Three colors suffice

Or: SO3 webs in action

I report on work of Tait, Temperley-Lieb, Yamada \& Turaev, and many more

Tait's webs

- Task Color countries such that two countries that share a border get different colors
- Above A four coloring of the world (counting the ocean as a country)
- Question How many colors are needed when varying over all maps?

Tait's webs It is easy to see that one needs at least four colors:

Tait's webs

- Guthrie ~1852 was coloring counties of England
- They conjectured that only four colors are needed and wrote De Morgan
- De Morgan popularized the question

Tait's webs

The 4CT ("four colors suffice") was the first major theorem with a computer assisted proof

Appel-Haken's proof ~ 1976 has 770ish pages with 500 pages of "cases to check"
The book is from $\sim \mathbf{1 9 8 9}$

CONTEMPORARY MATHEMATICS

98

Every Planar Map is Four Colorable

Kenneth Appel and

Today A different proof due to Tait \& Temperley-Lieb \& Yamada \& Turaev Spoiler The proof also has a computer component

- De Morgan popularized the question

How to go to graphs? You know the drill:
Tait's

Here is an example why this is actually cool:

Tait's webs

- Math formulation Every planar graph is four vertex-colorable
- Tait $\mathbf{\sim 1 8 8 0}$ We can restrict to triangulated planar graphs
-Why? We can keep the coloring after removing edges!

Tait's webs

- Tait ~1880 We have

4CT (vertices) \Leftrightarrow triangulated 4CT (vertices) \Leftrightarrow trivalent 4CT (faces)

- Why? The dual of a triangulated planar graph is a trivalent planar graph

Tait's webs Tait's webs $=$ trivalent planar graphs (the name came later)

Examples

(faces)
ar graph

Tait's webs

3 edge coloring :

- 3CT is the statement that every trivalent planar bridgeless graph admits a 3 edge coloring
- Tait ~1880 We have

$$
4 \mathrm{CT} \text { (vertices) } \Leftrightarrow 3 \mathrm{CT} \text { (edges) }
$$

Proof sketch: 4CT \Rightarrow 3CT

Identify the 4 colors with elements of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and use the rule $(a)+(b)=(a+b)$:

$(1,0)+(0,1)=(1,1)$

$$
(0,0)+(0,1)=(0,1)
$$

Proof sketch: $4 C T \Leftarrow 3 C T$

Identify the 4 colors with elements of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ get "two-color subgraphs" color and overlay them and use the rule $(a)+(b)=(a+b)$:

Temperley-Lieb's webs

rels:
$\bigcirc=0, \quad 1-g o n$

- Define a category Web(SO3) with: Objects $=\bullet{ }^{\otimes n}$; Morphisms $=$ everything you can get from a trivalent vertex
- Make it \mathbb{Z}-linear and quotient by the relations above + isotopies

We define this as a monoidal category with
$0=$ vertical stacking, $\otimes=$ horizontal juxtaposition

Isotopy relations are of the form

and the interesting relations are the combinatorial ones

Temperley-Lieb's webs

$$
2,3,4,5 \text {-gons } \bigodot^{1}=2
$$

- The above relations hold
- Upshot Every web evaluates to a number in Web(SO3) Web evaluation
- Essentially done by Temperley-Lieb ~1971 The web evaluation counts the number of 3-colorings

Temperley-Lieb's Why are 0-5 gon relations enough? Well:

$$
\text { Lemma Every web contains a } \leq 5 \text { gon }
$$

Proof Use the Euler characteristic

Web evaluation
This is a closed web!

valuation counts the number of 3 -colorings

Temperley-Lieb's webs

$$
2,3,4,5 \text {-gons } \bigcirc=2
$$

Why does the evaluation count colorings? Well:
Lemma The relations preserve the number of colors
Proof Color the boundary and check, e.g.:

Temperley-Lieb's webs

Example

We have indeed twelve 3-colorings:

- Essentially done by Temperley-Lieb ~1971 The web evaluation counts the number of 3 -colorings

Temperley-Lieb's webs

2,3,4,5-gons

- Essentially done by Temperley-Lieb ~ 1971 4CT \Leftrightarrow every webs evaluates to a nonzero scalar
- The 4CT is then almost immediately true but there is a sign in the pentagon relation, and there might be cancellations

Temperley-Lieb's webs

Two questions remain:
Question 1 Can we beef this up into a proof of $4 C T$?
Question 2 Where do these relations come from?

$$
\begin{aligned}
2,3,4,5-\text { gons } Q & =21 \\
A & =\lambda
\end{aligned}
$$

Essen
to an
The relation, and there might be cancellations

Yamada \& Turaev's webs

- $\mathrm{SO} 3=$ rotations of \mathbb{C}^{3}
- The real version is topologically $\mathrm{SO} 3 \cong S^{2}$ /antipodal points
- SO 3 acts on $\mathrm{X}=\mathbb{C}^{3}$ by matrices

