
MAGMA IN A NUTSHELL

DON TAYLOR AND DANIEL TUBBENHAUER

Abstract. These are lecture notes from the “MAGMA Mondays Workshop 2023” held at the
University of Sydney.

Contents

1. Introduction 2
2. MAGMA – what, why, how? 2
3. Lecture 0 – Types, conditionals and loops 5
4. Lecture 1 – A few little games and finite groups 16
5. Lecture 2 – Group theory examples 31
6. Lecture 3 – Lattices and Lie theory 42
7. Lecture 4 – Representation theory of finite dimensional algebras 53
8. Lecture 5 – Noncommutative algebras 73
9. A few additional examples 81
References 93

2020 Mathematics Subject Classification. Primary 18M30, 20C08; Secondary 05E10, 17B10, 18N25.
Key words and phrases. KLR and weighted KLRW algebras, (sandwich) cellular algebras, crystal graphs.

1

2 D. TAYLOR AND D. TUBBENHAUER

1. Introduction

These lecture notes are an introduction to MAGMA. They grew out of the “MAGMA Mondays
Workshop 2023” held at the University of Sydney. We assume no knowledge of MAGMA or any
other computer algebra system (of course, having background knowledge will not hurt), and
our examples are chosen to illustrate language and algorithmic features as simply as possible.

Remark 1.1. There is a YouTube channel associated to these lecture notes with videos of
the lectures, see [Tub23]. 3

We are not trying to give a comprehensive coverage of MAGMA, but we have rather several
selected topics that we will explore. After a bit of background on the language, we will cover
the combinatorics of groups and related objects. Our goal is to introduce the reader to the
role MAGMA can play in mathematical research.

References that accomplish this text are:

(a) The Handbook of MAGMA Functions (short: the handbook) [BC23].

(b) Discovering MAGMA via examples [BC06].

(c) An Introduction to Algebraic Programming with MAGMA [CP01].

(d) And shorter texts such as [Cra08].

Remark 1.2. The reader can directly copy the code given below and try themselves in the
online calculator. Conveniently, there is no need to remove the greater symbols:

This is highly encouraged. 3

Acknowledgments. We like to thank Bregje Pauwels and Alexander Sherman who organized
“MAGMA Mondays Workshop 2023”. You did a wonderful job.

2. MAGMA – what, why, how?

We now briefly explain the main features of MAGMA.

2A. What? MAGMA is a computer algebra system designed to solve problems in algebra,
number theory, geometry and combinatorics. It was developed by Cannon and team at the
University of Sydney and version 1 was first released in August 1993.

Remark 2A.1. Computer algebra system perform exact calculations which go under the
umbrella of symbolic computation : mathematical expressions are manipulated in a way
similar to the traditional manual computations. This should not be confused with numerical
computations; in particular, one can use MAGMA output in papers or theses without loosing
the exactness. 3

MAGMA IN A NUTSHELL 3

The name “MAGMA” comes from Bourbaki (and Serre) where it is used to denote a set with
one or more binary operations without any additional axioms. In their language a magma
is the most basic of algebraic structures.

Today, MAGMA is a huge system with several thousand pages of documentation. MAGMA can
be used both interactively and as a programming language. The core of MAGMA is programmed
in C but a large part of its functionality resides in package files written in the MAGMA user
language.

The design principles underpinning both the user language and system architecture are
based on ideas from universal algebra and category theory. The MAGMA language attempts to
approximate the usual mathematical modes of thought and notation as closely as possible. In
particular, the principal constructs in the user language are sets, algebraic structures such as
groups, rings and fields and morphisms.

2B. Why? The main features of MAGMA are (this is taken from the handbook [BC23]):

▶ Algebraic Design Philosophy The design principles underpinning both the user
language and system architecture are based on ideas from universal algebra and cat-
egory theory. The language attempts to approximate as closely as possible the usual
mathematical modes of thought and notation. In particular, the principal constructs
in the user language are set, (algebraic) structure and morphism.

▶ Explicit Typing The user is required to explicitly define most of the algebraic struc-
tures in which calculations are to take place. Each object arising in the computation
is then defined in terms of these structures.

▶ Integration The facilities for each area are designed in a similar manner using generic
constructors wherever possible. The uniform design makes it a simple matter to pro-
gram calculations that span different classes of mathematical structures or which in-
volve the interaction of structures.

▶ Relationships MAGMA provides a mechanism that manages “relationships” between
complex bodies of information. For example, when substructures and quotient struc-
tures are created by the system, the natural homomorphisms that arise are always
stored. These are then used to support automatic coercion between parent and child
structures.

▶ Mathematical Databases MAGMA has access to a large number of databases contain-
ing information that may be used in searches for interesting examples or which form
an integral part of certain algorithms. Examples of current databases include factor-
izations of integers of the form pn± 1, p a prime; modular equations; strongly regular
graphs; maximal subgroups of simple groups; integral lattices; K3 surfaces; best known
linear codes and many others.

▶ Performance The intention is that MAGMA provide the best possible performance both
in terms of the algorithms used and their implementation. The design philosophy
permits the kernel implementor to choose optimal data structures at the machine
level. Most of the major algorithms currently installed in the MAGMA kernel are state-
of-the-art and give performance similar to, or better than, specialized programs.

What makes MAGMA also attractive for the working mathematician are many build in
functions spanning the following fields:

(a) The MAGMA Language and System;

(b) Groups;

(c) Semigroups and monoids;

(d) Rings and fields;

(e) Commutative rings;

4 D. TAYLOR AND D. TUBBENHAUER

(f) Linear algebra and module theory;

(g) Lattices and quadratic forms;

(h) Algebras;

(i) Representation theory;

(j) Homological algebra;

(k) Lie theory;

(l) Algebraic geometry and commutative algebra;

(m) Arithmetic geometry and modular arithmetic geometry;

(n) Combinatorics and graph theory;

(o) Finite incidence geometry;

(p) Differential Galois theory;

(q) Error-correcting codes;

(r) Cryptography;

(s) Mathematical databases.

Thus, MAGMA spans a wide range of topics in algebra and combinatorics.
MAGMA is an imperative, call by value, lexically scoped, dynamically typed pro-

gramming language , with an essentially functional subset. This means:

▶ An imperative language manipulates data directly by assignment statements and con-
trol structures such as loops and if-else constructions. You can do this in MAGMA.

▶ A functional programming language achieves its goals by composing functions without
side-effects. In MAGMA you can do this too.

▶ Functions are a fundamental part of MAGMA programming and they are first-class. That
is, they can be assigned to variables, stored in data structures and returned from other
functions. They can invoke themselves recursively and participate in mutual recursion.

▶ MAGMA also has procedures and unlike a function a procedure does not return a value
but it may modify its arguments (provided they are declared as reference variables).

2C. How? MAGMA is a non-commercial system, but the costs (such as preparation of user
documentation, the fixing of bugs, and the provision of of user support) need to be recovered.
So MAGMA is non-commercial but not free , and the distribution is organized on a sub-
scription basis. In order to get MAGMA on your machine use this site: http://magma.maths.
usyd.edu.au/magma/ordering/

Free, very useful, and completely enough for this course, is the online calculator http:

//magma.maths.usyd.edu.au/calc/:

http://magma.maths.usyd.edu.au/magma/ordering/
http://magma.maths.usyd.edu.au/magma/ordering/
http://magma.maths.usyd.edu.au/calc/
http://magma.maths.usyd.edu.au/calc/

MAGMA IN A NUTSHELL 5

There are mild restriction: calculations are restricted to 120 seconds, Input is limited to 50000
bytes, and you cannot run additional packages. However, experience tells us that the online
calculator is enough most of the time.

3. Lecture 0 – Types, conditionals and loops

Let us get started with a few basics.

3A. Basic arithmetic and symbols as placeholders. Here is a basic syntax:

> 2+5;

-------result-------

> 7

> 2*5;

-------result-------

> 10

> 2/5;

-------result-------

> 2/5

> 2^5;

-------result-------

> 32

> 5 mod 2;

-------result-------

> 1

Note the semicolon at the end of each line: this is crucial and tells MAGMA that the command
ends. A common mistake is to forget the semicolon, so beware.

Eventually we want to use symbols instead of actual numbers, so here is how we do that:

> x:=3;

> x^3;

-------result-------

> 27

> x:=x+1;

> x;

-------result-------

> 4

> x+:=1;

> x;

-------result-------

> 5

> 3*x;

> x;

-------result-------

> 15

> 3x;

-------result-------

> User error: Invalid hexadecimal integer

6 D. TAYLOR AND D. TUBBENHAUER

Be careful to write 3 ∗ x and not 3x which would be another variable. Similarly:

> x:=12; x-:=4; x;

-------result-------

> 8

> x/:=4; x;

-------result-------

> 2

> y:=7;

> x*:=y; x;

-------result-------

> 14

3B. Data types. Let us play with 2/5:

> 2/5;

-------result-------

> 2/5

In the above code we see that we get 2/5 back as it is. This is because MAGMA treats it
as a rational number . To get a decimal expression we need to tell MAGMA to see 2/5 as a
real number :

> 2/5.0;

-------result-------

> 0.400000000000000000000000000000

The operation of changing the type of an element is crucial for MAGMA computations and
called casting . But what is a type anyway? Let us look at some examples:

> x:=2; Type(x);

-------result-------

> RngIntElt

This is an element of the ring of integers.

> x:=2/5; Type(x);

-------result-------

> FldRatElt

Thus, we have an element from the field of rational number.

> x:=2/5.0; Type(x);

-------result-------

> FldReElt

Now we have casted 2/5 into the field of real numbers.
These examples illustrate what a type is: it is the category MAGMA stores elements in. We

have also seen our first function : the Type function.
When programming in MAGMA it is crucial to keep track of the type. Here is an easy example

why this is so important.

> x:=4/3; y:=3/2; x*y;

-------result-------

> 2

The output is 2, but MAGMA thinks this is a rational number since we have multiplied two
rational numbers:

> x:=4/3; y:=3/2; x*y; Type(x*y);

MAGMA IN A NUTSHELL 7

-------result-------

> 2

> FldRatElt

This makes a difference when applying functions:

> IsEven(2); IsEven(x*y);

-------result-------

> True

> Runtime error in ’IsEven’: Bad argument types

> Argument types given: FldRatElt

IsEven does what you think it does. It however is only defined for integers, so we cannot
use it for the rational number x ∗ y.
Similar problems can occur anytime, so we need to be aware of this. Here is another

example, and a first way around:

> 3 mod 2; x:=6; y:=2; x/y; Type(x/y); x/y mod 2;

-------result-------

> 1

> 3

> FldRatElt

> Runtime error in ’mod’: Bad argument types

> Argument types given: FldRatElt, FldRatElt

A first way around is to use div:

> 3 mod 2; x:=6; y:=2; x div y; Type(x div y); (x div y) mod 2;

-------result-------

> 1

> 3

> RngIntElt

> 1

A better way around, and something one always does is to cast the numbers into the correct
rings. Let us do this. First, we setup the rings:

> Z:=IntegerRing(); Q:=Rationals(); R:=RealField(); C:=ComplexField();

> Type(Z); Type(Q); Type(R); Type(C);

-------result-------

> RngInt

> FldRat

> FldRe

> FldCom

Anyway, try to avoid working with real or complex numbers. They are always tricky in
exact calculations, even the easiest ones:

> Sqrt(-1); Type(Sqrt(-1));

-------result-------

> 1.00000000000000000000000000000*$.1

> FldComElt

For completeness:

> Z:=IntegerRing(); Z; Type(Z); Type(2); Type(RngIntElt); Type(RngInt);

-------result-------

8 D. TAYLOR AND D. TUBBENHAUER

> Integer Ring

> RngInt

> RngIntElt

> Cat

> Cat

Let us now check a few elements and where the live according to MAGMA:

> 2 in Z; (11/4 * 4/1) in Q; (11/4 * 4/1) in Z; 11/4 in Z;

-------result-------

> true

> true

> true

> false

Note that (11/4 · 4/1) ∈ Z but still we get:

> (11/4 * 4/1) mod 2;

-------result-------

> Runtime error in ’mod’: Bad argument types

> Argument types given: FldRatElt, FldRatElt

This is where casting comes in. We need to tell MAGMA to consider (11/4∗4/3) as an integer.
So we cast it to the integers!

> Z!(11/4 * 4/1) mod 2;

-------result-------

> 1

Here is another example:

> x:=6; y:=2; Type(x/y); Type(Z!(x/y));

-------result-------

> FldRatElt

> RngIntElt

We can cast x/y into any of the previous rings:

> Type(Z!(x/y)); Type(Q!(x/y)); Type(R!(x/y)); Type(C!(x/y));

-------result-------

> RngIntElt

> FldRatElt

> FldReElt

> FldComElt

Casting only works when it is supposed to work. Use IsCoercible to see whether casting
is possible.

> Type(Z!11/4); IsCoercible(Integers(),11/2); IsCoercible(Integers(),12/2);

-------result-------

> FldRatElt

> false

> true 6

Note that two outputs are given in the final command. To access them separately use:

> bool,val:=IsCoercible(Integers(),12/2); bool; val;

-------result-------

> true

> 6

MAGMA IN A NUTSHELL 9

3C. Sets and sequences. Next, we explain how to setup sets and, more importantly, se-
quences . First, setting up sets is straightforward and follows the usual syntax:

> X:={1,2,3,4}; X;

-------result-------

> { 1, 2, 3, 4}

The operations on sets have the expected syntax as well:

> X:={1,2,3}; Y:={1,2,3,3}; Z:={2,3,4};

> X eq Y; X eq Z; X join Z; X meet Z; X diff Z; X sdiff Z; 1 in X;

-------result-------

> true

> false

> { 1, 2, 3, 4 }

> { 2, 3 }

> { 1 }

> { 1, 4 }

> true

The size of sets is encoded using #, and a..b stands for arithmetic progression:

> #X;

-------result-------

> 3

> A:={1..4}; A eq X;

-------result-------

> true

Here are a few more ways to construct and work with sets, all with a self-explaining syntax:

> Y:={1..9 by 2}; Z:={x^2: x in {1..10}}; 4 in Y; Z;

-------result-------

> false

> { 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 }

> A:={4,2,16,-3,0}; Maximum(A); Minimum(A); Random(A);

-------result-------

> 16

> -3

> 4

> B:={1,4,6,10,-3}; Include(B,17); Exclude(B,10);

-------result-------

> { -3, 1, 4, 6, 10, 17 }

> { -3, 1, 4, 6 }

There are three ways to generalize this: to ordered lists; to unordered lists allowing repeti-
tions; and to ordered lists allowing repetitions. Let us go through all of them.

Multisets can be defined by using {∗∗}:
> X:={* 1,1,2,3 *}; X;

-------result-------

> {* 1^2, 2, 3 *}

Note the types:

> A:={1,2,3}; B:={* 4,5,6 *}; Type(A); Type(B);

-------result-------

10 D. TAYLOR AND D. TUBBENHAUER

> SetEnum

> SetMulti

So these cannot be e.g. joined together. But most of the above operations still work within
the multiset type. For example:

> A join A;

-------result-------

> {* 1^2, 2^2, 3^2 *}

> > D:={* x^2: x in {-2..2} *}; D; Maximum(D); Multiplicity(D,4);

-------result-------

> {* 0, 1^2, 4^2 *}

> 4

> 2

The Multiplicity here is new and does what it suggests. Next, one uses {@@} for ordered
sets . Most of the above still works, e.g.:

> X:={@1,2,3,4,5@}; Y:={@8,7,6,5,4@}; X join Y; Y join X;

-------result-------

> {@ 1, 2, 3, 4, 5, 8, 7, 6 @}

> {@ 8, 7, 6, 5, 4, 1, 2, 3 @}

What is fantastic about this is that now taking the nth element makes sense :

> X:={1,2,3,4,5}; Y:={@6,7,8,9,10@}; Y[2]; X[2];

-------result-------

> 7

> Runtime error in ’[]’: Bad argument types

The probably most important notion is an ordered multiset, called sequence in MAGMA.

> X:=[1..10]; X; #X; Y:=[3,6,6,2]; Y[2];

-------result-------

> [1 .. 10]

> 10

> 6

Sequences are essentially the same as sets, but treated very differently, be careful. Here are
some examples.

> X:=[1,6,4,3,9]; X[3]:=5; X;

-------result-------

> [1, 6, 5, 3, 9]

> Append(X,8);

-------result-------

> [1, 6, 5, 3, 9, 8]

> X:=Append(X,8); X;

-------result-------

> [1, 6, 5, 3, 9, 8]

> X:=Prune(X); X;

-------result-------

> [1, 6, 5, 3, 9]

> Remove(X,3);

-------result-------

MAGMA IN A NUTSHELL 11

> [1, 6, 3, 9]

> Insert(X,2,17);

-------result-------

> [1, 17, 6, 5, 3, 9]

> X;

-------result-------

> [1, 6, 5, 3, 9]

> Reverse(X);

-------result-------

> [9, 3, 5, 6, 1]

> X:=Reverse(X); X:=Sort(X); X;

-------result-------

> [1, 3, 5, 6, 9]

> X:=[2,5,10,10,4,10,3]; Maximum(X);

-------result-------

> 10 3

> A:=[2,5,3]; B:=[7,7,9,1,14]; C:=A cat B; C;

-------result-------

> [2, 5, 3, 7, 7, 9, 1, 14]

> A1:=Append(A,5); A2:=A cat [5]; A1 eq A2;

-------result-------

> true

It is often important to cast sets into list and back. This is how this works:

> A:=[2,5,3,3]; A;

-------result-------

> [2, 5, 3, 3]

> B:=SequenceToSet(A); B;

-------result-------

> { 2, 3, 5 }

> SetToSequence(B);

-------result-------

> [2, 3, 5]

3D. Conditionals. There are plenty of other questions we can ask about numbers and ob-
jects, here are the most common ones:

Operation MAGMA command

x = y x eq y

x ̸= y x ne y

x ≥ y x ge y

x ≤ y x le y

x > y x gt y

x < y x lt y

x ∈ y x in y

We also have the usual logic operations:

12 D. TAYLOR AND D. TUBBENHAUER

Operation MAGMA command

A ∩B and

A ∪B or

(A ∪B)c nor

These are even able to jump over types, but not always. For example,

> x:=2; y:=4/2; x eq y;

-------result-------

> true

> 4 gt 5.0;

-------result-------

> false

> X:=[1,2]; Y:={1,2}; X eq Y;

-------result-------

> Runtime error in ’eq’: Bad argument types

> Argument types given: SeqEnum[RngIntElt], SetEnum[RngIntElt]

> x:=5; x eq 5 or x eq 4 and x eq 2;

-------result-------

> true

Let us use this to move to the conditional commands or conditionals : “if some condi-
tion is true, then do this series of commands”. These are among the most important commands
one needs to know in order to program.

The first type is the If (“if (condition) then (commands); end if;”) and it works as follows:

> a:=3; b:=4; c:=5; if(a gt b) then c:=a*b; end if; c;

-------result-------

> 5

> a:=3; b:=4; c:=5; if(a lt b) then c:=a*b; end if; c;

-------result-------

> 12

It is often useful to separate conditionals visually, and a bit nicer is:

> a:=3; b:=4; c:=5;

> if(a gt b) then

> c:=a*b;

> end if;

> c;

-------result-------

> 5

We can also do “if (condition) then (commands); else (commands); end if;”. For example:

> a:=3; b:=4; c:=5;

> if(a gt b) then

> c:=a*b;

> else

> c:=6;

> end if;

> c;

-------result-------

> 6

MAGMA IN A NUTSHELL 13

We can also run parallel If:

> x:=5;

> if(x mod 4 eq 0) then

> print("x is congruent to 0 modulo 4");

> elif(x mod 4 eq 1) then

> print("x is congruent to 1 modulo 4");

> elif(x mod 4 eq 2) then

> print("x is congruent to 2 modulo 4");

> else

> print("x is congruent to 3 modulo 4");

> end if;

select (“(variable):= (condition) select (value if true) else (value if false)”) is a bit nicer
when setting variables.

> s := (1 gt 0) select 1 else -1; s;

-------result-------

> 1

> a:=-5; s := (a gt 0) select 1 else ((a eq 0) select 0 else -1);

-------result-------

> -1

Side note: This was for illustration only. There is of course a better way to get the sign:

> Sign(-5);

-------result-------

> -1

In general, always use build-in functions if applicable . Anyway, if we want the text
we could use case:

> x := 5;

> case Sign(x):

> when 1:

> "x is positive";

> when 0:

> "x is zero";

> when -1:

> "x is negative";

> end case;

-------result-------

> x is positive

3E. Loops. The for (“for i in A do COMMAND; end for;”) loop is one of the most funda-
mental of all operations in MAGMA. Let us run a few examples.

