Matrices and quivers

Or: Complexity jumps
AcceptChange what you cannot changeaccept

August 2023

Matrix problems

Dichotomy $=$ division into two especially mutually exclusive or contradictory groups
Slogan Dichotomy is everywhere
Today My favorite linear algebra example of dichotomy

Matrix problems

- Dichotomy = division into two especially mutually exclusive or contradictory groups
- Slogan Dichotomy is everywhere
- Today My favorite linear algebra example of dichotomy

Matrix problems

- Metatheorem (0-1 theorem; folklore $\ll 1950$) Almost all properties of graphs are either false or true almost all of the time
- This works for almost all definitions of almost all
- Details are annoying, so let me rather give you two examples

Matrix problems

Example (of 1)

Theorem (folklore $\ll \mathbf{1 9 5 0}$) Almost all graphs are connected

10000 random graphs on 100 vertices:

Counts [ListAut]
<| True \rightarrow 10000|>

- Details are annoying, so let me rather give you two examples

Matrix problems

Example (of 0)

Theorem (folklore $\ll \mathbf{1 9 5 0}$) Almost no graph is planar

10000 random graphs on 100 vertices:

- Details are annoying, so let me rather give you two examples

Matrix problems

- Metatheorem (0-1 theorem; folklore $\ll \mathbf{1 9 5 0}$) Almost all properties of graphs are either false or true almost all of the time
- This works for almost all definitions of almost all
- Details are annoying, so let me rather give you two examples

Matrix problems

- Task Classify vector spaces up to isomorphism
- Solution Theorem (folklore $\ll \mathbf{1 9 0 0}$) The dimension determines the vector space
- Thus, vector spaces are classified by one discrete parameter

Matrix problems

Matrix problems

- A natural equivalence relation on matrices is similarity :

$$
(A \sim B) \Leftrightarrow\left(\exists P: A=P^{-1} B P\right)
$$

Similarity $=A$ and B are the same linear automorphism up to base change

- Question How can we classify similar matrices?

Matrix problems

- Theorem (Jordan ~ 1870) Two matrices are similar if and only if they have the same JNF
- Thus, similarity is classified by:

```
one discrete parameter = size of the Jordan block
one continuous parameter = eigenvalue of the Jordan block
```


Matrix problems

Jordan normal form (JNF):

Vector space example For a fixed size, there is no continuous parameter
Jordan example For a fixed size, there is only one continuous parameter
Thus, there is at most one continuous parameter per fixed discrete parameter

- Theorem (Jordan ~1870) Two matrices are similar if and only if they have the same JNF
- Thus, similarity is classified by:

Matrix problems

- Similarity has a nice solution
- Simultaneous similarity $(A, B) \sim\left(P^{-1} A P, P^{-1} B P\right)$ (same P) is very difficult

Matrix problems

> IN CS, IT CAN BE HARD TO EXPLAIN
> THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUAUYY IMPOSSIBLE.

I will describe some approach to the simultaneous similarity problem

- Similarity has a but let us postpone that to the next talk
- Simultaneous similarity $(A, B) \sim\left(P^{-1} A P, P^{-1} B P\right)$ (same $\left.P\right)$ is very difficult

Matrix problems

$\sim \Leftrightarrow$ same linear auto. mod base change
$\approx \Leftrightarrow$ same linear map mod base change

- Matrices $A=\left(A_{1}, \ldots, A_{m}\right)$ and $B=\left(B_{1}, \ldots, B_{m}\right)$ are simultaneously equivalent if:

$$
(A \approx B) \Leftrightarrow\left(\exists P, Q: \forall i: A_{i}=Q^{-1} B_{i} P \text { with } P, Q \text { invertible }\right)
$$

Crucial: There is only one P and one Q

- Question How can we classify equivalent matrices?

