Growth rates in tensor powers

Or: Jupiter and friends

I report on work of Kevin Coulembier, Pavel Etingof and Victor Ostrik

July 2023

Growth rates in tensor powers

July 2023

Or: Jupiter and friends

2023 1 / 6

Let us not count!

▶ Γ = any affine semigroup superscheme, \mathbb{K} = any ground field, V = any fin dim Γ -rep

Γ has the notion of a tensor product

• Problem Decompose $V^{\otimes n}$; note that $\dim V^{\otimes n} = (\dim V)^n$

Let us not count!

 \triangleright Γ = any affine semigroup superscheme, \mathbb{K} = any ground field, V = any fin dim Γ-rep

Γ has the notion of a tensor product

Problem Decompose $V^{\otimes n}$; note that dim $V^{\otimes n} = (\dim V)^n$

Growth rates in tensor powers

Or: Jupiter and friends

Growth rates in tensor powers

Or: Jupiter and friends

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = C², then

 $\{1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $2 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 1.99265$

Let us not count!

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n$ for n = 0, ..., 10.

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

b_n = b_n^{Γ,V}=number of indecomposable summands of V^{⊗n} (with multiplicities)
 Example Γ = SL₂, K = C, V = Sym C², then

 $\{1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953\}, b_n \text{ for } n = 0, ..., 10.$

 $\lim_{n\to\infty} \sqrt[n]{b_n}$ seems to converge to $3 = \dim V$: $\sqrt[1000]{b_{1000}} \approx 2.9875$

Growth rates in tensor powers

Or: Jupiter and friends

July 2023 2 / 6

We have

$$\beta = \lim_{n \to \infty} \sqrt[n]{b_n} = \dim V$$

Exponential growth is scary

In other words, compared to the size of the exponential growth of $(\dim V)^n$ all indecomposable summands are 'essentially one-dimensional'

(dim V)ⁿ

summands->______

Growth rates in tensor powers

Pluta

 $\blacktriangleright\ \Gamma$ = a finite group of order $|\Gamma|$ = 1000, $\mathbb{K}=\mathbb{C}$

• Every indecomposable Γ -rep Z has dim $Z \leq |\Gamma| = 1000$

► Assume every Z is Jupiter \Rightarrow $(\dim V)^n/1000 \le b_n \le (\dim V)^n \Rightarrow$ Done! Growth rates in tensor powers Or: Jupiter and friends July 2023 $\pi/6$

• $\Gamma = SL_2$ with $\mathbb{K} = \mathbb{C}$, $V = \mathbb{C}^2$

▶ Every indecomposable *G*-rep *Z* in $V^{\otimes n}$ has dim $Z \leq n+1$ (top is $Sym^n \mathbb{C}^2$)

► Assume every Z is Jupiter $\Rightarrow (\dim V)^n / (n+1) \le b_n \le (\dim V)^n \Rightarrow \text{Done!}$ Growth rates in tensor powers Or: Jupiter and friends July 2023 $\pi / 6$

▶ $\Gamma = SL_M$ with $\mathbb{K} = \mathbb{C}$, V = any fin dim Γ -rep

► Every indecomposable G-rep Z in V^{⊗n} has dim Z ≤ some poly in weights (Weyl's dim formula, e.g. dim V_{m1,m2} = ¹/₂(m₁ + 1)(m₂ + 1)(m₁ + m₂ + 2))

► Assume every Z is Jupiter \Rightarrow $(\dim V)^n$ /some poly in weights $\leq b_n \leq (\dim V)^n \Rightarrow$ Done!

▶ $\Gamma = SL_M$ with $\mathbb{K} = \mathbb{C}$, V = any fin dim Γ -rep

► Every indecomposable G-rep Z in V^{⊗n} has dim Z ≤ some poly in weights (Weyl's dim formula, e.g. dim V_{m1,m2} = ¹/₂(m₁ + 1)(m₂ + 1)(m₁ + m₂ + 2))

Assume every Z is Jupiter \Rightarrow $(\dim V)^n$ /some poly in weights $\leq b_n \leq (\dim V)^n \Rightarrow$ Done!

► $\Gamma = GL_{M|N}$ with $\mathbb{K} = \mathbb{C}$, $V = \mathbb{C}^{M|N}$

► Every indecomposable G-rep Z in V^{⊗n} has dim Z ≤ some poly in weights (Theorem (Berele–Regev ~1987) V^{⊗n} is semisimple!)

► Assume every Z is Jupiter \Rightarrow $(\dim V)^n$ /some poly in weights $\leq b_n \leq (\dim V)^n \Rightarrow$ Done!