> for i in {1..5} do

> i^2;

> end for;

-------result-------

> 1

> 4

> 9

> 16

> 25

14 D. TAYLOR AND D. TUBBENHAUER

Here is another example. We calculate the numbers x3+x+12 modulo 7 for x ∈ {1, . . . , 10}.
In order to avoid ten outputs in a row we collect them in one sequence:

> out:=[];

> for i in {1..10} do

> out:=Append(out,(i^3+i+12) mod 7);

> end for;

> out;

-------result-------

> [0, 1, 0, 3, 2, 3, 5, 0, 1, 0]

There are a few other loops, which are similar in style to a for loop, but which have slightly
different uses. Here is while:

> n:=453;

> while((n mod 5) ne 0) do

> n+:=1;

> end while;

> n;

-------result-------

> 455

The repeat function (“repeat (commands) until (condition)”) is the same as the while
function, except that the particular condition is tested at the end of the loop, not at the
beginning. Here is an example:

> X:={1..1000};

> repeat a:=Random(X);

> bool:=IsPrime(a);

> until bool eq true;

> a;

-------result-------

> 563

Shortened:

> X:={1..1000};

> repeat a:=Random(X);

> until IsPrime(a);

> a;

-------result-------

> 223

Let us briefly address one problem one should be aware of when using loops. Take for
example the same code as before but with a different set:

> X:={24,25,26,27,28};

> repeat a:=Random(X);

> until IsPrime(a);

> a;

The set X does not contain a prime number. So this will not terminate since its stuck in
an infinite loop! With for one is on the safe side. In any case, the break function might come
in handy:

> n:=453;

> while((n mod 5) ne 0) do

> n+:=5;

> if(n ge 1000) then break; end if;

MAGMA IN A NUTSHELL 15

> end while;

> n;

-------result-------

> 1003

> n := 10037;

> for x in [1..100] do

> for y in [1..100] do

> if x^2 + y^2 eq n then

> print x, y;

> break x;

> end if;

> end for;

> end for;

-------result-------

> 46 89

break usually ends the nearest loop, and here we tell MAGMA using “break x” to break the
outer x loop.

3F. Handmade functions. We can also write functions ourselves. The following function
computes the Fibonacci numbers:

> function Fib(n)

> if(n le 0) then return 0; end if;

> if(n le 1) then return 1; end if;

> return Fib(n-1)+Fib(n-2);

> end function;

We can use it as follows:

> Fib(14);

-------result-------

> 377

The following functions has two inputs and two outputs:

> function PPart(n,p);

> if(not(IsPrime(p))) then return "p is not a prime"; end if;

> a:=0;

> while(n mod p eq 0) do

> a+:=1;

> n div:=p;

> end while;

> return n,p^a;

> end function;

We can more generally produce functions with arbitrary in and outputs suing the comma
separator. Let us see what this functions does:

> PPart(60,2)

-------result-------

> 15 4

> PPart(60,3)

-------result-------

> 20 3

> PPart(60,4)

16 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> p is not a prime

It thus returns n = mpa via m pa if p is a prime and a warning otherwise.
We leave it to the reader to figure out what the next function does:

> function RandomPoisson(x)

> k:=0;

> max_k:=1000;

> p:= Random([1..10^5])/10^5;

> P:= Exp(-x);

> sum:=P;

> if(sum ge p) then return 0; end if;

> for k in [1..max_k] do

> P*:=x/k;

> sum+:=P;

> if (sum ge p) then return k; end if;

> end for;

> return k;

> end function;

> RandomPoisson(10);

-------result-------

> 8

A procedure is similar to a function, in that it takes inputs. However, it differs from a
function in that it changes the inputs, rather than produces outputs.

> procedure Multiplies(~x,y)

> x:=x*y;

> end procedure;

> x:=2; y:=3;

> Multiplies(~x,y);

> x;

-------result-------

> 6

4. Lecture 1 – A few little games and finite groups

This section covers four examples of interactive programming, including a word game, Cata-
lan numbers and a bit about finite groups.

4A. A simple word game. How can you use MAGMA to find a word composed of the letters
a , b, c, t , r? Well, you could look at all 120 permutations of the letters and hope to recognize
which ones (if any) are English words.

First of all, enter the list into MAGMA as a sequence

> letters := ["a","b","c","t","r"];

Use the symmetric group on {1, 2, 3, 4, 5} to generate all permutations of the letters, then
concatenate them to form ‘words’.

> for p in Sym(5) do &*[letters[i^p] : i in [1..5]]; end for;

> // Sym is the symmetric group

-------result-------

> abctr

> bctra

> (118 more)

MAGMA IN A NUTSHELL 17

(Many commands in MAGMA have synonyms : e.g., Sym is a synonym of SymmetricGroup,
and SL is a synonym of SpecialLinearGroup.)

What is happening here? Well:

▶ // introduces a comment.

▶ We use a for-loop: for ... do ... end for; to iterate over the elements of the
symmetric group.

▶ letters[i] refers to the i-th element of the sequence;
indexing begins at 1 (not 0).

▶ i^p applies the permutation p to i.

▶ Strings are a monoid with binary operation *. If X is a sequence, &*X concatenates the
elements of X. (You can also use &cat X.)

▶ [1..5] is the sequence [1,2,3,4,5].

▶ letters := ["a","b","c","t","r"]; is an assignment statement .

▶ MAGMA prints the results of expressions (such as &*[letters[i^p]) that are not
statements. Sometimes, for clarity, it is better to use the keyword print.

Remark 4A.1. The part below does not run in the online calculator since we are loading
a file from the system. This is the only example in this file that cannot be run without
installing MAGMA. However, the below illustrates how to load files which eventually might
be important for the reader. 3

Looking through 120 possible ‘words’ and then checking the dictionary does not seem like
much fun.

Let us see how MAGMA can help. In this case it will depend on the operating system.
Unfortunately, because of the System call, this won’t run in the online calculator.

If MAGMA is running on MacOS or Linux you can do the following.

> letters := ["a","b","c","t","r"];

> for p in Sym(5) do

> word := &*[letters[i^p] : i in [1..5]];

> cmd := "grep -w " cat word cat " /usr/share/dict/words";

> System(cmd);

> end for;

-------result-------

> bract

On Windows, find a word list somewhere (say words.txt), then use

> cmd := "findstr \\"\\\\\\<" cat word cat "\\\\\\>\\" words.txt";

Suppose you modify the problem and ask for the five letter words composed of the letters
h , r , s , u , k , n .
For each subset of five letters, apply the previous solution.

> letters :=["h","r","s","u","k","n"];

> S := Sym(5);

> for n := 1 to 6 do

> X := Remove(letters,n);

> for p in Sym(5) do

> word := &*[X[i^p] : i in [1..5]];

> cmd := "grep -w " cat word cat " /usr/share/dict/words";

> System(cmd);

> end for;

> end for;

18 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> hunks

Now suppose you want to solve the word puzzle for other combinations of letters. Instead of
typing ever more variations of the code into the REPL the thing to do is to create a function
or procedure, store it in a file, then load the file whenever you need it.

In MAGMA a function takes arguments and returns one or more values . A procedure
is similar except that it does not return any values.

The first step will be to write a procedure findwds (details below) in a file called wordgame.m.
(You only need to print the result, so use a procedure, not a function.)

To load the file and use the procedure, type the commands

> load "wordgame.m";

> findwds("abctr");

-------result-------

> bract

> findwds := procedure(str)

> letters := Eltseq(str);

> m := #letters;

> for p in Sym(m) do

> word := &*[letters[i^p] : i in [1..m]];

> cmd := "grep -w " cat word cat " /usr/share/dict/words";

> System(cmd);

> end for;

> end procedure;

MAGMA has a ‘flat’ namespace. The MAGMA kernel and all packages are loaded at startup.
The functions and procedures (such as Eltseq) in these packages are called intrinsics; they
are always available.

> load "wordgame.m";

> findwds("torecv");

-------result-------

> vector

> covert

Modify the procedure to take both a string argument str and an integer argument k

giving the length of the words we are looking for.

> findwds := procedure(str,k)

> letters := Eltseq(str);

> m := #letters;

> if k gt m then k := m; end if;

> R := Subsets({1..m},m-k);

> S := Sym(k);

> for A in R do

> X := [letters[i] : i in [1..m] | i notin A];

> for p in S do

> word := &*[X[i^p] : i in [1..k]];

> cmd := "grep -w " cat word cat " /usr/share/dict/words";

> System(cmd);

> end for;

> end for;

> end procedure;

> findwds("torxcv",4);

MAGMA IN A NUTSHELL 19

-------result-------

> torc

Here is what is going on:

▶ if ss is a sequence, a set, a group, etc., #ss is its length.

▶ if ... then ... else ... end if;.

▶ if ... then ... elif ... else ... end if;.

▶ Sequence constructor: [f(x) : x in O | condition on x].

▶ Set constructor: f(x) : x in O | condition on x .

What happens if there are repeated letters?

> findwds("tocrxc");

-------result-------

> torc

> torc

> croc

> croc

Exercise 4A.1. Suppose that letters is a sequence of letters. The following code produces
all ‘words’ made from these letters.

> [&*[letters[i^p] : i in [1..n]] : p in Sym(n)]

> where n is #letters ;

If you first type

> letters := ElementToSequence("aact");

and then use the code above you will see that some ‘words’ appear twice.

(a) Write a few lines of code that produce a sequence of words without duplicates.

(b) Change the code so that it produces a sequence of three letter ‘words’.

Of course, one can replace "aact" by anything else. 3

4B. The Catalan numbers. Among many other things, the nth Catalan number is the
number of balanced strings of n left and n right brackets, where ‘balanced’ means that each left
bracket has a matching right bracket (to its right) and the string in between is balanced. The
empty string is balanced. This can be illustrated using binary trees, here the third Catalan
number 5:

We shall use MAGMA to construct sets of balanced strings. It turns out that

cn =
1

n+ 1

(
2n

n

)
.

Using MAGMA the 20th Catalan number is

20 D. TAYLOR AND D. TUBBENHAUER

> print Binomial(40,20) div 21;

-------result-------

> 6564120420

Note that div is used for integer division and MAGMA can deal with very large numbers.
Using Stirling’s approximation for n! we have an asymptotic approximation

cn ∼ 22n/n
√
π n.

To use π in MAGMA we specify the precision.

> pi := Pi(RealField(10)); pi;

-------result-------

> 3.141592654

Here is a function which returns Stirling’s approximation to the nth Catalan number.

> approxCat := func< n | 2^(2*n)/(n*Sqrt(pi*n)) >;

> print approxCat(15);

-------result-------

> 10427688.40

func⟨ x, y, z | expression ⟩ defines a function which returns the value of the expression
in the arguments x, y, z.
Let us look at a recursion for cn. A balanced string of brackets is either empty or has the

form (S)T , where S and T are themselves balanced. Therefore the Catalan numbers satisfy
the recurrence relation (for n > 0)

cn+1 =
n∑

k=0

ck cn−k where c0 = 1.

You can use $$ to refer to a MAGMA function within its own body. The following function
uses recursion to return the sequence of the first n Catalan numbers.

> CatSeq := function(n);

> if n eq 0 then seq := [1];

> elif n eq 1 then seq := [1,1];

> else

> seq := $$(n-1);

> print seq;

> Append(~seq, &+[Integers()| seq[k+1]*seq[n-k] : k in [0..n-1]]);

> end if;

> return seq;

> end function;

Instead of $$ you can place the directive

> forward CatSeq;

in your file, somewhere before the function definition. Then you can refer to CatSeq within
its own definition. We can use this now as follows:

> CatSeq(5);

-------result-------

> [1, 1]

> [1, 1, 2]

> [1, 1, 2, 5]

> [1, 1, 2, 5, 14]

> [1, 1, 2, 5, 14, 42]

A bit of more explanation:

MAGMA IN A NUTSHELL 21

▶ Procedures can modify their arguments. Such an argument is prefixed with a tilde ∼
both in the definition and when called.

▶ The command Append(∼seq,num) is a call to the intrinsic procedure Append that mod-
ifies seq by including num in the set.

▶ Sequences can be indexed by other sequences. X := letters[Setseq(A)];

▶ Errors

> CatSeq(A)

-------result-------

> User error: Identifier ’A’ has not been declared or assigned

Exercise 4B.1. Write a function expression CatNum in MAGMA that returns the nth Catalan
number. 3

Exercise 4B.2. Recall the function CatSeq from above:

> CatSeq := function(n);

> if n eq 0 then seq := [1];

> elif n eq 1 then seq := [1,1];

> else

> seq := $$(n-1);

> print seq;

> Append(~seq, &+[Integers()| seq[k+1]*seq[n-k] : k in [0..n-1]]);

> end if;

> return seq;

> end function;

Rewrite CatSeq as a function expression using select. 3

Exercise 4B.3. What happen if you replace the Append line of the CatSeq function with

> Append(~seq, &+[seq[k+1]*seq[n-k] : k in [0..n-1]]);

Test this! If you get the same result, then can you explain why? 3

Exercise 4B.4. Write a MAGMA expression that returns the sequence of the first 20 Catalan
numbers.

(The MAGMA function Self(n) refers to entry s[n] of a sequence s inside its constructor.
Remember that sequences are indexed from 1 not 0.) 3

To wrap-up, let us discuss balanced strings.

S → (S)S

S → ε

is a grammar that describes balances strings. We can use this to design a procedure that
displays a random balanced string.

> produce := procedure()

> seq := ["S"];

> rhs := ["(","S",")","S"];

> X := { 1 };

> repeat

> i := Random(X);

> if Random(1) gt 0 then Insert(~seq,i,i+1,rhs);

> else Remove(~seq,i);

> end if;

> X := { i : i in [1..#seq] | seq[i] eq "S"};

22 D. TAYLOR AND D. TUBBENHAUER

> until IsEmpty(X);

> print #seq gt 0 select &*seq else "eps";

> end procedure;

> produce()

-------result-------

> ()(((()(()()

Exercise 4B.5. Write a function that outputs the ratio and the difference between the
sequence of Catalan numbers and the approximation given above. 3

4C. Projective planes, graphs, automorphism groups. A projective plane consists
of a set of points and a set of lines such that every pair of distinct points lies on a unique line
and every pair of distinct lines meet in a unique point.

The smallest projective plane is the Fano plane whose points are the 1-dimensional sub-
spaces and whose lines are the 2-dimensional subspaces of a vector space of dimension 3 over
the field of 2 elements.

If the plane is finite, there is an integer n (the order of the plane) such that every line has
n+1 points and every point lies on n+1 lines. Thus there are n2+n+1 points and n2+n+1
lines. The Fano plane is the unique projective plane of order two, so there are 4 + 2 + 1 = 7
points and lines.

> fano := FiniteProjectivePlane(2);

> P := Points(fano);

> L := Lines(fano);

The points and lines are represented by their (normalized) homogeneous coordinates.

> p := P[2];

> l := L[3];

> p; l, p in l;

-------result-------

> (0 : 1 : 0)

> < 0 : 0 : 1 >

> true

A flag in a projective plane is a point-line pair (p, ℓ) such that p lies on ℓ.
We shall construct a graph whose vertices are the points P , the lines L and the flags F of

the Fano plane plus an additional vertex ⋆.

(a) Join ⋆ to all of P and L.

(b) Join a point to the 4 lines not through it.

(c) Join a point to the 9 flags which have their line through it.

(d) Join a line to the 9 flags which have their point on it.

(e) Join flags (p1, ℓ1) and (p2, ℓ2) if p1 ̸= p2, ℓ1 ̸= ℓ2, p1 ∈ ℓ2 and p2 ∈ ℓ1.

MAGMA IN A NUTSHELL 23

One gets: 36 vertices, degree 14, 252 edges

⋆

7 7

21

9

3

9

3

8

4 4
points lines

flags

To build a graph in MAGMA we need a set of vertices and a set of edges . In an undirected
graph the edges are pairs of vertices.

For the graph from the Fano plane we represent the vertices as pairs of integers, as follows:

(a) ⋆ by the pair 0, 0,

(b) the point P[i] by -1, i,

(c) the line L[j] by -2, j,

(d) the flag (P[i],L[j]) by i, j.

Here we go:

> vertices := { <0,0> }

> join { <-1,i> : i in [1..7] }

> join { <-2,j> : j in [1..7] }

> join { <i,j> : i,j in [1..7] | P[i] in L[j] };

Ok, let us now create the graph in MAGMA.

> F := [<i,j> : i,j in [1..7] | P[i] in L[j]];

> edges := {{<0,0>,<-1,i>} : i in [1..7] }

> join { {<0,0>, <-2,i>} : i in [1..7] }

> join { {<-1,i>,<-2,j>} : i,j in [1..7] | P[i] notin L[j]}

> join { {<-1,i>,<j,k>} : i,j,k in [1..7] | P[i] in L[k]

> and P[j] in L[k] }

> join { {<-2,i>,<j,k>} : i,j,k in [1..7] | P[j] in L[k]

> and P[j] in L[i] }

> join { {f,g} : f, g in F | f[1] ne g[1] and f[2] ne g[2]

> and (P[f[1]] in L[g[2]] or P[g[1]] in L[f[2]]) };

The graph constructor returns three values: the graph, the vertex set (type GrphVertSet)
and the edge set (type GrphEdgeSet).

> Gr, V, E := Graph< vertices | edges >;

> AdjacencyMatrix(Gr);

Exercise 4C.1. Let MAGMA check whether Gr is planar using IsPlanar. Implement your
favorite graph in MAGMA and check whether it is planar. In both case use time to check
how long the calculation takes. (Fun fact: IsPlanar runs in linear time in the number of
vertices.) 3

The final command gives the adjacency matrix of the graph. The matrix is quite large.
Copy it and put it into https://graphonline.ru/en/ using the “Adjacency matrix” tab on

https://graphonline.ru/en/

24 D. TAYLOR AND D. TUBBENHAUER

that side. We get:

Well, its quite large. For smaller graph, say the Petersen graph given by

> P := Graph< 10 | { 1, 2 }, { 1, 5 }, { 1, 6 }, { 2, 3 }, { 2, 7 },

> { 3, 4 }, { 3, 8 }, { 4, 5 }, { 4, 9 }, { 5, 10 },

> { 6, 8 }, { 6, 9 }, { 7, 9 }, { 7, 10 }, { 8, 10 } >;

> AdjacencyMatrix(P);

the same strategy gives (using “Arrange the graph” under “Algorithms”):

Exercise 4C.2. Implement the complete graphs Cn on n vertices in MAGMA and display them
for small n. 3

Back to the graph obtained from the Fano plane. Let us calculate its automorphism group:

> A := AutomorphismGroup(Gr);

> IsTransitive(A);

-------result-------

> true

> CompositionFactors(A);

-------result-------

> G

> | Cyclic(2)

> *

> | 2A(2, 3) = U(3, 3)

> 1

> H := Stabiliser(A,1);

> CompositionFactors(H);

-------result-------

MAGMA IN A NUTSHELL 25

> G

> | Cyclic(2)

> *

> | A(1, 7) = L(2, 7)

> 1

> check, _ := IsIsomorphic(SU(3,3),DerivedGroup(A)); check;

-------result-------

> true

And finally, the group itself is:

> A;

-------result-------

> Permutation group A acting on a set of cardinality 36

> Order = 12096 = 2^6 * 3^3 * 7

> (2, 20)(3, 24)(5, 36)(7, 11)(9, 29)(10, 31)(12, 33)(18, 26)(19, 23)(21,

> 34)(27, 28)(32, 35)

> (2, 27)(5, 29)(7, 11)(8, 17)(9, 36)(10, 12)(14, 22)(18, 32)(19, 23)(20,

> 28)(26, 35)(31, 33)

> (2, 14)(4, 24)(5, 30)(8, 11)(10, 22)(12, 19)(13, 18)(15, 21)(16, 29)(23,

> 27)(25, 32)(28, 33)

> (3, 20)(4, 27)(5, 30)(6, 7)(8, 13)(10, 28)(11, 18)(12, 16)(15, 32)(17,

> 35)(19, 29)(21, 25)(22, 33)(23, 24)(26, 34)(31, 36)

> (1, 2, 12, 19, 9, 3, 14)(4, 6, 5, 8, 18, 22, 29)(7, 33, 28, 15, 17, 21,

> 36)(10, 26, 31, 13, 11, 23, 16)(20, 27, 34, 30, 32, 25, 24)

MAGMA realizes groups as permutation groups, that is, as subgroups of some symmetric
group. The permutation in the output are the generators of the group A.

Exercise 4C.3. In MAGMA the command RandomGraph(n, 1/2) creates a random graph on
n vertices by flipping a coin for each pair of vertices to determine whether MAGMA puts an
edge or not. Compute the automorphism groups of random graphs for ‘large’ n in MAGMA.
(n = 20 is a good compromise between ‘large’ and ‘fast computation’.) 3

Exercise 4C.4. A hyperoval in a projective plane of even order q is a set of q + 2 points,
no three of which are on a line.