Matrix problems

- Theorem (folklore $\ll \mathbf{1 9 0 0}$) Two matrices are equivalent if and only if they have the same nameless/Smith normal form as above
- Thus, equivalence for $m=1$ is classified by:

$$
\text { one discrete parameter }=\text { the rank }
$$

Matrix problems

$$
\begin{gathered}
J_{n}(\lambda)=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right), \quad i d_{n}=\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
L_{n}=(& & & 1
\end{array}\right) \\
\\
\end{gathered} \ddots
$$

- For $m=2$ one has Kronecker's normal form (KNF) Kronecker ~1890
- The KNF is similar to the JNF, but with four different blocks
- For $m=2$ the classification is thus given by finitely many discrete parameters $=$ sizes, types of blocks; and \leq one continuous parameter $=$ eigenvalue

Matrix problems

- Equivalence has a nice solution for $m=1$ and is doable for $m=2$
- For $m=3$ this is extremely difficult

Matrix problems

$$
h=2
$$

Matrix problems

SKETCH OF A MEMOIR ON ELIMINATION, TRANSFORMATION,

 AND CANONICAL FORMS.1851

By J. J. Sylyester, M.A., F.R.S.

I now proceed to the consideration of the more peculiar branch of my inquiry, which is as to the mode of reducing Algebraical Functions to their simplest and most symmetrical, or as my admirable friend M. Hermite well proposes to call them, their Canonical forms. Every quadratic func-

Sylvester invented a great number of mathematical terms such as "matrix" (in 1850), ${ }^{[12]}$ "graph" (in the sense of network) ${ }^{[13]}$ and "discriminant". [14]

- Whenever there is a nice solution, then this was done quite a while ago $\ll \mathbf{1 9 0 0}$
- Next A different approach to these problems ~1950

Quivers and matrices

$$
\begin{aligned}
& m=1:(1) \longrightarrow 2 \\
& m=2:(1) \Longrightarrow 2 \\
& m=3: \longrightarrow(2)
\end{aligned}
$$

- The problem of simultaneous equivalence can be associated to a quiver
- Quiver $=($ finite $)$ directed graph "It contains arrows"
- One then can formally prove that $m=3$ is "impossible"

Quivers and matrices

$$
\begin{aligned}
& m=1:(1) \longrightarrow 2 \\
& m=2:(1) \Longrightarrow 2 \\
& m=3: \longrightarrow(1)
\end{aligned}
$$

- The problem of simultaneous equivalence can be associated to a quiver
- Quiver $=($ finite $)$ directed graph "It contains arrows"
- One then can formally prove that $m=3$ is "impossible"

Quivers and matrices

- A representation of a quiver ("a matrix problem for a quiver") is:
(i) A choice of a vector space for each vertex
(ii) A choice of a linear map for each edge

Quivers and matrices

A matrix problem associated to a connected quiver Q without oriented cycles is...
(1) ...finite if and only if \bar{Q} is of ADE type
(2) ...infinite tame if and only if \bar{Q} is of affine ADE type
(3) ...wild otherwise

- Finite = classification is given by finitely many discrete parameters; infinite tame $=$ finitely many discrete and one continuous parameter; wild $=$ forget it
- $Q=$ the quiver; $\bar{Q}=$ the underlying graph

Quivers and matrices

$\mathrm{A}_{\mathrm{n}} \mathrm{O}-\mathrm{O}-\mathrm{O}-----\mathrm{O}-\mathrm{O}$

- ADE graphs and friends appear everywhere
- Left The ADE types; Right The affine ADE types

Quivers and matrices

$$
\begin{aligned}
& m=0: \\
& m=1 \\
& m=2:
\end{aligned}
$$

- The problem of simultaneous similarity can be associated to a quiver
- Quiver $=($ finite $)$ directed graph "It contains arrows"
- One then can formally prove that $m=2$ is "impossible"

Quivers and matrices

$$
\begin{aligned}
& m=0: \\
& m=1: 1 \\
& m=2:
\end{aligned}
$$

The classification in this case is not as nice
I comment on that later

- The problem of simultaneous similarity can be associated to a quiver
- Quiver $=($ finite $)$ directed graph "It contains arrows"
- One then can formally prove that $m=2$ is "impossible"

