ~2023) The DSWZ formula gives the average dim

Results for $S L_{2}$ beyond Jupiter

- Theorem (Coulembier-Ostrik ~2023) Use the Jupiter value of DSWZ to get a lower bound $2^{n} n^{-\alpha}$ for $\alpha=1+\log _{2}(p)^{-1}$
- Conjecture/theorem (Etingof ~2023) Use the Neptune value of DSWZ to get the 'real' growth rate, e.g. $\approx 2^{n} n^{-0.708}$ for $p=2$

- 「 has the notion of a tersas product
- Problem Decompose $V^{s i}$; note that $\operatorname{dimm}^{V^{3 n}}-(\operatorname{dim} V Y$

Let us not count.

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim} V
$$

The nonsemisimple case and Jupiter

- Γ - a finite group

Theorem (Bryant-Kovics ~1972) Escentially all summands of V ve are 'projective' The projective cone

- Every projective Γ-rep P has dim $P \leq 1 r$
- Non-projective summands "do not matter' and play the Jupiter aggument

Let us not count:

- $b_{n}=\dot{\Delta}_{0}^{\cdot V}$ - number of indecomposable summands of V^{80} (with multiplicities)
- Example $\mathrm{T}-\mathrm{S} L_{2}, \mathrm{~K}-\mathrm{C}, \mathrm{V}-\mathrm{C}^{2}$, then
$(1,1,2,3,6,10,20,35,70,126,252), \quad b_{A}$ for $n=0, \ldots, 10$

The semisimple case and Jupiter

- $\Gamma-5 L_{2}$ with $\mathrm{K}-\mathrm{C}, V-\mathrm{C}^{2}$
- Every indecomposable G-rep Z in $V^{\text {an }}$ has dim $Z \leq n+1$ (top is 5 ymmed
- Assume every $Z \mathrm{i}$ Jupiter $\rightarrow(\operatorname{dim} V)^{\sigma} /(n+1) \leq \mathrm{b}_{0} \leq(\operatorname{dim} V)^{\infty} \rightarrow$ Donel

The nonsemisimple case and Jupiter

- Summary Few summands have high multiplicty, take these and play the Jupiter argument
- As an example. Theorem (Khowanov-Sitaraman ~ 2021) For $S L_{2}$ take only
summands with highest wright $<\sqrt{n}$ ind get $2^{\circ} / n^{5 / 2}$ as a lower bound for b_{n}

Results for $S L_{2}$ beyond Jupit

- Indecomposable (tiliting $S L_{2}$-reps over F_{p} are patchworks of simples over C

Theorem (Donkin ~ 1993, Sutton-Wedrich-Zhu ~ 2021) Very nice
character formula for the indecomposable $S L_{2}$-reps

- Theorem (Etingof -2023) The DSWZ formula gives the average dim

There is still much to do

- 「 has the notion of a tersas product
- Problem Decompose $V^{s i}$; note that $\operatorname{dimm}^{V^{3 n}}-(\operatorname{dim} V Y$

Let us not count:

We have

$$
\beta=\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\operatorname{dim} V
$$

The nonsemisimple case and Jupiter

- Γ - a finite group

Theorem (Bryant-Kovics ~1972) Esentially all summands of V ve are 'projective' The projective cone

- Every projective Γ-rep P has dim $P \leq 1 r$
- Non-projective summands "do not matter' and play the Jupiter aggument

Let us not count!

- $b_{n}=\dot{\nu}_{0}^{\cdot V}$ - number of indecomposable summands of V^{80} (with multiplicitives)
- Example $\mathrm{T}-\mathrm{SL}, \mathrm{K}-\mathrm{C}, \mathrm{V}-\mathrm{C}^{2}$, then
$(1,1,2,3,6,10,20,35,70,126,252), \quad b_{A}$ for $n=0, \ldots, 10$

The semisimple case and Jupiter

- $\Gamma-5 L_{2}$ with $\mathbb{K}-C, V=C^{2}$
- Every indecomposable G-rep Z in $V^{\text {an }}$ has dim $Z \leq n+1$ (top is 5 ymmed
- Assume every Z is Jupiter $\rightarrow(\operatorname{dim} V)^{\sigma} /(n+1) \leq b_{s} \leq(\operatorname{dim} V)^{\pi} \rightarrow$ Donel

The nonsemisimple case and Jupiter

- Summary Few summands have high multiplicity, take these and play the Jupiter argument
- As an example. Theorem (Khowanow-Sitarammon ~ 2021) For $S L_{2}$ take only
summands with highest wright $<\sqrt{n}$ end get $2^{\circ} / n^{5 / 2}$ as a lower bound for bon cerverumera wremener i.e

Results for $S L_{2}$ beyond Jupit

- Indecomposable (titingi) $S L_{2}$-reps over F_{p} are patchworks of simples over C
-Theorem (Donkin \sim 1993, Sutton-Wedrich-Zhu ~ 2021) Very nice
Character formula for the indecomposable $S L_{2}$-reps
-Theorem (Etingof ~ 2023) The DSWZ formula gives the average dim

Thanks for your attention!