(a) Find an example of a hyperoval in the 21-point projective plane. You can begin
with the command

> plane, points, lines := FiniteProjectivePlane(4);

(b) Write a function IsHyperoval(P,X) to test whether X is a hyperoval in a projective
plane P .

(c) Find all the hyperovals in the 21-point projective plane.

(d) Find the orbits of the groups PGL(3,4) and PSL(3,4) on the set of hyperovals.

Hint 1. What are points.1 and points.2? What is lines.3? Hint 2. Exclude(~S,v) removes
the element v from the set S. If you want to remove a representative from S and assign it
to a variable x, use ExtractRep(~S,~x). 3

Exercise 4C.5. The points and lines of the 21-point plane can be identified with the 1- and
2-dimensional subspaces of a vector space of dimension 3 over the field of 4 elements. In
this representation an example of a hyperoval is the set of singular points of a quadratic

26 D. TAYLOR AND D. TUBBENHAUER

form together with its radical. You can use the following code to construct the form and
the quadratic space.

> P<x,y,z> := PolynomialRing(GaloisField(4),3);

> f := x*y+z^2;

> V := QuadraticSpace(f);

Find 6 vectors that represent the points of the hyperoval. Check that they do indeed
form a hyperoval.

(Hint. Radical(V) is the radical of V and QuadraticNorm(v) is the value of the quadratic
form at the vector v.) 3

4D. Exploring small groups: the Small Groups Database. Let G be a group. A non-
empty subset S of G is product-free if ab /∈ S for all a, b ∈ S.
Which finite groups have a maximal (by inclusion) product-free set of size 1, of size 2, of

size 3, . . . ?
Checking if a set is product-free is easy.

> prodfree := func< S | forall{<a,b> : a,b in S | a*b notin S } >;

> prodfree({2});

> prodfree({1,2});

-------result-------

> true

> false

Finding all the groups with a product-free set of size 1, 2 or 3 is harder.
We will start with maximal product-free sets of size 1.

> checkmax1 := function(G)

> for a in G do

> if a eq One(G) then continue; end if;

> found := true;

> for b in G do

> if b eq One(G) or b eq a then continue; end if;

> if prodfree({a,b}) then found := false; continue; end if;

> end for;

> if found then return true, a; end if;

> end for;

> return false, _;

> end function;

Let us check a few cyclic groups.

> [checkmax1(CyclicGroup(n)) : n in [2 .. 10]];

-------result-------

> [true, true, true, false, false, false, false, false, false]

The results so far suggest that the only cyclic groups containing a product-free set of size 1
are C2, C3 and C4. (Actually, it is quite easy to prove this directly.)

Are there any other groups with a product-free set of size 1?

> [checkmax1(DihedralGroup(n)) : n in [3 .. 10]];

-------result-------

> [false, false, false, false, false, false, false, false]

None there. So where else can we look?
MAGMA has a large number of databases containing information that may be used in searches

for interesting examples or which form an integral part of certain algorithms.

MAGMA IN A NUTSHELL 27

Examples of current databases include factorizations of integers of the form pn ± 1, p a
prime; modular equations; strongly regular graphs; maximal subgroups of simple groups;
integral lattices; K3 surfaces; best known linear codes and many others.

We shall use MAGMA’s Small Groups Database to get a supply of groups to check for small
product-free sets.

Perhaps we can spot a pattern that will lead to a proof of their classification.
The number of groups of order n in the database is returned by (here n = 32):

> n:=32; NumberOfSmallGroups(n);

-------result-------

> 51

To extract a copy of the jth group of order n use (here j = 3):

> n:=32; j:=3; G := SmallGroup(n,j); G;

-------result-------

> GrpPC : G of order 32 = 2^5

> PC-Relations:

> G.1^2 = G.3,

> G.2^2 = G.4,

> G.3^2 = G.5

Find the groups of order at most 50 that contain a product-free set of size 1.

Remark 4D.1. For efficiency, first open the database, using:

> SGD := SmallGroupDatabase();

then pass the reference as the first argument to the database functions. 3

Exercise 4D.1. Recall the following function:

> checkmax1 := function(G)

> for a in G do

> if a eq One(G) then continue; end if;

> found := true;

> for b in G do

> if b eq One(G) or b eq a then continue; end if;

> if prodfree({a,b}) then found := false; continue; end if;

> end for;

> if found then return true, a; end if;

> end for;

> return false, _;

> end function;

Find all the groups (of order strictly smaller than 1024 if necessary due to computation
limitation) in SmallGroupDatabase() that contain a maximal product-free set of size 1. 3

Exercise 4D.2. Modify checkmax1 and write a function checkmax2 that can be used to find
the groups in SmallGroupDatabase() that contain a maximal product-free set of size 2. Make
a conjecture about the classification of all finite group with a maximal product-free set of
size 2. 3

> for n := 2 to 50 do

> for j := 1 to NumberOfSmallGroups(n) do

> G := SmallGroup(n,j);

> found, witness := checkmax1(G);

> if found then print n,j,witness; end if;

> end for;

28 D. TAYLOR AND D. TUBBENHAUER

> end for;

-------result-------

> 2 1 G.1

> 3 1 G.1

> 4 1 G.2

> 8 4 G.3

We know that the groups of orders 2, 3 and 4 are cyclic. What is the structure of the group
of order 8?

> G := SmallGroup(8,4);

> IsAbelian(G);

-------result-------

> false

> G;

-------result-------

> GrpPC of order 8 = 2^3

> PC-Relations:

> $.1^2 = $.3,

> $.2^2 = $.3,

> $.2^$.1 = $.2 * $.3

To convert G to a permutation group we can look at its regular representation. This is
equivalent to its action on the cosets of the identity subgroup.

> f, H, K := CosetAction(G, sub<G | >);

> f;

-------result-------

> Homomorphism of GrpPC : G into GrpPerm: H, Degree 8 induced by

> G.1 |--> (1, 6, 2, 5)(3, 8, 4, 7)

> G.2 |--> (1, 4, 2, 3)(5, 7, 6, 8)

> G.3 |--> (1, 2)(3, 4)(5, 6)(7, 8)

> H;

-------result-------

> Permutation group H acting on a set of cardinality 8

> (1, 6, 2, 5)(3, 8, 4, 7)

> (1, 4, 2, 3)(5, 7, 6, 8)

> (1, 2)(3, 4)(5, 6)(7, 8)

> K;

-------result-------

> GrpPC : K of order 1

> PC-Relations:

We are almost there!

> #{ x : x in H | Order(x) eq 2 };

-------result-------

> 1

So H is the quaternion group. Let us test this:

> Q := Group< a, b | a^2 = b^2, b^a = b^-1 >;

> IsIsomorphic(PCGroup(Q),H);

-------result-------

MAGMA IN A NUTSHELL 29

> true Mapping from: GrpPC to GrpPerm: H

> Composition of Mapping from: GrpPC to GrpPC and

> Mapping from: GrpPC to GrpPerm: H

Let us wrap-up with three exercises:

Exercise 4D.3. For a groupG andm ≥ 1 the power subgroupGm is the subgroup generated
by the elements gm where g runs through G.

Here are some MAGMA functions to compute the power subgroups and the number of
nonpower subgroups.

> psg := func< G | { sub<G | [g^m : g in G] > :

> m in Divisors(Exponent(G)) } >;

> nps := func< G | &+[x‘length : x in Subgroups(G)] - #psg(G) >;

Apply this to a few dihedral groups. Is there a pattern?

> [<n,nps(DihedralGroup(n))> : n in [3..8]];

-------result-------

> [<3, 3>, <4, 7>, <5, 5>, <6, 13>, <7, 7>, <8, 15>]

Find the number of nonpower subgroups in a group of order n.

> for n := 4 to 10 do

> for j := 1 to NumberOfSmallGroups(n) do

> print [n,j,nps(SmallGroup(n,j))];

> end for;

> end for;

-------result-------

> [4, 1, 0]

> [4, 2, 3]

> [5, 1, 0]

> . . .

Describe the results and play around with this as much as you like. For example, increase
n above. 3

Exercise 4D.4. Let G be a group. Write a function that returns exactly one representative
of {x, x−1} for all x ∈ G. 3

Exercise 4D.5. The group number function , also called GNU, GNU : Z≥1 → Z≥1 out-
puts the number of groups of a given order. Use MAGMA to compute GNU(n) for all
n < 1000. An open question is whether the GNU function is surjective, i.e. whether all
numbers are group numbers. Write MAGMA code that shows that all numbers strictly smaller
than 19 appear as group numbers. 3

4E. Extended exercise: knapsack.

Exercise 4E.1. Try to understand what the code below is doing. 3

The knapsack problem is the following problem in combinatorial optimization: Given a
set of items, each with a weight and a value, determine which items to include in the collection
so that the total weight is less than or equal to a given limit and the total value is as large as

30 D. TAYLOR AND D. TUBBENHAUER

possible.

Let us modify the question a bit.
Question Given a number like 151 (the knapsack), fill it up with items (primes) until it is

full. Which items do you have to take?
Here is the code:

> knapsack := function(Q, t)

> R := [IntegerRing() | x : x in Q | x le t];

> if &+R lt t then

> return [];

> elif t in R then

> return [t];

> else

> for x in R do

> RR := Exclude(R, x);

> s := $$(RR, t - x);

> if not IsEmpty(s) then

> return Append(s, x);

> end if;

> end for;

> return [];

> end if;

> end function;

> primes := [p : p in [1..100] | IsPrime(p)];

> k := knapsack(primes, 151);

> k, &+k;

-------result-------

> [43, 31, 19, 17, 13, 11, 7, 5, 3, 2]

> 151

Exercise 4E.2. Modify the Knapsack algorithm so that we fill the Knapsack with square
numbers instead of primes. 3

What is happening? The key is that the function function(Q,t) calls itself. Moreover:

▶ We first setup a function function(Q,t) taking a subset of the integers Q and a bound
t. The function environment ends at end function;. The remaining three lines just
applies the function.

▶ After the else the real code starts; before we just output trivial cases.

▶ R is the set of allowed elements we want to put in the knapsack. In the code above R

is the number of primes between 1 and 100.

MAGMA IN A NUTSHELL 31

▶ The code defines s recursively by using function(RR,t-x). Then it appends a nonempty
s to the knapsack.

▶ We point out that return will terminate the function with the given output.

▶ &+R; and &+k; sums over the elements of R and k. (Careful: this does not work if the
sets are empty.)

Exercise 4E.3. Output the knapsacks and the sum of their elements from 2 to 151. 3

What we have seen above is an example of a recursion – and the machine likes recursions.
Here are two ways to compute n!:

function fac(n)

if n eq 1 then return 1;

else return n*$$(n-1); end if;

end function;

function factwo(n)

j:=1;

for i in [1..n] do

j:=j*i;

end for;

return j;

end function;

The first function is recursive.

Exercise 4E.4. Compare the two functions to compute n! using time. Hint: The numbers
get very large. You can use

T:=Time(); x := fac(6000); Time(T);

T:=Time(); y := factwo(6000); Time(T);

to hide the output of the factorial. Does MAGMA like recursions? 3

Remark 4E.1. Computing factorials is an intrinsic MAGMA function that one should use
instead of the above. In general, always use intrinsic MAGMA functions instead of self-coded
ones as MAGMA goes to the kernel where calculations are always faster. 3

5. Lecture 2 – Group theory examples

In this section we give three example from the realm of groups. Before that, let us go a bit
more into the type system of MAGMA.

5A. The type system and coercion. (Almost) every object in MAGMA belongs to a cate-
gory , also known as the type of the object. In addition, every object has a parent .

> A := Alt(4); // the alternating group on {1,2,3,4}

> A;

-------result-------

> Permutation group G acting on a set of cardinality 4

> Order = 12 = 2^2 * 3

> (1, 2)(3, 4)

> (1, 2, 3)

> Type(A), Type(A.1);

-------result-------

> GrpPerm GrpPermElt

> Parent(A.1):Minimal;

32 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> GrpPerm: A, Degree 4, Order 2^2 * 3

> Generic(A);

-------result-------

> Symmetric group acting on a set of cardinality 4

> Order = 24 = 2^3 * 3

There are a large number of built-in functions (intrinsics) in MAGMA with the same name.
So the name alone is not enough to determine which function MAGMA will use. The signature
of the function (the number and types of the arguments) will also be used.

> G := Sym(4);

> Order(G.1);

-------result-------

> 4

> P := FiniteProjectivePlane(5);

> Order(P);

-------result-------

> 5

To see the signatures, type the function name followed by a semicolon.
To see all functions with a given prefix, type the first few letters followed by typing the tab

key once or twice.

> Vector

-------result-------

> Vector VectorSpaceOverQ VectorsLimit

> VectorAction VectorSpaceWithBasis

> VectorSpace Vectors

Suppose that V is a vector space of dimension 3 over the rational numbers. In MAGMA the
elements of V are triples of rational numbers; i.e., row vectors. However, a triple [2,3,7]

represented as a sequence will not be recognized as an element of V .

> V := VectorSpace(Rationals(),3);

> v := [2,3,7];

> v in V;

-------result-------

> >> v in V;

> Runtime error in ’in’: Bad argument types

In order to have MAGMA recognize v as an element of V it must be coerced into V .

> V!v in V;

-------result-------

> true

> Type(v), Type(V), Type(V!v);

-------result-------

> SeqEnum ModTupFld ModTupFldElt

Exercise 5A.1. Suppose that X is an invertible 2-by-2 matrix over the finite field F of 11
elements. The function θM : M 7→ X−1MX is a linear transformation of the vector space
of all 2-by-2 matrices over F . Furthermore θ is a homomorphism from the general linear
group GL(2,F) to GL(4,F).

MAGMA IN A NUTSHELL 33

(a) Let F:=GaloisField(11) and write a MAGMA function that returns the matrix of X
with respect to the ‘standard basis’ of the vector space KMatrixSpace(F,2,2).

(b) Find the image of the generators of GL(2,F) under the homomorphism θ and thereby
find the order of the images of GL(2,F) and SL(2,F) in GL(2,F).

Note that KMatrixSpace(F,2,2).1 returns the basis vectors of KMatrixSpace(F,2,2). 3

Exercise 5A.2. Let s1, s2 and s3 be the Pauli matrices defined over the Gaussian field
Q[i].

> K<i> := QuadraticField(-1);

> s1 := Matrix(K,[[0,1],[1,0]]);

> s2 := Matrix(K,[[0,i],[-i,0]]);

> s3 := Matrix(K,[[1,0],[0,-1]]);

and put

> t := Matrix(K,[[i,0],[0,i]]);

Let E be the subgroup of GL(2,K) generated by the above four elements. Show that the
matrices ts1, ts2 and ts3 generate the quaternion group Q and E is the central product of
a cyclic group of order four and Q. 3

5B. The Hall–Janko Group. In 1968 Zvonimir Janko announced the possible existence of
two new finite simple groups. Janko assumed (i) center of a Sylow 2-subgroup is cyclic and (ii)
the centralizer of the central involution (i.e., an element of order 2) has a normal subgroup
of order 25 whose quotient is the alternating group Alt(5).

If there is one class of involutions, the group order is 50 232 960; otherwise there are two
classes of involutions, the order is 604 800 and the group is called either J2 or the Hall–Janko
group HaJ.

The existence of HaJ was established by Marshall Hall and David Wales. They produced
three permutations on 100 vertices. Peter Swinnerton-Dyer verified by computer that the
permutations generate a simple group satisfying Janko’s conditions.

The group HaJ is a subgroup of index 2 in the automorphism group of a graph on 100
points. This is the construction we investigate in the reminder of this section.

The first step is to revisit the construction of the graph built from the points, lines and
flags of the 7-point plane.

> fano := FiniteProjectivePlane(2);

> P := Points(fano);

> L := Lines(fano);

Using just the points and lines, construct a graph with 14 vertices and 28 edges. This time
we use an indexed sets {@ · · · @} of vertices.

> vertices1 := {@ <-1,i> : i in [1..7] @} join {@ <-2,j> : j in [1..7] @};

> edges1 := { {<-1,i>,<-2,j>} : i,j in [1..7] | P[i] notin L[j] };

> G1 := Graph< vertices1 | edges1 >;

> M1 := AutomorphismGroup(G1);

> CompositionFactors(M1);

-------result-------

> G

> | Cyclic(2)

> *

> | A(1, 7) = L(2, 7)

> 1

34 D. TAYLOR AND D. TUBBENHAUER

The output of CompositionFactors(M1) shows that the automorphism group of G1 has a
normal subgroup which is isomorphic to the simple group L(2,7) of linear fraction transfor-
mations of the projective line over the field of 7 elements. The quotient is the cyclic group of
order 2. (In fact M1 ≃ PGL(2, 7).)
L(2,7) is often written as PSL(2, 7). It is isomorphic to the group SL(3, 2) of 3×3 matrices

over the field of 2 elements.

> IsIsomorphic(SL(3,2),PSL(2,7));

-------result-------

> true Homomorphism of SL(3, GF(2)) into GrpPerm: $, Degree 8,

> Order 2^3 * 3 * 7

> induced by

> [1 1 0]

> [0 1 0]

> [0 0 1] |--> (1, 5)(2, 8)(3, 6)(4, 7)

> [0 0 1]

> [1 0 0]

> [0 1 0] |--> (1, 5, 8)(2, 6, 7)

Composition factors are simple groups and therefore SL(3, 2) is the derived group of M1.

> D1 := DerivedGroup(M1);

> tf, _ := IsIsomorphic(D1,SL(3,2)); tf;

-------result-------

> true

The orbits of D1 are the points and lines of the Fano plane.

> Orbits(D1);

-------result-------

> [

> GSet {@ 1, 7, 4, 5, 6, 2, 3 @},

> GSet {@ 8, 14, 12, 13, 9, 11, 10 @}

>]

A GSet is a set with a group action. If G is a permutation group, GSet(G) is the set on which
it acts. Conversely, if X is a GSet, then Group(X) is the group acting on X.

Exercise 5B.1. Let fano be the 7-point plane, and as in the lecture, define a graph (call it
Gr1) on the points and lines by joining each line to the points not on it.

(a) Use MAGMA to show that the automorphism group of Gr1 is isomorphic to the pro-
jective linear group PGL(2,7).

(b) Let

> P2 := {1..7};

> L2 := {{1+n,1+(n+1) mod 7, 1+(n+3) mod 7} : n in [0..6]};

Define a graph G2 by joining each triple X in L2 to the points in its complement
in P2. Use MAGMA to show that G1 is isomorphic to Gr2.

A good start is to check what MAGMA claims the order of PGL(2,7) is. 3

Exercise 5B.2. Let Gr1 be as in 5B.1, and let M1 be its automorphism group.

(a) Check that there are 28 involutions of M1 not in its derived group D.

(b) Check that the involutions form a single conjugacy class in M1 and that each invo-
lution interchanges the orbits of D.

MAGMA IN A NUTSHELL 35

(c) Check that there are 28 symmetric matrices in SL(3,2). Find a connection between
these 28 matrices and the conjugacy class of 28 involutions in M1.

(d) The stabilizer in M1 of a vertex v in the graph Gr1 is the subgroup

> H := Stabilizer(M1,1);

Find the orbits of the stabilizer on the vertices of the graph.

(e) By exploring the action of H on its orbits (or otherwise) show that H is isomorphic
to Sym(4).

Hint: OrbitAction(H,orb), returns f , S, K, where f is a homomorphism from H to the
group S defined by the action of H on orb, and K is the kernel of f . 3

Exercise 5B.3. Let Gr2 be the graph on 36 vertices defined above.

(a) Show that the automorphism group of Gr2 is isomorphic to the group SU(3,3) of
3-by-3 unitary matrices (with coefficients in the field with 9 elements) extended by
the field automorphism x 7→ x3.

(b) Show that the automorphism group of the graph Gr2 is isomorphic to the group of
Lie type G2(2).

Beware: these exercises are rather tricky. 3

In the previous section we extended the graph on the points P and lines L of the Fano plane
by including the flags F and an additional vertex ⋆.

Recall that a flag is an incident point-line pair.

> F := [<i,j> : i,j in [1..7] | P[i] in L[j]];

To define the edges we joined

• ⋆ to all of P and L,
• a point to the 4 lines not through it,
• a point to the 9 flags which have their line through it,
• a line to the 9 flags which have their point on it,
• flags (p1, ℓ1) and (p2, ℓ2) if p1 ̸= p2, ℓ1 ̸= ℓ2, p1 ∈ ℓ2 and p2 ∈ ℓ1.