Quiver representations

- A representation of the vector space quiver is a choice of a vector space
- A representation of the Jordan quiver is a choice of a vector space and a linear map
- A representation of the rank quiver is a choice of two vector spaces and a linear map between them
- A representation of the Kronecker quiver is a choice of two vector spaces and two linear maps between them

Quiver representations

Goal

Design representations and equivalence of these representations such that the indecomposables mod iso correspond to the Jordan-type blocks

A representation of the Kronecker quiver is a choice of two vector spaces and two linear maps between them

Quiver representations

- A morphism of quiver representations is a collection of linear maps satisfying the expected commuting diagram
- Equivalence is then defined with respect to isomorphism

Quiver representations

$$
M
$$

$$
k^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]} k^{2} \longleftrightarrow{ }^{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} k .
$$

Then the direct sum $M \oplus M^{\prime}$ is the representation

$$
k \oplus k^{2} \xrightarrow{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]} k \oplus k^{2} \longleftrightarrow \xrightarrow{\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]} 0 \oplus k ;
$$

- Lemma/Fact Quiver representations form a Krull-Schmidt abelian category so the usual Yoga works
- Goal Classify simple and/or indecomposable representations

Picture stolen from Geordie Williamson

Simple $=$ no substructure, indecomposable $=M \cong X \oplus Y$ implies $X \cong 0$ or $Y \cong 0$ These are very different!

$$
k \oplus k^{2} \xrightarrow{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]} k \oplus k^{2} \longleftrightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right][0 \oplus
$$

- Lemma/Fact Quiver representations form a Krull-Schmidt abelian category so the usual Yoga works
- Goal Classify simple and/or indecomposable representations

Picture stolen from Geordie Williamson
Simple $=$ no substructure, indecomposable $=M \cong X \oplus Y$ implies $X \cong 0$ or $Y \cong 0$ These are very different!

Semisimple \Leftrightarrow simple=indecomposable \Leftrightarrow the quiver has no edges Semisimplicity is rare

$$
k \oplus k^{2} \xrightarrow{\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}+k \oplus k^{2} \leftarrow\left[\begin{array}{lll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

- Lemma/Fact Quiver representations form a Krull-Schmidt abelian category so the usual Yoga works
- Goal Classify simple and/or indecomposable representations

Picture stolen from Geordie Williamson
Simple $=$ no substructure, indecomposable $=M \cong X \oplus Y$ implies $X \cong 0$ or $Y \cong 0$ These are very different!

Semisimple \Leftrightarrow simple=indecomposable \Leftrightarrow the quiver has no edges Semisimplicity is rare

Example

The Jordan quiver has a one parameter family of 1d simples (up to iso - I drop this) But arbitrary dim. indecomposables $\leadsto>$ Jordan blocks

$$
\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \ddots & 0 & 0 \\
0 & 0 & \lambda & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 1 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

Quiver representations

- Lemma/Fact For any fdim algebra $A \exists$ a quiver Q and an exact functor $A \operatorname{Rep} \rightarrow Q \operatorname{Rep}$ preserving inde.
- The point Quiver representations are really easy
- Example (fdim case) Simples $\rightsquigarrow \rightarrow$ one vertex, inde. projective $\rightsquigarrow \rightarrow$ outgoing, inde. injective $\rightsquigarrow>$ incoming; \# simple/inde. proj./inde. inj. = \# vertices

Quiver representations

- Theorem (Yoshii $\boldsymbol{\sim}$ 1956, Gabriel $\boldsymbol{\sim}$ 1972) A connected quiver Q without oriented cycles has finitely many indecomposables if and only if \bar{Q} is of ADE type
- In this case \# indecomposables = \# positive roots Discrete parameters!