Yamada \& Turaev's webs

$$
\bullet \mapsto \mathrm{X}
$$

$\longmapsto \mapsto$ inclusion of $\mathbb{1}$ into $X \otimes X$

$$
\begin{array}{ll}
\operatorname{cap}= \\
\operatorname{tup}= & \mathrm{X} \otimes \mathrm{X} \rightarrow \mathbb{1}, \\
: \mathrm{X} \otimes \mathrm{X} \otimes \mathrm{X} \rightarrow \mathbb{1}, & \text { tdown }= \\
: \mathbb{1} \rightarrow \mathrm{X} \otimes \mathrm{X}, \\
: \mathbb{1} \rightarrow \mathrm{X} \otimes \mathrm{X} \otimes \mathrm{X}
\end{array}
$$

- Essentially done by Yamada \& Turaev ~1989 We have $\mathbf{W e b}(\mathrm{SO} 3) \cong \boldsymbol{\operatorname { R e p }}(\mathrm{SO} 3)$ using the above
- Equivalence of categories = they encode the same information
$\operatorname{Rep}(\mathrm{SO} 3)=\mathrm{fd}$ reps of SO 3 over \mathbb{C}

Yamada Upshot Under $\mathbf{W e b}(\mathrm{SO} 3) \cong \operatorname{Rep}(\mathrm{SO} 3)$ the relations, e.g.

$\bigcirc=0$, 1-gon

are equations between SO3-equivariant matrices
Example The "I $=\mathrm{H}$ " relation is an equation of four 9 -by- 9 matrices

Yamada \& Turaev's webs

- Recall that we want to show positivity but the pentagon has a sign
- Observation Closing the pentagon "minimally" evaluates to a positive number

Yamada \& Turaev's webs

An unavoidable configuration:

- An Euler characteristic argument shows that there are finitely many "unavoidable configurations" one needs to check similarly
- There are finitely many "minimally closures" for each one of them

Yamada \& Turapv's wehs

Theorem

(A) 4CT holds $\Leftrightarrow(B)$ finitely many configurations evaluate to a positive number One can computer verify that (B) holds (too many to do by hand)

- There are finitely many "minimally closures" for each one of them

Yamada \& Turaev's wehs

Khovanov-Kuperberg ~1999 essentially showed that 3-colorings correspond to a base-change matrix between a standard basis and a dual canonical basis in $\operatorname{Rep}(\mathrm{SO} 3)$

Example
$\left\{v_{1}, v_{2}, v_{3}\right\}$ basis of X
Identify: $\left|=v_{1},\left|=v_{2},\right|=v_{3}\right.$
un $v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+v_{3} \otimes v_{3} \in \mathrm{X} \otimes \mathrm{X}$
$t h s$ scalar in front of $v_{1} \otimes v_{1}$
$\leadsto \rightarrow$ scalar in front of $v_{2} \otimes v_{2}$
\longleftrightarrow scalar in front of $v_{3} \otimes v_{3}$
Theorem

- An
(A) 4CT holds \Leftrightarrow (C) finitely many inequalities of matrix entries

One can computer verify that (C) holds (too many to do by hand)

- There are finitely many "minimally closures" for each one of them

- Above A four coloring of the world (counting the ocean 2 a country)
- Question How many colors are neded when vaning over all maps?
 Tait's webs

- 3CT is the statement that every trivient planar bridgeless graph idmits a 3
edge coloring
Ton ~180
4CT (verices) $=3$ 3CT (edges)

Tait's webs

- Guthrie ~1952 was coloring countics of England
- They conjectured that anly four colors are needed and wrote De Morgem
- De Margan popularized the question

Tait's webs

- Tait ~ 1880 We have

4CT (verticses) ψ triangulated 4CT (verices) \rightarrow trivalent 4CT (faces)

- Why? The dual of a triangulated planar graph is a trivalent planar graph
\square
Temperley-Lieb's webs
2,3,4,5-gons \bigcirc^{-2}

- The above relations hold
- Upahot Every web cualuates to a number in Web(SO3) Web evaluation
- Essentially done by Temperiey-Lieb ~ 1971 The web evaluation counts the number of 3 -colocrings

Yamada \& Turaev's webs

H-

- Recal that we want to show positivity but the pentagon has a dign
- Observation Closing the pentagon "minimally" evaluates to a positive number

There is still much to do...

- Above A four coloring of the world (counting the ocean 2 a country)
- Question How many colors are neded when vaning over all maps?
 Tait's webs

- 3CT is the statement that every trivient planar bridgeless graph idmits a 3
edge coloring
Tin ~180
$4 C T$ (vertices) - 3 CT (edges)

Tait's webs

- Guthrie ~1952 was coloring countics of England
- They conjectured that anly four colors are needed and wrote De Morgzen
- De Mcrgan popularized the question

Tait's webs

- Tait ~ 1880 We have

4CT (verticses) ψ triangulated 4CT (verices) \rightarrow trivalent 4CT (faces)

- Why? The dual of a triangulated planar graph is a trivalent planar graph
\square
Temperley-Lieb's webs
2,3,4,5-gons \bigcirc^{-2}

- The above relations hold
- Uphot Every web evaluates to a number in Web(SO3) Web evaluation
- Essentially done by Temperley-Lieb ~ 1971 The web evaluation counts the number of 3 -colocrings.

Yamada \& Turaev's webs

H-

- Recal that we want to show positivity but the pentagon has a dign
- Observation Closing the pentagon "minimally" evaluates to a positive number

Thanks for your attention!