Represent ⋆ by the pair 0, 0, the point P[i] by -1, i, the line L[j] by -2, j, the flag
(P[i],L[j]) by i, j.

> vertices2 := {@ <0,0> @} join vertices1

> join {@ <i,j> : i,j in [1..7] | P[i] in L[j] @};

> edges2 := {{<0,0>,<-1,i>} : i in [1..7] }

> join { {<0,0>, <-2,i>} : i in [1..7] } join edges1

> join { {<-1,i>,<j,k>} : i,j,k in [1..7] | P[i] in L[k]

> and P[j] in L[k] }

> join { {<-2,i>,<j,k>} : i,j,k in [1..7] | P[j] in L[k]

> and P[j] in L[i] }

> join { {f,g} : f, g in F | f[1] ne g[1] and f[2] ne g[2]

> and (P[f[1]] in L[g[2]] or P[g[1]] in L[f[2]]) };

The graph constructor returns the graph, the vertex set and the edge set but we ignore the
vertex and edge sets.

> G2 := Graph< vertices2 | edges2 >;

This graph has 36 vertices, degree 14, 252 edges.

36 D. TAYLOR AND D. TUBBENHAUER

⋆

7 7

21

9

3

9

3

8

4 4
points lines

flags

⋆

14

21

4

9

6

8

> M2 := AutomorphismGroup(G2);

> CompositionFactors(M2);

-------result-------

> G

> | Cyclic(2)

> *

> | 2A(2, 3) = U(3, 3)

> 1}

> D2 := DerivedGroup(M2);

The derived group D2 of M2 is a subgroup of index 2 isomorphic to the group SU(3, 3) of
3× 3 unitary matrices with coefficients in the Galois field F9 of order 9.

Exercise 5B.4. Use MAGMA to show that M2 is isomorphic to SU(3, 3) extended by the
automorphism σ : x 7→ x3 of F9. 3

Exercise 5B.5. Show that M2 is isomorphic to the group of Lie type G2 over the field of two
elements. 3

The group SU(3, 3) acts on a vector space of dimension 3 over F9 and preserves an hermitian
form.

> J, sigma := StandardHermitianForm(3,3);

> J;

-------result-------

> [0 0 1]

> [0 1 0]

> [1 0 0]

> sigma;

-------result-------

> Mapping from: GF(3^2) to GF(3^2) given by a rule [no inverse]

> V := UnitarySpace(J,sigma);

> U := SU(3,3);

> forall{ g : g in Generators(U) | IsIsometry(V,g)};

-------result-------

> true

We see from J that (1, 0, 0) is isotropic and (0, 1, 0) is non-isotropic.

MAGMA IN A NUTSHELL 37

> u := V![1,0,0]; v := V![0,1,0];

> DotProduct(u,u), DotProduct(v,v);

-------result-------

> 0 1

The isotropic and non-isotropic 1-dimensional subspaces (i.e., lines) of V afford representa-
tions of degrees 28 and 63 of SU(3, 3).

> iso := sub<V|u>^U;

> noniso := sub<V|v>^U;

> #iso, #noniso, "= total number of 1-subspaces:",(9^3-1) div (9-1);

-------result-------

> 28 63 = total number of 1-subspaces: 91

The graph G2 constructed from the Fano plane has 36 vertices. It can be combined with
the representation of degree 63 and a new point ∅ to create a regular graph of degree 36 on
100 vertices.

∅ 36 63

14

21 12
24

It will be more convenient to label the vertices with the integers
1, 2, . . . , 100.

Convert the edges of the graph on 36 points to the new labeling.

> edges := { {Index(vertices2,x) : x in edge} : edge in edges2 };

The 63 new vertices are the non-isotropic lines of the unitary space V . The stabilizer in
SU(3, 3) of a non-isotropic line contains a unique central involution. These involutions are the
elements of a conjugacy of size 63 in SU(3, 3). In MAGMA the conjugacy classes are represented
by triples order, size, representative .

> exists(t) { c[3] : c in Classes(M2) | c[1] eq 2 and c[2] eq 63 };

-------result-------

> true

> X := Conjugates(M2,t);

Convert X from a set to a sequence. This will allow us to refer to individual elements.

> X := SetToSequence(X);

The group M1 is the stabilizer of a vertex of the graph G2. It contains a conjugacy class of
21 involutions that belong to X.

> edges join:= {{i,j+36} : i in [1..36],j in [1..63] | i^X[j] eq i};

We also need the edges between the elements of X. If t ∈ X, the edges just defined join t to
12 elements of G1. So we need to join t to 24 elements of X.

> for i in { Order(s*t) : s in X } do

> i,#{ s : s in X | Order(s*t) eq i };

> end for;

-------result-------

> 1 1

> 2 6

> 3 32

> 4 24

> edges join:= {{i+36,j+36} : i,j in [1..63] | Order(X[i]*X[j]) eq 4};

38 D. TAYLOR AND D. TUBBENHAUER

Let us now see the Wales graph for HaJ: Finally we add the edges from vertex 100 to G1,
create the graph, check that it is regular and find its automorphism group.

> edges join:= { {i,100} : i in [1..36] };

> WalesGraph := Graph< 100 | edges >;

> IsRegular(WalesGraph);

> JJ2 := AutomorphismGroup(WalesGraph);

> CompositionFactors(JJ2);

-------result-------

> G

> | Cyclic(2)

> *

> | J2

> 1

Exercise 5B.6. Check Janko’s conditions for the derived group J2 of JJ2: the center of
a Sylow 2-subgroup is cyclic and the centralizer C of a central involution has a normal
subgroup E such that C/E ≃ Alt(5).

Hint 1: SylowSubgroup, Centre, Centraliser.
Hint 2: to find E, check out pCore(C,2). What is C/E? 3

5C. The group determinant. Suppose that G is a finite group of order n. For each g ∈ G
let xg be an indeterminate.
The determinant of the n× n matrix

(
xgh−1

)
g,h∈G is the group determinant of G.

What is the group determinant of the dihedral group of order 8?
There is a MAGMA intrinsic to compute dihedral groups. The default is to represent them as

permutation groups.

> D8 := DihedralGroup(4);

> D8;

-------result-------

> Permutation group D8 acting on a set of cardinality 4

> Order = 8 = 2^3

> (1, 2, 3, 4)

> (1, 4)(2, 3)

Here is a function for the group determinant:

> groupDet := function(G)

> n := #G;

> P := PolynomialRing(Integers(),n : Global);

> AssignNames(~P,["x" cat IntegerToString(i) : i in [1..n]]);

> L := Setseq(Set(G)); L := [h*g : g in L] where h is L[1]^-1;

> M := ZeroMatrix(P,n,n);

> for i -> x in L, j -> y in L do

> k := Index(L,x*y^-1);

> M[i,j] := P.k;

> end for;

> return M, Determinant(M);

> end function;

> B,D := groupDet(D8);

> Factorisation(D);

-------result-------

> [

MAGMA IN A NUTSHELL 39

> <x1 + x2 - x3 - x4 - x5 - x6 + x7 + x8, 1>,

> <x1 + x2 - x3 - x4 + x5 + x6 - x7 - x8, 1>,

> <x1 + x2 + x3 + x4 - x5 - x6 - x7 - x8, 1>,

> <x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, 1>,

> <x1^2 - 2*x1*x2 + x2^2 + x3^2 - 2*x3*x4 + x4^2 - x5^2 +

> 2*x5*x6 - x6^2 - x7^2 + 2*x7*x8 - x8^2, 2>

>]

What is happening?

• P := PolynomialRing(R,n) — the ring of polynomials in n indeterminates P.1, . . . ,
P.n with coefficients in R.

• AssignNames — names for printing.
• P[x] := PolynomialRing(R,n) will assign names x[1],x[2],... which can be used for
input as well as printing.

• Setseq is a synonym for SetToSequence.
• The where ... is ... clause introduces a variable local to the expression to its left.
• for ... do — this is dual iteration ; i is the index of the element x in L.
• return statements can return more than one value.
• use to ignore a return value.

Let us move to another group. There are many ways to construct the quaternion group Q8

in MAGMA. For example, by generators and relations.

> Q8<r,s> := Group< x,y | x^2 = y^2, x^y = x^-1 >;

The group Q8 is the unique Sylow 2-subgroup and therefore the largest normal 2-subgroup
of SL(2, 3).

> S := SL(2,3);

> Q8 := pCore(S,2);

> M,gD := groupDet(Q8);

> Factorisation(gD);

-------result-------

> [

> <x1 - x2 - x3 - x4 + x5 + x6 - x7 + x8, 1>,

> <x1 - x2 - x3 + x4 + x5 - x6 + x7 - x8, 1>,

> <x1 + x2 + x3 - x4 + x5 - x6 - x7 - x8, 1>,

> <x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, 1>,

> <x1^2 - 2*x1*x5 + x2^2 - 2*x2*x3 + x3^2 + x4^2 - 2*x4*x7

> + x5^2 + x6^2 - 2*x6*x8 + x7^2 + x8^2, 2>

>]

What happened above? Here is a brief curse on naming generators:

> S := SL(2,3);

> S.1;

-------result-------

> [1 1]

> [0 1]

> S<a,b> := SL(2,3);

> print a, b;

-------result-------

> [1 1]

> [0 1]

> [0 1]

> [2 0]

40 D. TAYLOR AND D. TUBBENHAUER

> P<x> := PolynomialRing(Rationals());

> F<a> := NumberField(x^2 - x - 1);

> a^2;

-------result-------

> a + 1

Back to the group determinant. Computing the group determinant quickly becomes very
expensive in both time and space.

> G := Alt(4);

> time M,D := groupDet(G);

-------result-------

> Time: 36.010

> Factorial(#G), Length(D);

-------result-------

> 479001600 417577

From version 2.28 it is possible to find out how many results the caller of your function has
requested. To avoid computing the determinant when it is not needed you could insert the
following lines into the code for groupDet.

> if NumberOfResults() eq 1 then

> return M;

> else

> return M, Determinant(M);

> end if;

Exercise 5C.1. Factorize the group determinants of the five groups of order 12. You can
get the groups from the Small Groups Database.

Warning. This can take rather a long time. Are there faster ways to factorize the group
determinant? 3

5D. Central extensions. A central extension of a group G is a group Γ with a homo-
morphism π from Γ onto G such that the kernel of π is contained in the center of Γ.

Let π : Γ → G be a central extension and let A = ker π. Choose a set T = {xg | g ∈ G } of
coset representatives for A in Γ such that π(xg) = g.

Then xgxh = α(g, h)xgh, for some α : G × G → A. It follows from the associativity of G
that α(xy, z)α(x, y) = α(x, yz)α(y, z). That is, α ∈ Z2(G,A) is a 2-cocycle . The image of α
in H2(G,A) does not depend on the choice of transversal.

Conversely, if A is an abelian group and α ∈ Z2(G,A), there exists a central extension
π : Γ → G with ker π = A and a transversal {xg | g ∈ G } with π(xg) = g such that
xgxh = α(g, h)xgh.
To find the central extensions of Sym(5) by a group of order 2, for example, first construct

the second cohomology group.

> G := Sym(5);

> CM := CohomologyModule(G,A) where A is TrivialModule(G,GF(2));

> H2 := CohomologyGroup(CM,2);

> Dimension(H2);

-------result-------

> 2

Thus H2 = H2(Sym(5), C2) is a vector space of dimension 2 over the field F2. It has four
elements, each of which defines a central extension.

MAGMA IN A NUTSHELL 41

> E0 := Extension(CM,Zero(H2));

> print Type(E0);

-------result-------

> GrpFP

> P0 := CosetImage(E0,sub<E0|>);

> flag, phi := IsIsomorphic(P0,DirectProduct(CyclicGroup(2),G));

> flag;

-------result-------

> true

Exercise 5D.1. Find the other extensions and describe their structure. 3

Exercise 5D.2. Using MAGMA’s cohomology intrinsics find all central extensions of Sym(5)

by the cyclic group of order two and describe their structure. 3

5E. Extended exercise: prime number theorem.

Exercise 5E.1. As before, try to understand what the code below is doing. 3

The prime number theorem is the remarkable statement that the number of primes ≤ n,
denoted by π(n), is asymptotically given by the logarithmic integral li(n) =

∫ n

2
1/ ln(t)dt.

The code to verify this is as follows:

> PrimeNumberTheorem:=procedure(limit)

> n := 10;

> final_prime := 7;

> true_count := 4;

> // low-precision fields for convenience of printing

> R8 := RealField(8); R4 := RealField(4);

> // the heading for the output

> print "n\tpi(n)\tli(n)\tpi(n)/li(n)\tR(n)\tpi(n)/R(n)";

> print "-"^58

> while n le limit do

> p := NextPrime(final_prime);

> while p le n do

> true_count +:= 1;

> final_prime := p;

> p := NextPrime(final_prime);

> end while;

> li_count := LogIntegral(R8!n);

> true_on_li := true_count / li_count;

> rie_count :=&+[LogIntegral(Root(R8!n, k))*MoebiusMu(k)/k : k in [1..15]];

42 D. TAYLOR AND D. TUBBENHAUER

> true_on_rie:= true_count / rie_count;

> printf "%o\t%o\t%o\t%o\t\t%o\t%o\n",

> n, true_count,

> Round(li_count), (true_on_li lt 1 select R4 else R8)!true_on_li,

> Round(rie_count), (true_on_rie lt 1 select R4 else R8)!true_on_rie;

> n *:= 10;

> end while;

> end procedure;

> PrimeNumberTheorem(1000000);

-------result-------

The output is:

Ok, let us go through some of the things happening:

▶ This time we have a procedure procedure(limit) with input being the maximal n we
want to run the prime number counting.

▶ The first interesting bit is the while which counts the primes by adding one to the
counter truecount after finding a prime number.

▶ LogIntegral sets up a logarithmic integral, here with precision 8 determined by fixing
RealField(8) at the beginning.

▶ trueonli is the ratio between the prime numbers and the logarithmic integral.

▶ The final step increases n by a factor of ten using n *:= 10.

Exercise 5E.2. Note that the above does not consider the approximation given by n/ log(n).
Include n/ log(n) into the program and determine what R(n) is. 3

Exercise 5E.3. Try to understand how the table output is created in the code. 3

6. Lecture 3 – Lattices and Lie theory

This section is mostly about root systems and their associated Lie theory. We also discuss
structure constants algebras.

6A. The octonions. Let R be a ring. The algebra O(R) of octonions over R has a basis
1 = e1, e2, . . . , e8, such that

e2i = −1 for i ≥ 2 and

eiej = ±ek for i, j ≥ 2 and i ̸= j,

where the triples {i, j, k} form the lines of a 7-point projective plane on the set {2, 3, . . . , 8}.
The signs are determined by setting e2e3 = e5 = −e3e2 and using the fact that for i, j ≥ 2 and

MAGMA IN A NUTSHELL 43

i ̸= j, the elements ei and ej generate an associative algebra (quaternions) such that eiej = ek
implies ei+1ej+1 = ek+1 (subscripts modulo 7).

Fano again:

> fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0..6] @};

The code

> Algebra< R, n | T >;

creates a structure constant algebra with a basis e1, . . . , en satisfying eiej =
∑

k a
k
ijek,

where the sequence T contains the 4-tuples (i, j, k, akij) such that akij ̸= 0.
The structure constant 4-tuple corresponding to e2e3 = e5 is 2,3,5,1 and from this we get

five more by applying the symmetric group Sym(3) to the first three indices, taking account
of the sign.

> T := [<f[1^g],f[2^g],f[3^g],Sign(g)> : g in Sym(3), f in fano];

Next add e2i = −1 (for 2 ≤ i ≤ 8), then the relations e1ei = eie1 = ei.

> T cat:= [<i,i,1,-1> : i in [2..8]];

> T cat:= [<1,i,i,1> : i in [1..8]] cat [<i,1,i,1> : i in [2..8]];

The octonions over the ring R:

> octonions := func< R | Algebra< R, 8 | T > >;

Remark 6A.1. There is a MAGMA intrinsic OctonionAlgebra(K,a,b,c), where K is a field (of
odd or zero characteristic) and a, b and c are parameters. 3

To check that everything is working, let us print the multiplication table.

> OZ := octonions(Integers());

> PA<e1,e2,e3,e4,e5,e6,e7,e8> := PolynomialAlgebra(Integers(),8);

> print Matrix(PA,8,8,

> [&+[Eltseq(OZ.i*OZ.j)[h] * PA.h : h in [1..8]]: i,j in [1..8]]);

-------result-------

> [e1 e2 e3 e4 e5 e6 e7 e8]

> [e2 -e1 e5 e8 -e3 e7 -e6 -e4]

> [e3 -e5 -e1 e6 e2 -e4 e8 -e7]

> [e4 -e8 -e6 -e1 e7 e3 -e5 e2]

> [e5 e3 -e2 -e7 -e1 e8 e4 -e6]

> [e6 -e7 e4 -e3 -e8 -e1 e2 e5]

> [e7 e6 -e8 e5 -e4 -e2 -e1 e3]

> [e8 e4 e7 -e2 e6 -e5 -e3 -e1]

For each line of the Fano plane there is a quaternion subalgebra. For example, the
quaternion algebra H of the triple [2, 3, 5] is the linear span of 1, e2, e3 and e5 and the
octonion algebra is H⊕ e8H.
The linear span of e2, . . . , e8 is the space of pure octonions.
If ξ = ae1+η, where a is a scalar, and η is a pure octonion, the conjugate of ξ is ξ = ae1−η.

44 D. TAYLOR AND D. TUBBENHAUER

The norm of ξ is defined by ξξ = ξξ = norm(ξ)e1.
The trace of ξ is defined by ξ + ξ = trace(ξ)e1.

ξ2 − trace(ξ)ξ + norm(ξ)e1 = 0.

> conj := func< xi | 2*xi[1]*Parent(xi)!1-xi>;

> norm := func< xi | (xi*conj(xi))[1] >;

> trace := func< xi | 2*xi[1] >;

> F<z1,z2,z3,z4,z5,z6,z7,z8> := FunctionField(Integers(),8);

> OF := octonions(F);

> x := OF![z1,z2,z3,z4,z5,z6,z7,z8];

> norm(x), trace(x), trace(x*OF.3);

-------result-------

> z1^2 + z2^2 + z3^2 + z4^2 + z5^2 + z6^2 + z7^2 + z8^2

> 2*z1

> -2*z3

Exercise 6A.1. Let A = O(Q) denote the algebra of octonions over the field Rational(),
see above.

(a) Let a be the matrix corresponding to the permutation (2, 3, 4, 5, 6, 7, 8). Show that
a is an automorphism of A that permutes the vectors ±ei.

(b) Let b0 be the permutation (2, 7)(3, 4). Show that b0 is an automorphism of the 7-
point plane defined by

> fano := {@ <2+n, 2+(n+1) mod 7, 2+(n+3) mod 7> : n in [0..6] @};

Then find a diagonal matrix d = diag(±1, . . . , ,±1) such that db is an automor-
phism of A that permutes the vectors ±ei, where b is the permutation matrix of
b0.

(c) Let G be the subgroup generated by the matrices a and db. Show that the order
of G is 1344 and that G has a normal abelian subgroup E of order 8 such that the
quotient G/E is isomorphic to SL(3,2). Furthermore, this extension is non-split;
that is, there is no subgroup of G isomorphic to SL(3,2).

Hint: PermutationMatrix(...) 3

6B. Lattices and root systems. A lattice in MAGMA is a free Z-module contained in Qn

or Rn, with a positive definite inner product taking values in Q or R.
A subring of a finite dimensional algebra A over Q is an order if it is a lattice in A (and

contains a basis of A).
An order is integral over Z (i.e., every element is the root of polynomial with coefficients

in Z).
> B := Matrix([[1,2,3],[3,2,1]]);

> L := Lattice(B);

> AmbientSpace(L); //{\black returns two objects}

-------result-------

> Full Vector space of degree 3 over Rational Field

> Mapping from: Lat: L to Full Vector space of degree 3 over

> Rational Field given by a rule [no inverse]

> Rank(L);

-------result-------

> 2

MAGMA IN A NUTSHELL 45

An element of O(Q) is integral if its trace and norm are integers.
A subring of O(Q) is an order if its elements are integral; e.g. O(Z).
There are seven maximal orders in O(Q) that contain O(Z); they are pairwise isomorphic.
An order containing O(Z) is spanned by ei (1 ≤ i ≤ 8) and elements of the form 1

2
(±eh1 ±

eh2 ± eh3 ± eh4).
Let OZ denote the lattice spanned by O(Z) and 1

2
(eh1+eh2+eh3+eh4), where {h1, h2, h3, h4}

or its complement in {1, . . . , 8} has the form {1, i, j, k} and {i, j, k} is a line of the Fano plane
with 1 and 2 swapped.