Quiver representations

The rank quiver has three indecomposables
M corresponds to the rank parameter

- Theorem (Yoshii $\boldsymbol{\sim}$ 1956, Gabriel $\boldsymbol{\sim}$ 1972) A connected quiver Q without oriented cycles has finitely many indecomposables if and only if \bar{Q} is of ADE type
- In this case \# indecomposables = \# positive roots Discrete parameters!

Quiver representations

Example (rank quiver)

The rank quiver has three indecomposables
M corresponds to the rank parameter

Example (type A)

Indecomposables can be identified with consecutive strings of $0=0$ and $1=\mathbb{C}$ e.g. $100,010,001,110,011$ and 111

- In this case \# indecomposables = \# positive roots Discrete parameters!

Quiver representations

Dlab-Ringel ~1973 found a generalization to all finite Dynkin types
Heng ~2023 found a generalization to all finite Coxeter types
$\mathrm{E}_{8} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

- Theorem (Yoshii $\boldsymbol{\sim}$ 1956, Gabriel $\boldsymbol{\sim}$ 1972) A connected quiver Q without oriented cycles has finitely many indecomposables if and only if \bar{Q} is of ADE type
- In this case \# indecomposables = \# positive roots

Quiver representations

- Theorem (Donovan-Freislich, Nazarova ~1973) A (usual adjectives) quiver Q has tame rep type if and only if \bar{Q} is of finite or affine ADE type
- Tame = indecomposables can form countably many one-parameter families; infinite tame $=$ tame but not finite

Example (Kronecker quiver)

Indecomposables of the Kronecker quiver $\leftrightarrow \longrightarrow$ Class $1 \quad \mathbb{C}^{n} \rightrightarrows \mathbb{C}^{n+1}$ with $\left(i d_{n}, 0\right)$ and L_{n}

Class $2 \mathbb{C}^{n+1} \rightrightarrows \mathbb{C}^{n}$ with $\left(i d_{n}, 0\right)^{T}$ and L_{n}^{T}
Class $3 \mathbb{C}^{n} \rightrightarrows \mathbb{C}^{n}$ with $i d_{n}$ and $J_{n}(\lambda)$
$J_{n}(\lambda)=\left(\begin{array}{llll}\lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda\end{array}\right), \quad i d_{n}=\left(\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right.$

Quiver representations

- ADE Theorem \Rightarrow the vector space quiver has inde. given by \mathbb{C}
- The Jordan quiver has inde. given by Jordan blocks
- ADE Theorem \Rightarrow the rank quiver has inde. given by $\mathbb{C} \rightarrow 0$ with zero, $0 \rightarrow \mathbb{C}$ with zero and $\mathbb{C} \rightarrow \mathbb{C}$ with identity
- Affine ADE Theorem \Rightarrow the Kronecker quiver has inde. given as before

Quiver representations

Quiver representations

- Subspace problem Classify $V_{1}, \ldots, V_{m} \subset V_{0}$ up to $\left(V_{1}, \ldots, V_{m}\right) \equiv\left(W_{1}, \ldots, W_{m}\right)$ if \exists iso. $f: V_{0} \rightarrow V_{0}$ with $f\left(V_{i}\right)=W_{i}$
- Above $m=3,4,5$ as quiver problems

Quiver representations

We get:

3 subspace problem Discrete

The 3 -subspace problem is of finite representation type $\left(D_{4}\right)$; the indecomposables are (up to "permutation of legs"):

4 subspace problem One parameter
5 subspace problem Wild (for now: wild= $=$ tame)

- Above $m=3,4,5$ as quiver problems

Quiver representations

Problem	Classification	Quiver
Vector space	Discrete	(1)
Equivalence	One parameter	(1) $>$
Double equivalence	Wild	\bigcirc (1)
Similarity	Discrete	(1) \longrightarrow 2
Double similarity	One parameter	(1) $\Longrightarrow 2$
Triple similarity	Wild	(1) \Longrightarrow (2)
3 subspace	Discrete	a
4 subspace	One parameter	$\begin{aligned} & \text { (2), (1) } \\ & \text { (4) }(0){ }^{(1)} \end{aligned}$
5 subspace	Wild	