- $\blacktriangleright \ \Gamma = a \ finite \ group$
- ► Theorem (Bryant-Kovács ~1972) Essentially all summands of V^{⊗n} are 'projective' The projective cone
- Every indecomposable projective Γ -rep P has dim $P \leq |\Gamma|$
- ▶ Non-projective summands 'do not matter' and play the Jupiter argument

- $\Gamma = a$ finite group
- ► Theorem (Bryant-Kovács ~1972) Essentially all summands of V^{⊗n} are 'projective' The projective cone
- Every indecomposable projective Γ -rep *P* has dim $P \leq |\Gamma|$
- ► Non-projective summands 'do not matter' and play the Jupiter argument

- ▶ $\Gamma = GL_N$, $\mathbb{K} = any field$, V = vector rep
- ► Theorem (Folklore ~1970, Andersen ~2017, Coulembier–Ostrik ~2023) Essentially all summands of V^{⊗n} are linked to the Steinberg weight ST The Steinberg cone
- Γ-reps linked to ST have 'known' dimensions
- ► Non-Steinberg summands 'do not matter' and play the Jupiter argument

- $\blacktriangleright \ \Gamma = GL_{M|N}, \ P = GL_M \times GL_N$
- ► Theorem (Folklore ~???, Coulembier–Ostrik ~2023) ∃ constant A such that dim of every indecomposable of Γ is bounded by A · dim of an associated indecomposable of P
- ► Example A = 4 for GL_{1|1}, thus every indecomposable GL_{1|1}-rep is at most four dimensional since GL₁ × GL₁ is boring
- ► Hence, the main theorem for Γ reduces to *P* (still the Jupiter argument)

- $\blacktriangleright \ \ \Gamma = \ GL_{M|N}, \ P = \ GL_M \times \ GL_N$
- ► Theorem (Folklore ~???, Coulembier–Ostrik ~2023) ∃ constant A such that dim of every indecomposable of Γ is bounded by A · dim of an associated indecomposable of P
- ► Example A = 4 for GL_{1|1}, thus every indecomposable GL_{1|1}-rep is at most four dimensional since GL₁ × GL₁ is boring
- ► Hence, the main theorem for Γ reduces to *P* (still the Jupiter argument)

- Summary Few summands have high multiplicity, take these and play the Jupiter argument
- ► As an example: **Theorem (Khovanov–Sitaraman** ~2021) For SL_2 take only summands with highest weight $< \sqrt{n}$ and get $2^n/n^{5/2}$ as a lower bound for b_n

- ▶ Simple *SL*₂-reps over \mathbb{C} are 'lines' i.e. *Sym*^k \mathbb{C}^2
- Their character is $q^{-k+1} + q^{-k+3} + \dots + q^{k-3} + q^{k-1}$

▶ In particular, up to parity, they have an unique factor q^0 or q^1

▶ For $V = \mathbb{C}^2$ the character of $V^{\otimes n}$ is $(q^{-1} + q)^n$

▶ Theorem (Folklore ~1930, Coulembier–Ostrik ~2023) $b_n = \binom{n}{\lfloor n/2 \rfloor}$

• Stirling's formula
$$\Rightarrow b_n \sim \sqrt{2/\pi} \cdot 2^n / \sqrt{n}$$
 with $\sqrt{2/\pi} \approx 0.798$

- ▶ Indecomposable (tilting) SL_2 -reps over $\overline{\mathbb{F}_p}$ are patchworks of simples over \mathbb{C}
- ► Theorem (Donkin ~1993, Sutton–Wedrich–Zhu ~2021) Very nice character formula for the indecomposable SL₂-reps
- ▶ Theorem (Etingof ~2023) The DSWZ formula gives the average dim

- ▶ Theorem (Coulembier–Ostrik ~2023) Use the Jupiter value of DSWZ to get a lower bound $2^n n^{-\alpha}$ for $\alpha = 1 + \log_2(p)^{-1}$
- ► Conjecture/theorem (Etingof ~2023) Use the Neptune value of DSWZ to get the 'real' growth rate, e.g. $\approx 2^n n^{-0.708}$ for p = 2Growth rates in tensor powers Or: Jupiter and friends July 2023 5 / 6

- Every projective Γ-rep P has dim P ≤ |Γ|
- Non-projective summands 'do not matter' and play the Jupiter argument.

Small star in terms practs for Agine and Stock All 2023 X / K

- · Summary Few summands have high multiplicity, take these and play the Jupiter argument
- ► As an example: Theorem (Khovanov-Sitaraman ~2021) For SL₂ take only summands with highest weight $<\sqrt{n}$ and get $2^n/n^{3/2}$ as a lower bound for b_n

Smark new in tenur papers for applier and thinks Aug 2003 A / 6

There is still much to do...

Results for SL₂ beyond Jupiter

- ► Indecomposable (tilting) SL-reps over F are patchworks of simples over C
- ▶ Theorem (Donkin ~1993, Sutton-Wedrich-Zhu ~2021) Very nice character formula for the indecomposable SL--reps
- ► Theorem (Etimeof ~2023) The DSWZ formula gives the average dim Smath tens is tensor yours Or: Asplace and Nonde Any 2011 5 / 5

Non-projective summands "do not matter" and play the Jupiter argument.

Smart stress to same party for Apple and Smart

The nonsemisimple case and Jupiter

- Summary Few summands have high multiplicity, take these and play the Jupiter argument
- As an example: Theorem (Khovanov–Sitaraman ~2021) For SL₂ take only summands with highest weight < √n and get 2ⁿ/n^{b/2} as a lower bound for b_n.

Small stea is tome passes for against and times July 2011 8 / 6

Thanks for your attention!

Results for SL₂ beyond Jupiter

- ▶ Indecomposable (tilting) SL_2 -reps over $\overline{F_{\mu}}$ are patchworks of simples over C
- ► Theorem (Donkin ~1993, Sutton-Wedrich-Zhu ~2021) Very nice character formula for the indecomposable SL₂-reps
 ► Theorem (Etimof ~2023) The DSWZ formula gives the average dim
- Theorem (Etingof ~2023) The DSWZ formula gives the average dim instrume to see the second dimension of the secon