> X := { Include({h^pi : h in line}, 2) : line in fano }

> where pi is Sym(8)!(1,2); X;

-------result-------

> {1,2,3,5},{1,2,4,8},{1,2,6,7},{1,5,7,8},

> {1,3,6,8},{1,3,4,7},{1,4,5,6}

Conway calls OZ the octavian integers; it is a maximal order.
The units in OZ are the elements of norm 1. They form a

Moufang loop M of order 240.

> X join:= {{1..8} diff x : x in X };

> X := { SetToSequence(x) : x in X };

> OQ := octonions(Rationals());

> B := Basis(OQ);

> M := { a*x : x in B, a in {1,-1} };

> M join:= {(a*B[p[1]]+b*B[p[2]]+c*B[p[3]]+d*B[p[4]])/2 :

> a,b,c,d in {1,-1}, p in X};

> #M, forall{ <x,y> : x,y in M | x*y in M };

-------result-------

> 240 true

Exercise 6B.1. Show that the elements of M satisfy the alternative laws: (xy)x = x(yx),
x(xy) = x2y, (xy)y = xy2 but M is not associative. 3

Exercise 6B.2. Show that every element of M has an inverse. 3

Now let us move to root systems. The reflection rα in the hyperplane orthogonal to a
non-zero vector α in a vector space V with inner product (u, v) is given by

vrα = v − 2(v, α)

(α, α)
α.

In O(Q) we have (u, v) = uv + vu and so vrα = −αvα/αα.

> ref := func< a, v | -a*conj(v)*a / norm(a) >;

> refmat := func< a | MatrixRing(BaseRing(P),Dimension(P))!

> [ref(a,x) : x in Basis(P)] where P is Parent(a) >;

We claim that the Moufang loop M is a root system. That is

• 0 /∈ M.
• For all α ∈ M the reflection rα leaves M invariant.
• For all α, β ∈ M the inner product (α, β) is an integer.

Exercise 6B.3. Use MAGMA to check the claim. 3

First find a set of positive roots

> z := OQ![2^i : i in [1..8]];

> P := {@ v : v in M | InnerProduct(z,v) gt 0 @}; #P;

-------result-------

46 D. TAYLOR AND D. TUBBENHAUER

> 120

A simple root is a positive root that is not the sum of positive roots.

> S := P diff {@ u+v : u,v in P | u+v in P @};

> V := VectorSpace(OQ);

> SV := ChangeUniverse(S,V);

> C := Matrix(Integers(),8,8,[2*(a,b)/(b,b) : a,b in SV]);

> C; //\black Cartan matrix

-------result-------

> [2 -1 -1 -1 0 0 0 0]

> [-1 2 0 0 0 0 0 -1]

> [-1 0 2 0 0 0 0 0]

> [-1 0 0 2 0 0 -1 0]

> [0 0 0 0 2 -1 0 0]

> [0 0 0 0 -1 2 -1 0]

> [0 0 0 -1 0 -1 2 0]

> [0 -1 0 0 0 0 0 2]

We are ready for E8, Coxeter group, Dynkin diagram, automorphisms. The octavian ring
OZ is the E8 root lattice.

> W := CoxeterGroup(C);

> DynkinDiagram(W);

-------result-------

> E8 8 - 2 - 1 - 4 - 7 - 6 - 5

> |

> 3

w ∈ OZ has order 3 if and only if its norm is 1 and trace is −1.

> M3 := [x : x in M | trace(x) eq -1];

> forall{ w : w in M3 | w^3 eq 1 };

-------result-------

> true

If w has order 3, the map x 7→ wxw is an automorphism of OZ.

> aut := func< a, v | a^3 eq 1 select a^2*v*a else 0 >;

> autmat := func< a | MatrixRing(BaseRing(P),Dimension(P))!

> [aut(a,x) : x in Basis(P)] where P is Parent(a) >;

> forall{ <s,t,w> : s,t in S, w in M3 | aut(w,s*t) eq aut(w,s)*aut(w,t)};

-------result-------

> true

The automorphism group of OZ is as follows.

> reps := [Rep(Q) : Q in {{x,x^-1} : x in M3}];

> gens := [autmat(w) : w in reps];

> G := sub<GL(8,Rationals()) | gens >;

> CompositionFactors(G); #G;

-------result-------

> G

> | 2A(2, 3) = U(3, 3)

> 1

> 6048

MAGMA IN A NUTSHELL 47

Exercise 6B.4. Show that the elements gens are involutions and that G can be generated
by three of them. 3

Exercise 6B.5. Find the orbits of G on M and their lengths. 3

The map x 7→ x is an automorphism of OZ; its matrix is

> conjmat := MatrixRing(Rationals(),8)![conj(b) : b in Basis(OQ)];

> A := sub<GL(8,Rationals()) | G, conjmat >; #A;

-------result-------

> 12096

Exercise 6B.6. Show that A is the full automorphism group of OZ. 3

6C. Reductive groups. A reductive group is defined by a root datum and a field.
A root datum is a 4-tuple R = (X,Φ, Y,Φ⋆) where X and Y are lattices in duality with

respect to a pairing (−,−) : X × Y → Z, and Φ ⊂ X and Φ⋆ ⊂ Y are root systems with a
bijection Φ → Φ⋆ : α 7→ α⋆ such that (α, α⋆) = 2. For α ∈ Φ, the reflections

sα : X → X : x 7→ x− (x, α⋆)α and

s⋆α : Y → Y : y 7→ y − (α, y)α⋆

satisfy Φsα = Φ and Φ⋆s⋆α = Φ⋆.
The Weyl group of R is (sα | α ∈ Φ).
The root datum is completely determined by its simple roots and simple coroots.

> RD := RootDatum("E7" : Isogeny := "SC");

-------result-------

> RD: Simply connected root datum of dimension 7 of type E7

Let e1, e2, . . . , ed be a basis for X, let f1, f2, . . . , fd be the dual basis for Y and use these
bases to identify X and Y with the standard lattice Zd.

Choose a base of simple roots α1, . . . , αℓ for Φ.
Then αi =

∑d
j=1 aijej and α⋆

i =
∑d

j=1 bijfj and C = (αi, α
⋆
j) = AB⊤, where A =

(
aij

)
and

B =
(
bij

)
.

Conversely, a pair of ℓ× d matrices A and B such that AB⊤ is a Cartan matrix determines
a root datum R. The rows of A are the simple roots and the rows of B are the corresponding
coroots.

The semisimple rank of R is ℓ, the number of simple roots; the reductive rank is d,
the rank d of X.

Isogeny: the root datum is semisimple if ℓ = d; it is adjoint if X = ZΦ;
it is simply connected if Y = ZΦ⋆.

Adjoint and simply connected root data are necessarily semisimple.
Now, a MAGMA example:

> RD := RootDatum("G2");

> A := SimpleRoots(RD); A;

-------result-------

> [1 0]

> [0 1]

> B := SimpleCoroots(RD); B;

-------result-------

> [2 -3]

> [-1 2]

> CartanMatrix(RD) eq A*Transpose(B);

48 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> true

> RD eq RootDatum(A,B);

-------result-------

> true

Exercise 6C.1. Find all semisimple root data (up to isomorphism) of type A3. (Hint: Let
C be a Cartan matrix of type A3 and consider factorizations C = AB⊤.) 3

Suppose that RD is a root datum (X,Φ, Y,Φ⋆)
If A is a ring, GroupOfLieType(RD,A) creates a group of Lie type .
The generators are root elements xα(a) and torus elements y⊗ t, where α ∈ Φ, a ∈ A,

y ∈ Y and t ∈ A (t ̸= 0).

> RD := RootDatum("G2");

> F := GaloisField(5);

> G := GroupOfLieType(RD,F);

> Random(G);

-------result-------

> x2(2) x3(2) x6(1) x4(4) x5(3) x1(3)

> (2 1)

> n1 n2 n1 n2 n1

> x3(2) x6(3) x4(3) x5(3) x1(1)

(2, 1) is the torus element (f1 ⊗ 2)(f2 ⊗ 1); elt < G|V ector(F, [2, 1]) >.
n1 n2 n1 n2 n1 is the Weyl group element corresponding to the product of reflections

sα1sα2sα1sα2sα1 ; elt < G|1, 2, 1, 2, 1 >.
The weight lattice is Λ = {x ∈ QΦ | (x, α⋆) ∈ Z for all α ∈ Φ }. It has a basis ϖ1, . . . , ϖℓ

of fundamental weights dual to the simple coroots. A weight λ ∈ Λ is dominant if (λ, α⋆) ≥ 0
for all simple roots α; i.e., a non-negative linear combination of the fundamental weights.

Let L be a finite-dimensional rational G-module, where G is a reductive group. Then
L =

⊕
λ Lλ∈Λ, where

Lλ = { v ∈ L | v(y ⊗ t) = t(λ,y)v for all y ∈ Y , t ∈ K× }

and λ is a weight of L if Lλ ̸= 0. If G is semisimple and λ is a dominant weight, there is
an irreducible G-module whose highest weight is λ. The restriction to a finite group of Lie
type need not be irreducible.

> G := GroupOfLieType(RD,GF(3));

> rho := HighestWeightRepresentation(G,[3,0]); rho;

-------result-------

> Mapping from: GrpLie: G to GL(77, GF(3)) given by a rule

> [no inverse]

> IsIrreducible(Image(rho));

-------result-------

> false

> RD := RootDatum("G2" : Isogeny := "SC");

If t is a field element, the MAGMA code for xαi
(t), where αi is the ith root in the group G of

Lie type is elt < G| < i, t >>.
Using a the function field (i.e., the ring of fractions of the polynomial ring) of the finite field

F5 we can carry out symbolic calculations.

MAGMA IN A NUTSHELL 49

> FF<w,z> := FunctionField(GF(5),2);

> G := GroupOfLieType(RD,FF);

> elt<G| <1,w>> * elt<G|<2,z>>;

-------result-------

x2(z) x3(w*z) x6(w^3*z^2) x4(w^2*z) x5(w^3*z) x1(w)

> std := StandardRepresentation(G); std(TorusTerm(G,3,z));

-------result-------

> [z 0 0 0 0 0 0]

> [0 z^2 0 0 0 0 0]

> [0 0 1/z 0 0 0 0]

> [0 0 0 1 0 0 0]

> [0 0 0 0 z 0 0]

> [0 0 0 0 0 1/z^2 0]

> [0 0 0 0 0 0 1/z]

Let us now discuss an application: constructive recognition
Given a group H with generators Y , construct an isomorphism between H and a ‘standard

copy’. Use this this to write an arbitrary element of H as a straight-line program (SLP)
in Y .
If we know that H is a homomorphic image of a simply connected finite group of Lie type

G(q) we can do the following.

• Identify the Lie type of H.
• Use the Liebeck–O’Brien algorithm to construct a Curtis–Steinberg–Tits presentation
for H.

• Construct a homomorphism ρ : G(q) → H using the CST generators of G(q).
• Construct φ : H → G(q) such that ρ(φ(h)) = h. For h ∈ H, φ(h) will be a word in
the Steinberg generators of G(q).

Let C be the algebra of octonions over the finite field Fq of q elements and suppose that q is
odd. We shall construct A = Aut(C) as a matrix group and then find an explicit isomorphism
with a group of Lie type defined by Chevalley–Steinberg generators.

> q := 5;

> C := octonions(GF(q));

In order to proceed we need some automorphisms.
An orthogonal pair is an ordered pair (a, b) of elements of norm 1 in C such that a and b

are orthogonal to 1 and to each other. Equivalently, (a, b) is an orthogonal pair if a2 = b2 = −1
and ab = −ba. Thus the linear span of 1, a, b and ab is a ‘quaternion algebra’.
Theorem. The automorphism group of C acts transitively on the set of orthogonal pairs.
For a proof, read the function coming up!
Given orthogonal pairs p1 and p2, the following function returns the matrix of an automor-

phism of O(q) transforming p1 to p2.

> orthogPairAut := function(p1,p2)

> a1, b1 := Explode(p1);

> a2, b2 := Explode(p2);

> C := Parent(a1);

> V := VectorSpace(C);

> B1 := [V| One(C), a1, b1, a1*b1];

> B1perp := OrthogonalComplement(V,sub<V|B1>);

> assert exists(c1){ c : v in B1perp | norm(c) ne 0 where c is C!v};

> mu := norm(c1);

> B1 cat:= [V| c1, c1*a1, c1*b1, c1*(a1*b1)];

50 D. TAYLOR AND D. TUBBENHAUER

> B2 := [V| One(C), a2, b2, a2*b2];

> B2perp := OrthogonalComplement(V,sub<V|B2>);

> assert exists(c2){ d : v in B2perp | norm(d) eq mu where d is C!v};

> B2 cat:= [V| c2, c2*a2, c2*b2, c2*(a2*b2)];

> return Matrix(B1)^-1*Matrix(B2);

> end function;

Here is another version of orthogPairAut:

> orthogPairAut2 := function(p1,p2)

> extendBasis := function(p : lambda := 0) //{\black local function}

> a, b := Explode(p);

> assert a^2 eq -1 and b^2 eq -1 and a*b eq -b*a; //{\black error check}

> C := Parent(a);

> V := VectorSpace(C);

> B := [V| One(C), a, b, a*b];

> Bperp := OrthogonalComplement(V,sub<V|B>);

> c := (lambda eq 0) select rep{c : v in Bperp | norm(c) ne 0

> where c is C!v}

> else rep{c : v in Bperp | norm(c) eq lambda where c is C!v};

> return B cat [V| c*C!x : x in B], norm(c);

> end function;

> B1, lambda := extendBasis(p1);

> B2, _ := extendBasis(p2 : lambda := lambda);

> return Matrix(B1)^-1*Matrix(B2);

> end function;

The lines of the Fano plane provide a supply of orthogonal pairs.

> p1 := <C.2,C.3>;

> auts := [orthogPairAut(p1,<C.i,C.j>) : pp in fano[2..7] |

> true where i,j is Explode(pp)];

> L := sub< GL(8,q) | auts >; #L;

-------result-------

> 1344

Not quite large enough. Let us find another automorphism.

\magmacode

> a := &+[C.i : i in [3..8]];

> b := C![0,0,3,2,3,0,2,0];

> a^2 eq -1, b^2 eq -1, a*b + b*a eq 0;

-------result-------

> true true true

> g := orthogPairAut(p1,<a,b>);

> A := sub<GL(8,q) | L, g >;

> LieType(A,5);

-------result-------

> true <G, 2, 5>

Exercise 6C.2. Use MAGMA to find b (or equivalent). 3

Exercise 6C.3. The MAGMA code

> P<x> := PolynomialRing(Rationals());

> F<t> := NumberField(x^2-x-1);

MAGMA IN A NUTSHELL 51

creates the field F generated over the rationals by the element t such that t2 − t− 1 = 0.
Then the code

> H<i,j,k> := QuaternionAlgebra< F | -1,-1 >;

creates the algebra of quaternions over F with basis 1, i, j, k such that

i2 = j2 = k2 = ijk = −1.

Let

> p := (1/2)*(-1+i+j+k);

> s := (1/2)*(t-1+i+t*j);

> X := {H ! 1,p,s};

and let I be the smallest multiplicatively closed subset of H containing X.
Show that I is isomorphic to SL(2,5). Moreover, show that I is a root system (when

considered as a subset of H). What is its Cartan type? 3

6D. G2. Here is the group G2(q):

> G := GroupOfLieType("G2",q : Isogeny := "SC");

> flag, _, _, _, _, X, _ :=

> ExceptionalConstructiveRecognition(A,G,2,5);

> rho := Morphism(G,X[1],X[2] : GS);

> rho(elt<G|<1,2>>);

-------result-------

> [1 0 0 0 0 0 0 0]

> [0 4 3 0 3 3 2 2]

> [0 1 4 4 3 2 4 3]

> [0 4 2 4 3 4 2 4]

> [0 2 2 2 1 0 2 2]

> [0 3 2 0 0 4 1 4]

> [0 4 0 2 3 0 4 1]

> [0 3 2 1 3 1 4 1]

> f := Inverse(rho);

> f(A.1);

-------result-------

> x2(1) x3(2) x6(3) x5(3) n2 n1 n2 n1 n2 x2(4) x3(3) x5(2)

Miscellaneous properties of Aut(O(q)) are:

> FactoredOrder(A);

-------result-------

> [<2, 6>, <3, 3>, <5, 6>, <7, 1>, <31, 1>]

> M := GModule(A);

> DirectSumDecomposition(M);

-------result-------

> [

> GModule of dimension 1 over GF(5),

> GModule of dimension 7 over GF(5)

>]

Borel subgroup

> bgens := [elt<G| <1,1>> ,elt<G|<2,1>>];

> borel := sub<A | [rho(x) : x in bgens] >;

> FactoredOrder(borel);

52 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> [<5, 6>]

Torus

> tgens := [TorusTerm(G,i,2) : i in [1,2]];

> torus := sub< A | [rho(x) : x in tgens] >;

> FactoredOrder(torus);

-------result-------

> [<2, 4>]

MAGMA cannot compute the stabilizer of C.2 directly nor can C.2 be coerced directly into
the module M. Instead, we do the following.

> A1 := Stabiliser(A,Vector(C.2));

> CompositionFactors(A1);

-------result-------

> G

> | A(2, 5) = L(3, 5)

> 1

The group A1 ≃ PSL(3, 5) is not maximal. It has index 2 in its normalizer.

> N1 := Normaliser(A,A1);

> Index(N1,A1);

-------result-------

> 2

However, N1 is maximal because the action of A on the cosets of N1 is primitive.

> B := CosetImage(A,N1);

> IsPrimitive(B);

-------result-------

> true

Exercise 6D.1. Let p be a prime and let S be the simply connected group of Lie type A and
rank 1 over the finite field of p elements. For p = 2, 3, 5 find the dimensions of the highest
weight representations of S (as computed by MAGMA)? 3

6E. Extended exercise: Farey fractions.

Exercise 6E.1. As already twice before, try to understand what the code below is doing. 3

The Farey sequence of order n is the sequence of completely reduced fractions, say be-
tween 0 and 1, which when in lowest terms have denominators less than or equal to n, arranged
in order of increasing size.

Code producing these fractions is:

MAGMA IN A NUTSHELL 53

> D := Denominator;

> N := Numerator;

> function farey(n)

> if n eq 1 then

> return [RationalField() | 0, 1];

> end if;

> f := farey(n-1);

> i := 0;

> while i lt #f-1 do

> i +:= 1;

> if D(f[i]) + D(f[i+1]) eq n then

> Insert(~f, i+1, (N(f[i]) + N(f[i+1]))/(D(f[i]) + D(f[i+1])));

> end if;

> end while;

> return f;

> end function;

> time f100 := farey(100);

> farey(10);

-------result-------

> Time: 0.130

> [0, 1/10, 1/9, 1/8, 1/7, 1/6, 1/5, 2/9, 1/4, 2/7, 3/10, 1/3, 3/8, 2/5,

> 3/7, 4/9, 1/2, 5/9, 4/7, 3/5, 5/8, 2/3, 7/10, 5/7, 3/4, 7/9, 4/5, 5/6,

> 6/7, 7/8, 8/9, 9/10, 1]

Instead of spoiling the exercise, let us keep it short:

▶ This is again a recursion and the function calls itself for a lower value.

▶ n eq 1 sets the recursion minimum.

▶ farey(n-1) is the same function for smaller n.

Exercise 6E.2. Modify the program so that it outputs Farey sequences for the interval [a, b]
where a < b are two input values. 3

7. Lecture 4 – Representation theory of finite dimensional algebras

MAGMA has two different ways to study representation theory of finite dimensional algebras:
by directly constructing the representations, or using character theory. The latter is for finite
groups only, and we will start with it.

7A. Character theory. Throughout we consider finite groups. Recall that the character
of a group representation is a function on the group that associates to each group element the
trace of the corresponding matrix. The character carries the essential information about the
representation in a more condensed form, and the easiest way to study representations of a
finite group is to look at their character.