Dichotomy (or trichotomy, depending on who you ask)

- Q has wild representation type if, for each fdim algebra A, there exists an exact functor $\mathcal{I}: A \operatorname{Rep} \rightarrow Q \operatorname{Rep}$ preserving inde. Similar to NP complete
- Classifying inde. Q-reps for wild Q implies that we can do the same for any finite dimensional algebra

Dichotomy (or trichotomy, depending on who you ask)

- Q has wild representation type if, for each fim algebra A, there exists an exact functor $\mathcal{I}:$ ARep \rightarrow QRep preserving inde.

Similar to NP complete

- Classifying inde. Q-reps for wild Q implies that we can do the same for any finite dimensional algebra

Dichotomy (or trichotomy, depending on who you ask)

- Theorem (Drozd ~1977) A quiver is either tame or wild
- Theorem (Drozd ~1977) A finite dimensional algebra is either tame or wild

Dichotomy (or trichotomy, depending on who you ask)

Example (Higman ~1953)

$\mathbb{K}[G](G$ a finite group and $\mathbb{K}=\overline{\mathbb{K}}$ of char $p, p \mid \# G)$ is finite
\Leftrightarrow
the p-Sylow subgroups of G are cyclic

Example (Bondarenko-Drozd ~1977)

$\mathbb{K}[G](G$ a finite group and $\mathbb{K}=\overline{\mathbb{K}}$ of char $p, p \mid \# G)$ is infinite tame \Leftrightarrow
$p=2$ and the 2-Sylow subgroups of G are dihedral, semidihedral or generalized quaternion

Essentially nothing is tame

- Theorem (Drozd ~1977) A quiver is either tame or wild
- Theorem (Drozd ~1977) A finite dimensional algebra is either tame or wild

Dichotomy (or trichotomy, depending on who you ask)

Example (Higman ~1953)

$\mathbb{K}[G](G$ a finite group and $\mathbb{K}=\overline{\mathbb{K}}$ of char $p, p \mid \# G)$ is finite
\Leftrightarrow
the p-Sylow subgroups of G are cyclic

Example (Bondarenko-Drozd ~1977)

$\mathbb{K}[G](G$ a finite group and $\mathbb{K}=\overline{\mathbb{K}}$ of char $p, p \mid \# G)$ is infinite tame \Leftrightarrow
$p=2$ and the 2-Sylow subgroups of G are dihedral, semidihedral or generalized quaternion

Essentially nothing is tame

Example

The symmetric group $S_{n}=\operatorname{Aut}(\{1, \ldots, n\})$ is finite $/ \mathbb{C}$

$$
\text { Example (Putcha } \sim 1997 \text {) }
$$

- Theorem (Drozd ~1917) A finite dimensional algebra is either tame or wild

Dichotomy (or trichotomy, depending on who you ask)

The infinite setting gets much more difficult (and that is why its skipped)

Example

(1) $)$ is tame and TAME

Example (Ringel ~1979)

Capital spelling $=$ same as before but including ∞-dim. reps

Classifying inde. of the Jordan quiver is the same as classifying them for $\mathbb{C}[X]$ and $\mathbb{C}[X]$ is a PID so $M \cong(\text { free })_{i} \oplus(\text { fdim })_{j}$

- Theorem (Drozd ~1977) A quiver is either tame or wild
- Theorem (Drozd ~1977) A finite dimensional algebra is either tame or wild

Dichotomy (or trichotomy, depending on who you ask)

- As above, this is not the end of the line
- Theorem (Belitskii-Sergeichuk ~2007) Classifying trilinear forms contains the problem of classifying inde. of any finite dimensional algebra, but not vice versa More like NP-hard

Dichotomy (or trichotomy, depending on who you ask)

bilinear: $\operatorname{cap}=\int: \mathrm{x} \otimes \mathrm{x} \rightarrow \mathbb{1}$, trilinear: tup $=\prod \mathrm{x} \otimes \mathrm{x} \otimes \mathrm{x} \rightarrow \mathbb{1}$
Theorem (Horn-Sergeichuk ~2006, but parts are much older)
Classification of bilinear forms \Leftrightarrow classification of matrix congruence $A=P^{\top} B P$ with normal form pieces given by $J_{n}(0)$ and

$$
\mathrm{G}_{n}=\left(\begin{array}{cc}
\\
& . \dot{(-1)^{n+1}}(-1)^{n} \\
1-1
\end{array}\right), \quad \mathrm{H}_{2 n}(\lambda)=\left(\begin{array}{c|c}
0 & i d_{n} \\
\hline J_{n}(\lambda) & 0
\end{array}\right)
$$

The trilinear analog is beyond hopeless

- As above, this is not the end of the line
- Theorem (Belitskii-Sergeichuk ~2007) Classifying trilinear forms contains the problem of classifying inde. of any finite dimensional algebra, but not vice versa More like NP-hard

- Task Clasify vector spaces up to isomorphism
- Solution Thecerm (folklare < 1900) The dimmenien deveremines the vector spaca
- Thus, vector spaces are classified by one discrete parameter

Matrix problems

$$
\begin{aligned}
& J_{N}(\lambda)=\left(\begin{array}{llll}
\lambda & 1 & & \\
& - & & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right), \operatorname{sid}_{n}=\left(\begin{array}{llll}
1 & & & \\
& & & \\
& & & \\
& & & 1
\end{array}\right) \\
& L_{e}=\left(\begin{array}{lllll}
0 & 1 & & \\
& 1 & & \\
& & 0 & 1 \\
& & & 0 & 1
\end{array}\right), L_{r}^{\zeta}=\left(\begin{array}{lllll}
0 & 1 & & \\
& 1 & & \\
& & 0 & 1 \\
& & & 0 & 1
\end{array}\right)
\end{aligned}
$$

- For m-2 one has Kroneche's nomal form (KNF) Kronecker ~ 1890
- The KNF is similas to the JNF, but with four different blocks
- For $m-2$ the classification is thus given by finitely many diccrete

aiver representation

-Theorem (Donovan-Freislich, Nazarova ~1973) A (usual adjectives) quiver Q has tame rep type if and only if Q is of finite or affine ADE type
- Tame - indecomposables can form countably many one-parameter families infinite tame - tame but not finite
Matrix problems

- Thus, simiarity is classifed by
one discrete parameter - size of the Jocrdan block one continuous parameter - eigenvalue of the Jocrdan block

Quiver representations

Problem	Classification	Quiver
Vector space	Discrete	(1)
Equivalence	One parameter	(1) ${ }^{\text {a }}$
Double equivalence	Wild	C(1)?
Similarity	Discrete	(1) \longrightarrow (2)
Double similarity	One parameter	(1) \Longrightarrow (2)
Triple similarity	Wild	(1) $\Longrightarrow(2)$
3 subspace	Discrete	8
4 subspace	One parameter	
5 subspace	Wild	9

- Mind the gapl

Matrix problems

- Theorem (folkdore \&1900) Two matrices are equivalent if and only if they have the same nameless/Smith normal form as above
- Thus, equivalence for $m-1$ is classified by:

Quiver representations

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}} \mathrm{O-O}-\mathrm{O} \cdot \mathrm{Cl}-\mathrm{O-O} \\
& \mathrm{D}_{\mathrm{n}} \mathrm{O}-\mathrm{O} \cdots \mathrm{o}_{0}^{\circ} \\
& \mathrm{E}_{6} \mathrm{O}-0-0-000 \\
& \mathrm{E}_{7} \mathrm{O}-0-0 \mathrm{O}-\mathrm{O}-\mathrm{O}=0 \\
& \mathrm{E}_{8} \mathrm{O}-\mathrm{O}-\mathrm{O}-0-\mathrm{O}=0
\end{aligned}
$$