Recall that characters are constant on conjugacy classes, so it is enough to record them in
a sequence (c1, . . . , ck) where ci is the value of the character on the ith conjugacy class.
The first thing to try is:

> G:=SymmetricGroup(3);

> X:=CharacterTable(G);

> X

-------result-------

> Character Table of Group G

> --------------------------

54 D. TAYLOR AND D. TUBBENHAUER

>

>

> -----------------

> Class | 1 2 3

> Size | 1 3 2

> Order | 1 2 3

> -----------------

> p = 2 1 1 3

> p = 3 1 2 1

> -----------------

> X.1 + 1 1 1

> X.2 + 1 -1 1

> X.3 + 2 0 -1

What do we see? Well, let us ignore finite characteristic and different fields for now, that is
let us ignore

> -----------------

> p = 2 1 1 3

> p = 3 1 2 1

> -----------------

and the sign + in the table.
Then what we see is from top to bottom, a numbering for the conjugacy classes, their sizes,

their order (that is, the order of any element in the conjugacy class). Finally, the square
matrix of characters, with the rows being the character sequences as above.
Let us double check the conjugacy classes:

> ConjugacyClasses(G);

-------result-------

> Conjugacy Classes of group G

> ----------------------------

> [1] Order 1 Length 1

> Id(G)

>

> [2] Order 2 Length 3

> (1, 2)

>

> [3] Order 3 Length 2

> (1, 2, 3)

which works out with

> -----------------

> Class | 1 2 3

> Size | 1 3 2

> Order | 1 2 3

> -----------------

MAGMA can do character computations really fast. Here are slightly bigger examples, using
the group databases SmallGroup(n,j) and Group("X"):

> G := SmallGroup(512,11600);

> time X := CharacterTable(G);

> #X;

> Degree(X[14]);

-------result-------

MAGMA IN A NUTSHELL 55

> Time: 0.030

> 44

> 2

> G := Group("HS");

> #G;

> time X := CharacterTable(G);

> #X;

> Degree(X[14]);

-------result-------

> Time: 0.160

> 44352000

> 24

> 896

Back to SymmetricGroup(3). To get a specific row = character, or even a specific entry, we
can use for example:

> X[3]; X[3][2];

-------result-------

> (2, 0, -1)

> 0

Note however that a character is not a sequence. And that is good, because we can add
and multiply characters:

> Type(X[3]); X[3]+X[2]; X[3]*X[2];

-------result-------

> AlgChtrElt

> (3, -1, 0)

> (2, 0, -1)

In fact, characters live in the character ring, so there are some other (not quite representation
theoretical) operations, e.g.:

> X[3]-X[2]; 4*X[3];

> IsCharacter(X[3]-X[2]); IsGeneralizedCharacter(X[3]-X[2]);

-------result-------

> (1, 1, -2)

> (8, 0, -4)

> false

> true

Some more operations (hopefully self-explanatory) on characters are:

> IsIrreducible(X[3]); IsIrreducible(X[3]*X[3]);

> IsFaithful(X[2]); IsFaithful(X[3]);

> IsLinear(X[2]); IsLinear(X[3]);

-------result-------

> true

> false

> false

> true

> true

> false

56 D. TAYLOR AND D. TUBBENHAUER

Remark 7A.1. Let us add the following known but maybe not well-known fact which explains
why MAGMA can check faithfulness efficiently from the character table: a finite dimensional
complex representation V of a finite group is faithful ⇔ dimV appears only in the character
entry of the unit. 3

Exercise 7A.1. Run the following code

> for n in [2..14] do

> G:=SymmetricGroup(n);

> X:=CharacterTable(G);

> M:=[1..#X];

> for i in [1..#X] do

> if(IsFaithful(X[i]) eq true) then M[i]:=1; else M[i]:=0; end if;

> end for;

> M;

> end for;

and interpret the output. What happens for SpecialLinearGroup(2,p) (p is a prime)
instead of the symmetric group?

3

Also, recall that characters are traces, so we can evaluate them:

> G.2 @ X[2]

-------result-------

> -1

Numerical values associated to characters:

> Degree(X[3]);

> InnerProduct(X[3],X[3]*X[3]);

> Norm(X[3]*X[3]);

> Indicator(X[3]);

-------result-------

> 2

> 1

> 3

> 1

We will come back to the Schur indicator Indicator() later. Otherwise, the norm is the
inner product with itself, and the inner product InnerProduct(x,y); measures how often x
appears in y. Degree is the dimension.
With the inner product we can decompose characters into simple characters (simple means

irreducible):

> G:=SymmetricGroup(3);

> X:=CharacterTable(G);

> y:=X[3]*X[3];

> M:=[1..#X];

> for i in [1..#X] do

> M[i]:=InnerProduct(y,X[i]);

> end for;

> M;

-------result-------

> [1, 1, 1]

MAGMA IN A NUTSHELL 57

Exercise 7A.2. Consider following code:

> G:=SymmetricGroup(3);

> X:=CharacterTable(G);

> for n in [1..10] do

> y:=X[3]^(n);

> M:=[1..#X];

> for i in [1..#X] do

> M[i]:=InnerProduct(y,X[i]);

> end for;

> RealField(10)!(&+M)^(1/n);

> end for;

-------result-------

> 1.000000000

> 1.732050808

> 1.709975947

> 1.821160287

> 1.838416287

> 1.871736643

> 1.886389086

> 1.901623404

> 1.911688613

> 1.920622757

What is the code doing? Modify the code so that it works for power between 90 to 100,
and for any representation of SymmetricGroup(5). What is the limit n → ∞? 3

Let us restrict and induce :

> G:=SymmetricGroup(5);

> H:=sub< SymmetricGroup(5) | (1,2), (2,3), (3,4)>;

> X:=CharacterTable(G);

> Y:=CharacterTable(H);

> Induction(Y[3],G);

> Restriction(X[3],H);

-------result-------

> (10, 0, 2, -2, 0, 0, 0)

> (4, 0, -2, 1, 0)

Frobenius reciprocity (for the symmetric group) is then:

> G:=SymmetricGroup(5);

> H:=sub< SymmetricGroup(5) | (1,2), (2,3), (3,4)>;

> K:=sub< G | (1,2), (2,3)>;

> Y:=CharacterTable(H);

> Restriction(Induction(Y[3],G),H);

> Induction(Restriction(Y[3],K),H);

> Restriction(Induction(Y[3],G),H)-Induction(Restriction(Y[3],K),H)-Y[3];

-------result-------

> (10, 2, 0, -2, 0)

> (8, 0, 0, -1, 0)

> (0, 0, 0, 0, 0)

Restriction and induction can be setup in many ways:

> G<x,y>:=PermutationGroup<23|

58 D. TAYLOR AND D. TUBBENHAUER

> [2,1,4,3,5,6,8,7,10,9,11,12,14,13,16,15,17,18,20,19,22,21,23],

> [16,9,1,5,8,22,7,23,21,10,3,2,20,18,17,11,15,6,19,13,12,14,4]>;

> CompositionFactors(G);

> #G;

> Factorization(#G);

> H:=SylowSubgroup(G,2);

> #H;

-------result-------

> G

> | M23

> 1

> 10200960

> [<2, 7>, <3, 2>, <5, 1>, <7, 1>, <11, 1>, <23, 1>]

> 128

This is the Mathieu group M23, and we took a 2-Sylow subgroup of it. We can now
induce and restrict between G and H, say the PermutationCharacter(G,H) (obtained from the
right cosets action of G on H):

> x:=PermutationCharacter(G,H);

> x;

> Restriction(x,H);

> Induction(Restriction(x,H),G);

-------result-------

> (79695, 735, 0, 19, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

> (79695, 735, 735, 735, 735, 735, 735, 735,

> 19, 19, 19, 19, 19, 19, 19, 19, 1)

> (6351293025, 540225, 0, 361, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

Finally, let us say again that MAGMA is really fast when it comes to characters. The following
computes the character table of SymmetricGroup(15) from scratch.

> G:=sub< SymmetricGroup(16) | (1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)>;

> #G;

> Factorial(15);

> time X:=CharacterTable(G);

-------result-------

> 1307674368000

> 1307674368000

> Time: 4.090

Remark 7A.2. Fun fact, the symmetric group SymmetricGroup(15) can be generated by two
elements: a simple transition , say (1, 2), and the long cycle , here (1, . . . , 15). 3

Exercise 7A.3. What is the largest n so that MAGMA’s online calculator can output the
character table of SymmetricGroup(n)? Compare the from scratch construction above with
time X:=CharacterTable(SymmetricGroup(n)). 3

Let us end with an instance of the law of small numbers : on first sight the characters
of the symmetric group seems to have small entries. But that is really only the case for
small n; here is MAGMA code that computes the average character values of symmetric groups
SymmetricGroup(n) up to SymmetricGroup(15):

> for n in [1..15] do

> G:=SymmetricGroup(n);

> X:=CharacterTable(G);

MAGMA IN A NUTSHELL 59

> Av:=0;

> for i in [1..#X] do

> for j in [1..#X] do

> Av+:=Abs(X[i][j]);

> end for;

> end for;

> RealField(10)!(Av/(#X)^(2));

> end for;

-------result-------

> 1.000000000

> 1.000000000

> 1.000000000

> 1.080000000

> 1.244897959

> 1.528925620

> 2.084444444

> 2.950413223

> 4.768888889

> 8.195011338

> 15.95663265

> 31.45977399

> 70.97568866

> 161.9799726

> 402.7822831

Exercise 7A.4. Write MAGMA code that gives the average degree of characters of symmetric
groups. Compare to the average character values given above. 3

7B. Working with representations. One can work with representations instead of char-
acters. The advantage is that this works for any finite dimensional algebra, but at the cost of
a slower performance. Let us look at an example to get started:

> G:=SymmetricGroup(7);

> X:=CharacterTable(G);

> y:=PermutationCharacter(G);

> y;

> M:=[1..#X];

> for i in [1..#X] do

> M[i]:=InnerProduct(y^5,X[i]);

> end for;

> time M;

-------result-------

> (7, 5, 1, 3, 4, 1, 3, 1, 2, 0, 2, 1, 0, 0, 0)

> [52, 0, 1, 151, 160, 4, 5, 74, 160, 15, 75, 41, 30, 45, 150]

> Time: 0.000

> G:=SymmetricGroup(7);

> M:=PermutationModule(G,RationalField());

> M;

> time IndecomposableSummands(TensorPower(M,5));

60 D. TAYLOR AND D. TUBBENHAUER

-------result-------

For the symmetric group, PermutationModule and PermutationCharacter are the represen-
tation respectively character obtained by the action of SymmetricGroup(n) on a vector space
(using complex numbers for the character and a field that we specify for the representation)
of dimension n by permutation of a fixed basis.

Remark 7B.1. Note that MAGMA actually works with modules , i.e. vector spaces with
actions, and not with representations , i.e. the homomorphisms defining the action. We
will see that in more details below. In any case, we abuse language and say representations.

3

Exercise 7B.1. Compare the third tensor powers, via characters and representations, and
their timing. 3

Ok, computational aspects aside, we can now setup nonsemisimple representations. We start
with PGL(3,4), the projective linear group PGL(F3

4) = GL(F3
4)/center over the Galois field

GF(4) with four elements and look at representations over GF(3):

> G:=PGL(3,4);

> M:=PermutationModule(G,GF(3));

> M; IsSemisimple(M);

-------result-------

> GModule M of dimension 21 over GF(3)

> false

Here we get a 21 dimensional representation using PermutationModule because PGL(3,4) is
realized in MAGMA within SymmetricGroup(21):

> PGL(3,4);

-------result-------

> Permutation group acting on a set of cardinality 21

> Order = 60480 = 2^6 * 3^3 * 5 * 7

> (4, 14, 21)(5, 15, 17)(7, 10, 20)(8, 9, 12)(11, 13, 19)

> (1, 8, 21, 16, 15, 3, 2)(4, 10, 20, 18, 17, 9, 7)

> (5, 12, 11, 14, 19, 13, 6)

To move on, we note that this is indeed not semisimple, so the composition factors are
different from the direct summands:

> CompositionSeries(M);

> CompositionFactors(M);

> IsIrreducible(M);

> IndecomposableSummands(M);

-------result-------

> [

> GModule of dimension 1 over GF(3),

> GModule of dimension 20 over GF(3),

> GModule M of dimension 21 over GF(3)

MAGMA IN A NUTSHELL 61

>]

> [

> GModule of dimension 1 over GF(3),

> GModule of dimension 19 over GF(3),

> GModule of dimension 1 over GF(3)

> false

>]

> [

> GModule M of dimension 21 over GF(3)

>]

Let us test whether the composition factors are the same or not:

> X:=CompositionFactors(M); X;

> IsIsomorphic(X[1],X[3]);

> ConstituentsWithMultiplicities(M);

-------result-------

> true

> [

> <GModule of dimension 1 over GF(3), 2>,

> <GModule of dimension 19 over GF(3), 1>

>]

> [1, 2, 1]

Many other tricks can be played as soon as a representation is setup, e.g.:

> IndecomposableSummands(TensorPower(M,2));

> IndecomposableSummands(ExteriorPower(M,2));

> IndecomposableSummands(SymmetricPower(M,2));

-------result-------

> [

> GModule of dimension 21 over GF(3),

> GModule of dimension 21 over GF(3),

> GModule of dimension 84 over GF(3),

> GModule of dimension 126 over GF(3),

> GModule of dimension 189 over GF(3)

>]

> [

> GModule of dimension 84 over GF(3),

> GModule of dimension 126 over GF(3)

>]

> [

> GModule of dimension 21 over GF(3),

> GModule of dimension 21 over GF(3),

> GModule of dimension 189 over GF(3)

>]

Or submodules can be constructed:

> G:=PGL(3,4);

> M:=PermutationModule(G,GF(3));

> N:=JacobsonRadical(M);

> I:=IndecomposableSummands(TensorProduct(M,N));

> I; IsIsomorphic(I[1],M);

-------result-------

62 D. TAYLOR AND D. TUBBENHAUER

> [

> GModule of dimension 21 over GF(3),

> GModule of dimension 84 over GF(3),

> GModule of dimension 126 over GF(3),

> GModule of dimension 189 over GF(3)

>]

> true

So, since the usual algebra can just be run in MAGMA with only the memory being a problem,
the crucial question remains how to construct representations to begin with.

For groups one can construct all simple representation and all projective indecomposables
over any finite field in one go, say for the 3-by-3 general linear group with coefficients in GF(2):

> G:=PGL(3,2);

> X:=IrreducibleModules(G,GF(2));

> Y:=IrreducibleModules(G,GF(3));

> X; Y;

-------result-------

> [

> GModule of dimension 1 over GF(2),

> GModule of dimension 3 over GF(2),

> GModule of dimension 3 over GF(2),

> GModule of dimension 8 over GF(2)

>]

> [

> GModule of dimension 1 over GF(3),

> GModule of dimension 6 over GF(3),

> GModule of dimension 6 over GF(3),

> GModule of dimension 7 over GF(3)

>]

> A:=ProjectiveIndecomposableModules(G,GF(2));

> B:=ProjectiveIndecomposableModules(G,GF(3));

> A; B;

-------result-------

> [

> GModule of dimension 8 over GF(2),

> GModule of dimension 16 over GF(2),

> GModule of dimension 16 over GF(2),

> GModule of dimension 8 over GF(2)

>]

> [

> GModule of dimension 9 over GF(3),

> GModule of dimension 6 over GF(3),

> GModule of dimension 6 over GF(3),

> GModule of dimension 15 over GF(3)

>]

Projective covers can also be constructed easily:

> ProjectiveCover(X[1]);

-------result-------

> GModule of dimension 8 over GF(2)

>

MAGMA IN A NUTSHELL 63

> [1]

> [1]

> [1]

> [1]

> [1]

> [1]

> [1]

> [1]

Similarly, one can use InjectiveHull() to construct injective hulls .

Remark 7B.2. Note that MAGMA has a bias and likes projective things over injective things.
However, for a group this does not make a difference since the projective covers and injective
hulls coincide. 3

Let us look at a slightly bigger example. We consider the cyclic group CyclicGroup(5), this
is Z/5Z, and its representations over GF(5). This group has five indecomposables (called Z
below) and only one simple (called L below) representation. The indecomposables are the
representations where the generator of Z/5Z acts by the following Jordan blocks:

We construct the three dimensional Z/5Z-representation Z3 = Z3 that is indecomposable but
not simple:

G:=CyclicGroup(5);

Z3:=CompositionSeries(ProjectiveIndecomposables(G,GF(5))[1])[3];

IsIrreducible(Z3);

IndecomposableSummands(Z3);

-------result-------

> false GModule of dimension 1 over GF(5)

> GModule of dimension 2 over GF(5)

> [

> GModule X of dimension 3 over GF(5)

>]

There are additionally Z1 and Z5 of dimensions one and five, respectively, which are the
trivial Z/5Z-representation and the regular Z/5Z-representation. We have Z3 ⊗ Z3 ∼= Z1 ⊕
Z3⊕ Z5, with only Z5 being projective:

> P:=IndecomposableSummands(TensorPower(Z3,2));

> P;

> IsProjective(P[1]);

> IsProjective(P[2]);

> IsProjective(P[3]);

-------result-------

64 D. TAYLOR AND D. TUBBENHAUER

> [

> GModule of dimension 1 over GF(5),

> GModule of dimension 3 over GF(5),

> GModule of dimension 5 over GF(5)

>]

> false

> false

> true

Exercise 7B.2. Check with MAGMA that Z3⊗ Z5 ∼= Z5⊕3. 3

Since Z1 is the trivial Z/5Z-representation, if we annihilate Z5, then we have that Z3⊗2

satisfies X2 = 1+X whose roots are the golden ratio and its Galois conjugate. Thus, tensor
powers of Z3 give the Fibonacci sequence :

> G:=CyclicGroup(5);

> Z3:=CompositionSeries(ProjectiveIndecomposables(G,GF(5))[1])[3];

> Y:=[Z3];

> n:=10;

> 1;

> for i in [2..n] do

> X:=[];

> for y in Y do

> P:=IndecomposableSummands(TensorProduct(Z3,y));

> for p in P do

> if(Dimension(p) ne 5) then

> X:=Append(X,p);

> end if;

> end for;

> Y:=X;

> end for;

> #X;

> end for;

-------result-------

> 1

> 2

> 3

> 5

> 8

> 13

> 21

> 34

> 55

> 89

Exercise 7B.3. Confirm in MAGMA that the nth root of the sequence above gives the golden
ratio. What happens if one includes Z5 and takes the nth root?

(Careful: the convergence is slow, and you might not be able to 100% verify what the
limit is in the online calculator.) 3

In general, one can construct representations by specifying the acting matrices. This is
in particularly useful when one has a generator-relation presentations. For example:

> G<x,y>:=PermutationGroup<11|[1,10,3,11,7,6,5,9,8,2,4],

> [4,5,8,3,6,9,7,1,2,10,11]>;

MAGMA IN A NUTSHELL 65

> F:=GF(3);

> x:=Matrix(F, 5, 5,

> [[0,2,0,1,1],[2,1,1,0,2],[1,1,1,2,2],

> [0,2,2,2,2],[0,2,2,1,0]]);

> y:=Matrix(F, 5, 5,

> [[0,1,1,0,1],[2,0,0,1,0],[0,0,1,2,2],

> [2,1,0,0,0],[0,1,2,2,1]]);

> M:=GModule(G,[x,y]);

> M;

-------result-------

> GModule M2 of dimension 5 over GF(3)

Exercise 7B.4. Check what happens if there would be a typo in the action matrices. 3

We can run the same syntax as above, for example:

> IndecomposableSummands(TensorProduct(M,N));

-------result-------

> [

> GModule of dimension 10 over GF(3),

> GModule of dimension 15 over GF(3)

>]

For a general finite dimensional algebra, let us setup an algebra given by matrices:

> K:=GF(2);

> A := MatrixAlgebra<K, 4 |

> [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1],

> [0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,1,0],

> [0,0,0,0, 0,0,0,0, 1,0,0,0, 0,1,0,0] >;

> Dimension(A);

-------result-------

> 4;

The algebra A above is A = F2[X, Y]/(X2, Y 2), which is the group ring of the Klein four
group Z/2Z× Z/2Z in characteristic two. We can now tell MAGMA to work with its regular
representation :

> V:=RModule(K,4);

> m:=map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> M:=Module(A,m);

> IndecomposableSummands(M);

-------result-------

> [

> Right A-module of dimension 4,

> where A is Matrix Algebra of degree 4 with 3

> generators over GF(2)

>]

Remark 7B.3. With constructions of the form

> V:=RModule(K,4);

> m:=map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> M:=Module(A,m);

> IndecomposableSummands(M);

66 D. TAYLOR AND D. TUBBENHAUER

one can construct any representation as long as one has a good control over the action
map encoded by m in this example. 3

> CompositionFactors(M);

-------result-------

> [

> RModule of dimension 1 over GF(2),

> RModule of dimension 1 over GF(2),

> RModule of dimension 1 over GF(2),

> RModule of dimension 1 over GF(2)

>]

Remark 7B.4. Sometimes one gets bugs. The code

> K:=GF(2);

> A := MatrixAlgebra<K, 4 |

> [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1],

> [0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,1,0],

> [0,0,0,0, 0,0,0,0, 1,0,0,0, 0,1,0,0] >;

> V:=RModule(K,4);

> m:=map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> M:=Module(A,m);

> CompositionSeries(M);

which is not much different from the code above, produced:

For a different way to setup CompositionSeries for the Klein four group see below. 3

Here are a few construction to build new representations:

> N:=DirectSum([M,M]);

> ActionMatrix(N,A.2);

> W:= ModuleWithBasis([M.1+M.2+M.3, M.2+M.3, M.3]);

> ActionMatrix(W,A.2);

> IndecomposableSummands(W);

-------result-------

> [0 0 0 0 0 0 0 0]

> [1 0 0 0 0 0 0 0]

> [0 0 0 0 0 0 0 0]

> [0 0 1 0 0 0 0 0]

> [0 0 0 0 0 0 0 0]

> [0 0 0 0 1 0 0 0]

> [0 0 0 0 0 0 0 0]

MAGMA IN A NUTSHELL 67

> [0 0 0 0 0 0 1 0]

> [1 1 0]

> [1 1 0]

> [0 0 0]

> [

> Right A-module of dimension 3, where A is

> Matrix Algebra of degree 4 and

> dimension 4 with 3 generators over GF(2)

>]

Let us setup another example. Again, take the Klein four group Z/2Z×Z/2Z but setup
differently:

> G:=SmallGroup(4,2);

> IsCyclic(G);

-------result-------

> false

Since there are only two groups of order four, and the one we took is not cyclic, it must be
the Klein four group. Let us pick an indecomposable three dimensional representation over
GF(2):

> X:=CompositionSeries(ProjectiveCover(IrreducibleModules(G,GF(2))[1]))[3];

> IndecomposableSummands(X);

-------result-------

> [

> GModule X of dimension 3 over GF(2)

>]

Now we take tensor products:

> for i in [1..5] do

> IndecomposableSummands(TensorPower(X,i))

> [#IndecomposableSummands(TensorPower(X,i))];

> end for;

-------result-------

> GModule X of dimension 3 over GF(2)

> GModule of dimension 5 over GF(2)

> GModule of dimension 7 over GF(2)

> GModule of dimension 9 over GF(2)

> GModule of dimension 11 over GF(2)

In each step we get a new indecomposable of the Klein four group! (The dimension verifies
that these are really new.) One can in fact check that SmallGroup(4,2) has infinitely many
indecomposables over GF(2).