- Theorem (Yoshii ~1956, Gatriel ~1972) A connected quiver Q without orimeted gecles has finituly many indecomposabies if and only it \bar{Q} is of ADE type
- In this case \# indecomposables - \#pesitwe roots Discrete pirameters

Dichotomy (or trichotomy. depending an who you ask)

- Theorem (Drozd ~ 1977) A quiver is either tame or wild

Theorem (Droad ~ 1977) A finite dimensional algetra is either tame or wild

There is still much to do

- Task Clasify vector spaces up to isomorphism
- Solution Thecerm (folklare < 1900) The dimmenien deveremines the vector spaca
- This, vector spaces are classified by one discrete parameter

Matrix problems

$$
\begin{aligned}
& J_{N}(\lambda)=\left(\begin{array}{llll}
\lambda & 1 & & \\
& - & & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right), \operatorname{sid}_{n}=\left(\begin{array}{llll}
1 & & & \\
& & & \\
& & & \\
& & & 1
\end{array}\right) \\
& L_{=}=\left(\begin{array}{lllll}
0 & 1 & & & \\
& & & & \\
& & 0 & 1 \\
& & & 0 & 1
\end{array}\right), L_{r}^{?}=\left(\begin{array}{lllll}
0 & 1 & & & \\
& 1 & & & \\
& & 0 & 1 \\
& & & 0 & 1
\end{array}\right)
\end{aligned}
$$

- For m-2 one has Kroneche's nomal form (KNF) Kronecker ~ 1890
- The KNF is similas to the JNF, but with four different blocks
- For $m-2$ the classification is thus given by finitely many diccrete

uiver representations

-Theorem (Donovan-Freislich, Nazarova ~1973) A (usual adjectives) quiver Q has tame rep type if and only if Q is of finite or affine ADE type
- Tame - indecomposables can form countably many one-parameter families infinite tame - tame but not finite

Matrix problems

- Thus, simiarity is classifed by
one discrete parameter - size of the Jocrdan block one continuous parameter - eigenvalue of the Jocrdan block

Quiver representations

Problem	Classification	Quiver
Vector space	Discrete	(1)
Equivalence	One parameter	(1) 0
Double equivalence	Wild	c(1)P
Similarity	Discrete	(1) \longrightarrow (2)
Double similarity	One parameter	(1) \Longrightarrow (2)
Triple similarity	Wild	(1) $\Longrightarrow(2)$
3 subspace	Discrete	8
4 subspace	One parameter	58
5 subspace	Wild	$\frac{1}{96}$

- Mind the gap!

Matrix problems

-Theorem (folklore \&1900) Two matrices are equivalent if and only if they have the same nameless/Smith normal form as above

- Thus, equivalence for $m-1$ is classified by

Quiver representations

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}} \mathrm{O-O}-\mathrm{O} \cdot \mathrm{Cl}-\mathrm{O-O} \\
& \mathrm{D}_{\mathrm{n}} \mathrm{O}-\mathrm{O} \cdots \mathrm{o}_{\circ}^{\circ} \\
& \mathrm{E}_{6} \mathrm{O}-0-0-000 \\
& \mathrm{E}_{70} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}=0 \\
& \mathrm{E}_{8} \mathrm{O}-\mathrm{O}-\mathrm{O}-0-\mathrm{O}=0
\end{aligned}
$$

- Theorem (Yoshii ~ 1956, Gabriel ~ 1972) A connected quiver Q without

- In this case \#\# indecomposables - \# pasitive roots Discrete paramiteors

Dichotomy (or trichotomy. depending an who you ask)

- Theorem (Drozd ~ 1977) A quiver is either tame or wild

Theorem (Drozd ~ 1977) A finite dimensional algetra is either tame or wild

Thanks for your attention!