To extract the acting matrices, say for the representation of dimension five, we can run the
following:

> M:=IndecomposableSummands(TensorPower(X,2))

[#IndecomposableSummands(TensorPower(X,2))];

> phi := Representation(M);

> phi(G.1)+phi(G.2);

-------result-------

> [0 0 1 0 0]

> [0 0 1 0 0]

> [0 0 0 0 0]

> [0 0 0 0 0]

68 D. TAYLOR AND D. TUBBENHAUER

> [1 1 0 0 0]

This outputs the sum of the action matrices of (1, 0) and (0, 1) in Z/2Z×Z/2Z. Note that
the decomposition algorithm underlying IndecomposableSummands is randomized and we (can)
get different basis, hence action matrices, in every evaluation.

Exercise 7B.5. Compare the constructions of representations of the Klein four group via
MatrixAlgebra and SmallGroup(4,2) above. What are the differences? 3

Finally, MAGMA is really awesome when working with basic algebras (quivers if you want).
Here is one example: we setup a “Temperley–Lieb algebra” and compute the dimensions of
the projective representations and their composition factors:

> K:=GF(2);

> G:=SL(2,K);

> X:=IrreducibleModules(G,K);

> V:=TensorPower(X[2],4);

> A:=EndomorphismAlgebra(V);

> B:=BasicAlgebra(A);

> DimensionsOfProjectiveModules(B);

> DimensionsOfProjectiveModules(B);

> CompositionFactors(ProjectiveModule(B,1));

> CompositionFactors(ProjectiveModule(B,2));

-------result-------

> [1, 2]

> [

> AModule of dimension 1 over GF(2)

>]

> [

> AModule of dimension 1 over GF(2),

> AModule of dimension 1 over GF(2)

>]

7C. Representation theory over different fields. Let us have a look at the character
table of Z/5Z:
> X:=CharacterTable(CyclicGroup(5)); X;

-------result-------

> Character Table

> ---------------

>

>

> -------------------------------

> Class | 1 2 3 4 5

> Size | 1 1 1 1 1

> Order | 1 5 5 5 5

> -------------------------------

> p = 5 1 1 1 1 1

> -------------------------------

> X.1 + 1 1 1 1 1

> X.2 0 1 Z1 Z1#2 Z1#3 Z1#4

> X.3 0 1 Z1#4 Z1#3 Z1#2 Z1

> X.4 0 1 Z1#3 Z1 Z1#4 Z1#2

> X.5 0 1 Z1#2 Z1#4 Z1 Z1#3

>

MAGMA IN A NUTSHELL 69

>

> Explanation of Character Value Symbols

> --------------------------------------

>

> # denotes algebraic conjugation, that is,

> #k indicates replacing the root of unity w by w^k

>

> Z1 = (CyclotomicField(5: Sparse := true)) ! [

> RationalField() | 0, 0, 0, 1]

One immediately hits the problem of working with roots of unity. Thus, working over R in-
stead of C is not completely straightforward. However, the Schur indicator (or Frobenius–
Schur indicator) comes to our rescue. This is the entry +, sometimes written 1, and 0 in
the table (it could also be − or −a, but not in this example), and we can check this as follows:

> X:=CharacterTable(CyclicGroup(5));

> for i in [1..#X] do Indicator(X[i]); end for;

-------result-------

> 1

> 0

> 0

> 0

> 0

The indicator gives us all the information we need to work over R:
(a) If its 1, then there is nothing to do and the complex simple character is also a real

simple character.

(b) If its 0, then we need to add two complex simple characters together (one plus its
conjugate) to get a real simple character.

(c) The case −1 is the exercise below.

For example, to get the simple real characters in this case we do:

> X:=CharacterTable(CyclicGroup(5));

> IsReal(X[1]);

> IsReal(X[2]); IsReal(X[2]+X[3]);

> IsReal(X[4]); IsReal(X[4]+X[5]);

-------result-------

> true

> false

> true

> false

> true

Exercise 7C.1. Use MAGMA to find a group with Schur indicator −1. What happens for the
representations when you use IsReal? 3

The second thing that comes to mind is character theory over the algebraic closure of the
Galois fields. That is easy in MAGMA can controlled by BrauerCharacterTable(G,p) with p
being the characteristic, e.g.:

> G:=SymmetricGroup(4);

> X:=BrauerCharacterTable(G,3);

> X;

> X[3];

> CharacterTable(G);

70 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> [

> (1, 1, 1, 1),

> (1, 1, -1, -1),

> (3, -1, -1, 1),

> (3, -1, 1, -1)

>]

> (3, -1, -1, 1)

>

> Character Table of Group G

> --------------------------

>

>

> -----------------------

> Class | 1 2 3 4 5

> Size | 1 3 6 8 6

> Order | 1 2 2 3 4

> -----------------------

> p = 2 1 1 1 4 2

> p = 3 1 2 3 1 5

> -----------------------

> X.1 + 1 1 1 1 1

> X.2 + 1 1 -1 1 -1

> X.3 + 2 2 0 -1 0

> X.4 + 3 -1 -1 0 1

> X.5 + 3 -1 1 0 -1

The Brauer character table is a square matrix of size being the p-irregular conjugacy classes.
The the example above the 3-irregular conjugacy classes are 1, 2, 3, 5, while the 3-irregular
conjugacy classes are 1, 4, 5, as indicated by the orders coprime to p in this row:

> Order | 1 2 2 3 4

Remark 7C.1. For soluble groups the Brauer characters can be deduced from the complex
character table, and this is what MAGMA does. Without going into details, if one deletes the
column four for p = 3 one gets:

Now X.3 = X.1 +X.2 and that is why this is dropped from the Brauer character table.
For non-soluble groups things are trickier and MAGMA constructs the simple representa-

tions. 3

Essentially the same syntax as for characters works, so we skip that part. But there are
also new interesting feature, such as Blocks (giving as output the blocks and their defect)
and DefectGroup (returning the defect group of a block):

> G:=SymmetricGroup(4);

> Y:=CharacterTable(G);

> Blocks(Y,3);

MAGMA IN A NUTSHELL 71

> DefectGroup(Y,Blocks(Y,3)[1],3);

-------result-------

> [

> { 1, 2, 3 },

> { 4 },

> { 5 }

>]

> [1, 0, 0]

> Permutation group acting on a set of cardinality 4

> Order = 3

> (1, 3, 2)

These calculations are efficient and fast, for example:

> G:=SymmetricGroup(12);

> Y:=CharacterTable(G);

> time IsAbelian(DefectGroup(Y,Blocks(Y,3)[1],3));

-------result-------

> false

> Time: 0.020

Another option for characters are rational characters, e.g.:

> G:=AlternatingGroup(4);

> CharacterTable(G);

> RationalCharacterTable(G);

-------result-------

> Character Table of Group G

> --------------------------

>

>

> ------------------------

> Class | 1 2 3 4

> Size | 1 3 4 4

> Order | 1 2 3 3

> ------------------------

> p = 2 1 1 4 3

> p = 3 1 2 1 1

> ------------------------

> X.1 + 1 1 1 1

> X.2 0 1 1 J -1-J

> X.3 0 1 1 -1-J J

> X.4 + 3 -1 0 0

>

>

> Explanation of Character Value Symbols

> --------------------------------------

>

> J = RootOfUnity(3)

>

> [

> (1, 1, 1, 1),

> (2, 2, -1, -1),

> (3, -1, 0, 0)

72 D. TAYLOR AND D. TUBBENHAUER

>]

> [

> [1],

> [2, 3],

> [4]

>]

In this example the characters two and three are not rational, but their direct sum is.

Remark 7C.2. In general, the rational characters, are the sums of the Galois orbits on the
complex character table. Hence, the story over Q is similar, but more complicated, than
over R. 3

Working with algebraically closed fields is not easy on a machine. The characters avoid
that problem by using a combinatorial approach. For representations we cannot cheat so let
us have a look at different fields, starting with algebraically closed ones.

One can construct, e.g., Q or Fp, but a lot of operations will not work. For example:

> AlgebraicClosure(GF(2));

> AlgebraicClosure(RationalField());

> SpecialLinearGroup(2,AlgebraicClosure(GF(2)));

-------result-------

> Algebraically closed field with no variables over GF(2)

> Algebraically closed field with no variables over Rational Field

>

> >> SpecialLinearGroup(2,AlgebraicClosure(GF(2)));

> ^

> Runtime error in ’SpecialLinearGroup’: Cannot compute generators for matrix

> group

In finite characteristic it is better to simulate Fp by making the underlying field big enough.
This can be done afterwards, for example by base change :

> G:=SpecialLinearGroup(2,4);

> X:=IrreducibleModules(G,GF(2));

> Y:=TensorPower(X[2],2);

> for k in [1..6] do

> #IndecomposableSummands(ChangeRing(Y,GF(2^k)));

> end for;

-------result-------

> 3

> 4

> 3

> 4

> 3

> 4

In characteristic zero one can use cyclotomic fields as approximations. For example:

> K:=RationalField();

> F:=CyclotomicField(3);

> G:=AlternatingGroup(4);

> A:=GroupAlgebra(K,G);

> V:=RegularRepresentation(A);

> X, _:=IndecomposableSummands(V);

> Y, _:=IndecomposableSummands(ChangeRing(V,F));

> X; Y;

MAGMA IN A NUTSHELL 73

-------result-------

> [

> Matrix Algebra [ideal of V] of degree 12 and dimension 1 over

> Rational Field,

> Matrix Algebra [ideal of V] of degree 12 and dimension 9 over

> Rational Field,

> Matrix Algebra [ideal of V] of degree 12 and dimension 2 over

> Rational Field

>]

> [

> Matrix Algebra [ideal] of degree 12 and dimension 1 over F,

> Matrix Algebra [ideal] of degree 12 and dimension 9 over F,

> Matrix Algebra [ideal] of degree 12 and dimension 1 over F,

> Matrix Algebra [ideal] of degree 12 and dimension 1 over F

>]

Compare this to the rational and complex character tables of AlternatingGroup(4) above.

Exercise 7C.2. The above code gives the decomposition into bimodules, and that is why
the 9 = 3 · 3 is appearing. Ask MAGMA to give the decomposition into representations. For
example, you could setup AlternatingGroup(4) as a twelve dimensional matrix algebra, and
define its regular representation by acting on a twelve dimensional vector space. 3

8. Lecture 5 – Noncommutative algebras

We will now explore how MAGMA can handle (finite dimensional) algebras.

8A. Types of algebras. There are many types of algebras in MAGMA. For example:

> M := MatrixAlgebra(GF(5),4); Type(M), IsAssociative(M);

-------result-------

> AlgMat true

Alg

AlgGen

AlgAss AlgLie

AlgQuat

AlgMat

AlgGrpAlgClff

AlgFP AlgExt

Rng

An example of what these are is copied from the MAGMA Handbook:
In MAGMA a finitely-presented algebra (FPA) is a quotient of a free associative algebra

by an ideal of relations.
To compute with these ideals of relations, one constructs noncommutative Gröbner bases,

which have many parallels with commutative Gröbner bases.
At the heart of the theory is a noncommutative version of the Buchberger algorithm which

computes a Gröbner basis of an ideal of an algebra starting from an arbitrary basis (generating
set) of the ideal.

One significant difference with the commutative case is that a noncommutative Gröbner
basis may not be finite for a finitely-generated ideal.

> ISA(AlgMat,AlgAss), ISA(AlgClff,AlgAss), ISA(AlgAss,Rng);

-------result-------

> false true true

74 D. TAYLOR AND D. TUBBENHAUER

Other types: Heck algebras, universal enveloping algebras (this is AlgUE), quantized univer-
sal enveloping algebras (this is AlgQUE) and many more.

We will now explore some of these types of algebras.

8B. Clifford algebras. Let V be a finite dimensional vector space over a field F and let
Q : V → F be a quadratic form with polar form β; i.e., β(u, v) = Q(u+ v)−Q(u)−Q(v).

The Clifford algebra of Q is an F-algebra C with identity 1 and a linear map f : V → C
such that

f(v)2 = Q(v)1 for all v ∈ V .

Then f(u)f(v) + f(v)f(u) = β(u, v)1.
The dimension of a Clifford algebra is 2n, where n = dimV . For example:

> Q := StandardQuadraticForm(4,GF(11));

> C, V, f := CliffordAlgebra(Q);

> Dimension(C), One(C);

-------result-------

> 16 (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

An exterior algebra is the Clifford of a quadratic form that is identically zero. MAGMA

returns a structure constant algebra of type AlgClff.
However, MAGMA’s intrinsic ExteriorAlgebra returns a quotient of a free algebra and even

though AlgExt does not inherit from AlgFP most of the operations applicable to finitely
presented algebras can be used. Thus the Gröbner basis machinery applies to algebras of
type AlgExt.

> E<w,x,y,z> := ExteriorAlgebra(GF(11),4);

> I := ideal< E | w*x + y*z >;

> B := quo< E | I>; B;

-------result-------

> Affine Algebra of rank 4 over GF(11)

> Graded Reverse Lexicographical (exterior algebra) Order

> Variables: w, x, y, z

> Quotient relations:

> [

> w*x + y*z

>]

To construct a homomorphism from an exterior algebra of type AlgExt to another algebra
we only need to supply the images of the basis elements.

> C := CliffordAlgebra(ZeroMatrix(GF(11),4,4));

> E<w,x,y,z> := ExteriorAlgebra(GF(11),4);

The vector space V and the embedding f : V → C can be obtained as attributes of C;
namely C‘space and C‘embedding (the quotation marks do not come out nicely in the font –
they should be backwards, so be careful when copying the code).

> h := hom< E -> C | [C‘embedding(v) : v in Basis(C‘space)] >;

The constructor hom returns a linear map but MAGMA makes no attempt to check whether
it preserves multiplication. But we can check directly.

> forall{ <s,t> : s, t in [w,x,y,z] | h(s*t) eq h(s)*h(t) };

-------result-------

> true

Here are two Clifford algebras of forms in dimension 2:

MAGMA IN A NUTSHELL 75

> I := IdentityMatrix(Rationals(),2);

> C1<e1,e2>, V1, f1 := CliffordAlgebra(I);

> C2<i,j>, V2, f2 := CliffordAlgebra(-I);

> J := Matrix(Rationals(),[[1,0],[0,-1]]);

> C3<u1,u2>, V3, f3 := CliffordAlgebra(J);

C1 is the algebra of 2 × 2 matrices over the rationals. C2 is the algebra of quaternions
with rational coefficients.

> U := [e1,e1*e2];

> Matrix(2,2,[(U[s]*U[t] + U[t]*U[s])[1]/2 : s,t in [1,2]]);

{\result

[1 0]

[0 -1]

}

> phi := hom< C3 -> C1 | [One(C1),e1,e1*e2,e2] >;

> forall{<s,t> : s,t in Basis(C3) | phi(s*t) eq phi(s)*phi(t) };

\result

true

-------result-------

> [1 0]

> [0 -1]

> phi := hom< C3 -> C1 | [One(C1),e1,e1*e2,e2] >;

> forall{<s,t> : s,t in Basis(C3) | phi(s*t) eq phi(s)*phi(t) };

-------result-------

> true

Therefore C3 is isomorphic to C1.

8C. Finitely presented and Clifford algebras. The free associative algebra of rank
n over a field K is the set of K-linear combinations of noncommutative polynomials in n
indeterminates. This is the tensor algebra of the vector space Kn.
A finitely presented algebra is the quotient of a free algebra by an ideal.
The Clifford algebra C1 of the previous slide can be constructed as a finitely presented

algebra.

> F<x1,x2> := FreeAlgebra(Rationals(),2);

> I := ideal< F | x1^2 - 1, x2^2 - 1, x1*x2 + x2*x1 >;

> C<e1,e2> := quo< F | I >;

> Rank(C), Dimension(C), Type(C);

-------result-------

> 2 4 AlgFP

> LeadingTerm(f);

-------result-------

> -4*e2*e1

Suppose that f : V → C is the Clifford algebra of a quadratic form Q.
If a ∈ f(V) is invertible, the map f(V) → f(V) : b 7→ −a−1ba is the reflection in the

hyperplane orthogonal to a.
The reflections generate the orthogonal group of Q.

> F<z> := GF(9);

> Q := StandardQuadraticForm(4,F);

> C,V,f := CliffordAlgebra(Q);

> I := IsometryGroup(V);

76 D. TAYLOR AND D. TUBBENHAUER

> a := f(z*V.2 + V.3);

> M := -Matrix([(a^-1*f(b)*a) @@ f : b in Basis(V)]);

> M in I, IsReflection(M);

-------result-------

> true

> true (0 z 1 0) (0 z^7 1 0)

The Clifford group of the Clifford algebra f : V → C is

Γ = { s : s ∈ C | s is invertible and s−1f(v)s ∈ f(V) for all v ∈ V }.
The map χ : Γ → GL(V) such that f(vχ(s)) = s−1f(v)s is the vector representation of Γ.
If s ∈ Γ ∩ f(V), then −χ(s) is a reflection.
If dimV is even, the image of χ is an orthogonal group (the isometry group of the quadratic

space V).

> H := sub<GL(4,F)|

> [VectorAction(f(g)) : g in V | QuadraticNorm(g) eq 0] >;

> H eq I;

-------result-------

> true

Exercise 8C.1. Suppose that a, b ∈ f(V) and a is invertible. Show that a−1ba ∈ f(V). 3

Exercise 8C.2. Find the image of χ when dimV is odd. 3

Let C+ (resp. C−) be the subspace spanned by products of an even (resp. odd) number of
basis elements. Then C+ is a subalgebra and C = C+ ⊕ C−.
The main involution of C is the linear map J : C → C such that J(u) = u for u ∈ C+

and J(u) = −u for u ∈ C−. It is an automorphism.

> J := MainInvolution(C);

> Cplus := EvenSubalgebra(C);

> forall\{<u,v> : u,v in Basis(V) | J(f(u)*f(v)) eq J(f(u))*J(f(v))\};

Exercise 8C.3. Suppose that f : V → C is a Clifford algebra over F. Write a MAGMA function
derivation(C,lambda) that takes a linear functional λ : V → F and returns a derivation
d : C → C such that d(f(v)) = λ(v)1 and d(xy) = d(x)y + J(x)d(y) for all x, y ∈ C. 3

Let us have a few more exercises.

Exercise 8C.4. Consider the following code:

> F := RationalField();

> Q := DiagonalMatrix(F,[1,-2,-5]);

> C,V,f := CliffordAlgebra(Q);

> E, h := EvenSubalgebra(C);

Show that E is a generalized quaternion algebra. 3

Exercise 8C.5. Consider the following code:

> Q := StandardQuadraticForm(4,GF(25));

> C := CliffordAlgebra(Q);

> E := EvenSubalgebra(C);

Show that E is not simple. Find orthogonal central idempotents that generate its ideals.
(Hint. Check out DirectSumDecomposition.) 3

Exercise 8C.6. Consider the following code:

MAGMA IN A NUTSHELL 77

> F<w> := GF(25);

> Q := StandardQuadraticForm(5,F);

> C := CliffordAlgebra(w*Q);

Show that C is the algebra of 4× 4 matrices over the field F625. 3

8D. Spin groups. The mapping that reverses the multiplication is the
main antiautomorphism of C; its square is the identity.
The special Clifford group is Γ+ = Γ ∩ C+.
The spin group is Spin(V,Q) = { s ∈ Γ+ | α(s)s = 1 },

where α is the main antiautomorphism of C.
Suppose that s = f(u) and t = f(v) where u, v ∈ V are orthogonal and Q(u) = 0. Then

st− 1 ∈ Spin(V,Q) and χ(uv − 1) is a Siegel transformation.

> s := f(V.1);

> t := f(V.2);

> VectorAction(s*t - One(C)) eq SiegelTransformation(V.1,V.2);

-------result-------

> true

The Siegel transformations generate the group Ω(V,Q).
If the dimension of V is even, the Clifford algebra C of Q is simple. A minimal right ideal

of C is a spin representation and its elements are spinors . The minimal right ideals of
C+ are the half spin spaces.

The restrictions to the groups Γ, Γ+ and Spin(V,Q) are also called spin representations.

> F<z> := GF(9);

> Q := StandardQuadraticForm(6,F);

> C,V,f := CliffordAlgebra(Q);

> S := MinimalRightIdeals(C : Limit := 1)[1];

> Dimension(S);

> 8

> s := f(V.1); t := f(V.2); g := s*t - One(C);

> m := VectorAction(g); n := ActionMatrix(S,g);

> IsUnipotent(m), IsUnipotent(n), IsUnipotent(-n);

-------result-------

> true 2

> false

> true 2

Collect 6 random Siegel elements of Spin+(6, 9) and find the group they generate in the spin
representation.

> X := { };

> for random u in V do

> if u eq 0 or QuadraticNorm(u) ne 0 then continue; end if;

> for random v in V do

> if v ne 0 and DotProduct(u,v) eq 0 then Include(~X,<u,v>);

> break;

> end if;

> end for;

> if #X ge 6 then break; end if;

> end for;

> H := sub<GL(Dimension(S),F) | [ActionMatrix(S,f(u)*f(v) - One(C))

> : p in X | true where u,v is Explode(p)]>;

> LMGFactoredOrder(H), FactoredOrder(OmegaPlus(6,F));

78 D. TAYLOR AND D. TUBBENHAUER

-------result-------

> [<2, 12>, <3, 12>, <5, 2>, <7, 1>, <13, 1>, <41, 1>]

> [<2, 11>, <3, 12>, <5, 2>, <7, 1>, <13, 1>, <41, 1>]

Let us have a look at Minkowski space .

> Q := DiagonalMatrix(Rationals(),[1,1,1,-1]);

> C<e1,e2,e3,e4>, V, f := CliffordAlgebra(Q);

> IsSimple(C), Dimension(Centre(C));

-------result-------

> true 1

C is the central simple algebra of 4× 4 matrices over Q.

> E, h := EvenSubalgebra(C);

> Z := Centre(E); i := Z.2;

> IsSimple(E), Dimension(E), Dimension(Z), i^2;

-------result-------

> true 8 2 (-1 0)

> AsPolynomial(h(i));

-------result-------

> e1*e2*e3*e4

E is the central simple algebra of 2× 2 matrices over Q[i].

> ee := (1/2)*(1 - e1*e4);

> ff := (1/2)*(1 + e1*e4);

> R, r := rideal< E | ee >;

> S, s := rideal< E | ff >;

> Dimension(R), Dimension(S);

-------result-------

> 4 4

Exercise 8D.1. Let E be the even subalgebra of the Clifford algebra of the quadratic form
Q over the rationals with signature (3, 1).

> Q := DiagonalMatrix(Rationals(),[1,1,1,-1]);

> C<e1,e2,e3,e4>, V, f := CliffordAlgebra(Q);

> Z := Centre(E);

Let R be the right ideal

> R, r := rideal< E | (1/2)*(1 - e1*e4) >;

Observe that Z is isomorphic to the Gaussian field Q[i]
and that R is a vector space of dimension 2 over Z. Check that {-e1*e2*e3*e4+e2*e3,
e1*e2-e2*e4} is a Z-basis for R.
Identifying Z with Q[i], write a MAGMA function that returns the matrix in Mat(2,Q[i])

of an element of E acting on R.
Show that the matrices of e4*e3, e4*e2 and e4*e1 are the Pauli matrices. 3

8E. Group algebras. The group algebra of a finite group G with coefficients from a field
(or ring) K is the K-space K[G] of formal sums

∑
g∈G agg with coefficients ag ∈ K and

multiplication inherited from G.
Let χj (1 ≤ j ≤ m) be the irreducible complex characters of G, let ρj : G → GL(Wj) be a

representation corresponding to χj and put nj = dim(Wj).

MAGMA IN A NUTSHELL 79

Define ρ̃j : C[G] → End(Wj) :
∑

g∈G agg 7→
∑

g∈G agρj(g). The family
(
ρ̃j
)
1≤j≤m

defines

the Fourier transform

ρ̃ : C[G] →
m∏
j=1

End(Wj) ≃
m∏
j=1

Mat(nj,C).

The group algebra C[G] is semisimple and ρ̃ is an isomorphism.
In MAGMA C is not an ‘exact field’. However, the irreducible representations of G can always

be written over the field of nth roots of unity, where n is the exponent of G (Richard Brauer).
For example, Q[w], where w3 = 1 is a splitting field for Alt(4).

> G := AlternatingGroup(4);

> F<w> := CyclotomicField(3 : Sparse);

> A := GroupAlgebra(F,G);

> R, rho := RegularRepresentation(A);

> V := GModule(sub<GL(#G,F) | [rho(G.i) : i in [1..Ngens(G)]]>);

> dsd := DirectSumDecomposition(V);

> [Dimension(X) : X in dsd];

-------result-------

> [1, 1, 1, 3, 3, 3]

> ActionGenerators(dsd[4]);

-------result-------

> [

> [-1 0 0] [0 1 1]

> [0 0 1] [1 0 -1]

> [0 1 0], [0 1 0]

>]

Collect the representations G → GL(Wj).

> irreps := IrreducibleModules(G,F);

> sigma := [hom< G -> GL(Dimension(W),F) | ActionGenerators(W) >

> : W in irreps];

Let ρ̃j (1 ≤ j ≤ m) be the irreducible representations of F [G]. Suppose that U =
[u1, . . . , um] where uj ∈ imρ̃j. The following function returns u ∈ F [G] such that ρ̃j(u) = uj

for all j.

> fourierInv := func< A,sigma,U |

> &+[&+[Nrows(u)*Trace(sigma[i](s^-1)*u) : i -> u in U]*A!s

> : s in Group(A)] >;

Check:

> U := < rho(Random(G)) : rho in sigma >;

> fourierInv(A,sigma,U);

-------result-------

> (-w + 1)*Id(G) + (-w + 1)*(1, 2)(3, 4)

> + (-w + 1)*(1, 3, 2) + > (-w + 1)*(1, 4, 3)

> + (-w + 1)*(2, 3, 4) + (-w + 1)*(1, 2, 4)

> + (2*w - 2)*(1, 3, 4) + (2*w - 2)*(1, 4, 2)

> + (2*w + 10)*(2, 4, 3) + (2*w - 2)*(1, 2, 3)

> + (-w + 1)*(1, 3)(2, 4) + (-w + 1)*(1, 4)(2, 3)

80 D. TAYLOR AND D. TUBBENHAUER

8F. Basic algebras. Let us have a look at the handbook again:
A basic algebra is a finite dimensional algebra over a field, all of whose simple modules

have dimension one.
In the literature such an algebra is known as a “split” basic algebra.
Every algebra is Morita equivalent to a basic algebra, though a field extension may be

necessary to obtain the split basic algebra.
MAGMA has several functions that create the basic algebras corresponding to algebras of

different types.
The type AlgBas in Magma is optimized for the purposes of doing homological calculations.
Suppose A is a finite dimensional algebra over a field F . If e1, . . . , es are primitive orthogonal

idempotents such that 1 = e1+ · · ·+es, then A is the direct sum of the indecomposable (a.k.a.
projective) right A-modules eiA. If A is basic, then eiA ≃ ejA if and only if i = j.
Number the ei so that e1A, . . . , etA represent the isomorphism classes of projective inde-

composable modules. Then eAe is a basic algebra for A.

> P := PermutationGroup(ATLASGroup(2A7));

> M := PermutationModule(P,Stabiliser(P,1),GF(2));

> A := Action(M);

-------result-------

> Matrix Algebra of degree 240 with 2 generators over GF(2)

> C := CondensedAlgebra(A); C;

-------result-------

> Matrix Algebra of degree 36 with 15 generators over GF(2)

> CartanMatrix(A);

-------result-------

> [3 2 0 0 0 4]

> [2 3 0 0 0 4]

> [0 0 7 4 4 0]

> [0 0 4 4 2 0]

> [0 0 4 2 4 0]

> [4 4 0 0 0 8]

Here is an example from Jon Carlson showing that the basic algebra of the principal block
of the double cover of Alt(7) is isomorphic to the basic algebra of the second block of the
double cover of Alt(9).

> A := BasicAlgebraFromGroup("2A7",2,1); A;

-------result-------

> Basic algebra of dimension 38 over GF(2)

> Number of projective modules: 3

> Number of generators: 8

> B := BasicAlgebraFromGroup("2A9",2,2); B;

-------result-------

> Basic algebra of dimension 38 over GF(2)

> Number of projective modules: 3

> Number of generators: 8

> IsIsomorphic(A,B);

-------result-------

> true Mapping from: AlgBas: A to AlgBas: B

MAGMA IN A NUTSHELL 81

9. A few additional examples

We will cover one example for some of the topics mentioned in Section 2B.

9A. Rings and fields. Algebraic integers are solutions to polynomial equations with
integer coefficients. An easy example is

√
2, which is a solution of x2 − 2 = 0.

One could ask the question how difficult is it to write down algebraic integers explicitly.

Are they all easy expressions such as
√
2 or

√√
2 + 2? Expressions of this form a called

radical expressions: expressions that can be obtained by finite concatenations of addition,
subtraction, multiplication, division and taking roots.

The Galois group of a polynomial can be seen as a measurement of how far away an
algebraic integer is from being a radical expression. To simplify our story, the Galois group
G(f) of a polynomial of degree n is a subgroup of the symmetric group Sn = Aut({1, . . . , n}),
and we say an algebraic integer x is difficult if G(f) is close to Sn, where f is the minimal
polynomial of x.
It turns out that almost all algebraic integers are difficult, and we can convince ourselves

that this is true using MAGMA:

> Z:= Integers();

> P<x>:= PolynomialRing(Z);

> n:=5;

> X:=[];

> for a in [-n..n] do

> for b in [-n..n] do

> G, R, S := GaloisGroup(x^5+a*x^2+b);

> X:=Append(X,[Order(G),a,b]);

> end for;

> end for;

> print(X);

-------result-------

> [

> [120, -1, -1],

> [2, -1, 0],

> [120, -1, 1],

> [4, 0, -1],

> [1, 0, 0],

> [4, 0, 1],

> [120, 1, -1],

> [2, 1, 0],

> [120, 1, 1]

>]

Here we took the polynomial f = x5 + ax2 + b, varied a and b between −n and n for n = 1
and let MAGMA output the order of G(f). The maximal order in this case is 120 and we have
already quite a few appearances of it. If we make the n larger, say n = 15, the pattern becomes

82 D. TAYLOR AND D. TUBBENHAUER

clear:

(The labels on the x and y axis need to be shifted by −n so that 0 is in the middle.) Here
we did the same as above for f and also for g = x5 + ax + b. We get an ocean of symmetric
groups.

Exercise 9A.1. Instead of just the order of G(f), let MAGMA compute the group itself.
Identify the groups that one gets. 3

9B. Algebras. Let V = C2 be the vector representation of SL2(C) TheTemperley–Lieb al-
gebra is the endomorphism algebra TLn = EndSL2(C)(V

⊗n). The dimension of the Temperley–
Lieb algebra is given by the Catalan numbers as in Section 4B.

Changing from C to Fp =
⋃

k∈Z≥0
Fpk does not change much – one still obtains the Temper-

ley–Lieb algebra as TLn = EndSL2(Fp)
(V ⊗n) for V = F2

p (just the ground field is different).
However, one needs to work with the algebraic closure of the finite fields as the following

code reveals:

> p:=5;

> k:=1;

> G:=SL(2,p^k);

> Irr:=IrreducibleModules(G, GF(p^k));

> M:=Irr[2];

> for i in [1..6] do

> N:=TensorPower(M,i);

> Z:=EndomorphismAlgebra(N);

> print Dimension(Z);

> print Binomial(2*i,i) div (i+1);

> end for;

-------result-------

> 1

> 1

> 2

> 2

> 5

> 5

> 14

> 14

MAGMA IN A NUTSHELL 83

> 42

> 42

> 133

> 132

This code computes EndSL2(Fpk
)((F2

pk
)⊗n) and prints its dimension. It also prints the Cata-

lan numbers, so the dimension of the Temperley–Lieb algebra. Observe that these numbers
eventually differ. The corresponding algebra over Fpk is called the finite Temperley–Lieb
algebra .

Exercise 9B.1. Write code that verifies that the finite Temperley–Lieb algebra as above is
not semisimple most of the time. 3

9C. Representation theory. Let us produce the character table of the symmetric group
Sym(3):

> G:=Sym(3); CharacterTable(G);

-------result-------

> Character Table of Group G

> --------------------------

>

>

> -----------------

> Class | 1 2 3

> Size | 1 3 2

> Order | 1 2 3

> -----------------

> p = 2 1 1 3

> p = 3 1 2 1

> -----------------

> X.1 + 1 1 1

> X.2 + 1 -1 1

> X.3 + 2 0 -1

Note the zero in the table; it appears for a conjugacy class of size three. There are two
things we can count with respect to the zeros:

(a) The number of zeros in the table itself. Here we have 1/9 ≈ 0.111 entries that are
zero.

(b) The number of weighted zero, where we weight by the number of elements in the
character table. The number of weighted entries are 3(1 + 3 + 2) = 18 and the one
zero appears with weight 3 so that the ratio is 1/6 ≈ 0.167

It appears for a conjugacy class of size three, so three elements of the symmetric group have
character zero.

Let us count the number of weighted appearance of zero for larger n:

> R := RealField(10);

> for n in [1 .. 12] do

> G:=Sym(n);

> X:=CharacterTable(G);

> Y:=Classes(G);

> count:=0;

> for i in [1 .. #X] do

> for j in [1 .. #X] do

> if X[i,j] eq 0 then

> count+:=Y[j,2];

84 D. TAYLOR AND D. TUBBENHAUER

> end if;

> end for;

> end for;

> R!count/(#X*#G);

> end for;

-------result-------

> 0.0000000000

> 0.0000000000

> 0.1666666667

> 0.2333333333

> 0.2595238095

> 0.3584595960

> 0.3723015873

> 0.4692302489

> 0.5008948780

> 0.5319339989

> 0.5545011186

> 0.6065162365

We get the expected 1/6 as the third output. And now the number of zeros in the character
table itself:

> R := RealField(10);

> for n in [1 .. 12] do

> G:=Sym(n);

> X:=CharacterTable(G);

> count:=0;

> for i in [1 .. #X] do

> for j in [1 .. #X] do

> if X[i,j] eq 0 then

> count+:=1;

> end if;

> end for;

> end for;

> R!count/(#X^2);

> end for;

-------result-------

> 0.0000000000

> 0.0000000000

> 0.1111111111

> 0.1600000000

> 0.2040816326

> 0.2396694215

> 0.2444444444

> 0.3161157025

> 0.3411111111

> 0.3333333333

> 0.3246173470

> 0.3761173891

The third entry is Sym(3) where we had 1 out of 9 zeros in the character table

Exercise 9C.1. Can you read of the limit n → ∞ of the above? Also try other groups and
study the limit. 3

MAGMA IN A NUTSHELL 85

9D. Algebraic geometry and commutative algebra. The following is a modification
of [BC06, Graded rings and special K3 surfaces].

Recall that a projective variety X over C is a subset of complex projective space Pn

that is the zero-locus of some finite family of homogeneous polynomials of n+1 variables that
generate a prime ideal.

An example the reader can keep in mind is the elliptic curve Y 2 = X3+1 which is illustrated
as

Note that the point at infinity is included since we view this variety as part of P2. To make
Y 2 = X3 + 1 homogeneous we modify it to Y 2Z = X3 + Z3.
A projective variety X has an associated graded ring R(X), called its homogeneous co-

ordinate ring . For example,

X = (Y 2Z −X3 − Z3) ⊂ P1 ↭ C[X, Y]/(Y 2Z −X3 − Z3).

Using rational coefficients, this can be setup in MAGMA as follows:

> P3<X,Y,Z>:=ProjectiveSpace(Rationals(),2);

> X:=Scheme(P3,Y^2*Z-X^3-Z^3); X;

-------result-------

> Scheme over Rational Field defined by

> -X^3 + Y^2*Z - Z^3

The Hilbert series PR(X)(t) records the vector space structure of R(X): if rn denotes the
dimension of the vector space of homogeneous polynomials of degree n in R(X), then

PR(X)(t) = 1 + r1t+ r2t
2 + r3t

3 + . . . ,

so that PR(X)(t) is the generating function of the rn.
This is how MAGMA computes the Hilbert series:

> R:=CoordinateRing(X);

> P<t>:=HilbertSeries(R);

> P;

-------result-------

> (t^2 + t + 1)/(t^2 - 2*t + 1)

Viewing this as a power series works as follows:

> S<s>:=PowerSeriesRing(Rationals());

> S!P;

-------result-------

86 D. TAYLOR AND D. TUBBENHAUER

> 1 + 3*s + 6*s^2 + 9*s^3 + 12*s^4 + 15*s^5 +

> 18*s^6 + 21*s^7 + 24*s^8 + 27*s^9 +

> 30*s^10 + 33*s^11 + 36*s^12 + 39*s^13 + 42*s^14 + 45*s^15 + 48*s^16 +

> 51*s^17 + 54*s^18 + 57*s^19 + O(s^20)

Let us describe a family of graded rings with a given Hilbert series. Consider the following
power series P = P (t):

> T<t>:=PowerSeriesRing(Rationals():Precision:=50);

> P:=1 + t + t^2 + t^3 + 2*t^4 + 3*t^5 + 4*t^6+

> &+[(n-3)*t^n : n in [7..49]]

> + O(t^50);

Multiplying P by 1− t cancels some small powers of t in the expansion, in the sense that

> (1-t)*P;

-------result-------

> 1 + t^4 + t^5 + t^6 + t^8 + t^9 + t^10

> + t^11 + t^12 + t^13 + t^14 + t^15 + t^16

> + t^17 + t^18 + t^19 + t^20 + t^21

> + t^22 + t^23 + t^24 + t^25 + t^26 + t^27

> + t^28 + t^29 + t^30 + t^31 + t^32

> + t^33 + t^34 + t^35 + t^36 + t^37 + t^38

> + t^39 + t^40 + t^41 + t^42 + t^43

> + t^44 + t^45 + t^46 + t^47 + t^48 + t^49

> + O(t^50)

Multiplying this by 1− t4 gives:

> (1-t)*(1-t^4)*P;

-------result-------

> 1 + t^5 + t^6 + t^11 + O(t^50)

That completes the task (at least up to the given precision) since the last display can be
rewritten as

P =
1 + t5 + t6 + t11

(1− t)(1− t4)
.

One can go further:

> (1-t)*(1-t^4)*(1-t^5)*(1-t^6)*P;

-------result-------

> 1 - t^10 - t^12 + t^22 + O(t^50)

And so on. Expressed in this way, the power series P is the Hilbert series of any variety

X = (f10 = g12 = 0) ⊂ P3(1, 4, 5, 6),

where f and g are homogeneous polynomials, of the indicated degrees, in variables X, Y, Z,W
of weights 1, 4, 5, 6.

Exercise 9D.1. Prove that, for suitable choice of equations, the variety X as above is a
nonsingular curve of genus 4 polarized by a subcanonical divisor D with degD = 1 and
6D = KX where KX is a canonical divisor. 3

9E. Arithmetic geometry and modular arithmetic geometry. This example is strongly
motivated by [BC06, Some ternary Diophantine equations of signature (n,n,2)].
Say we want to find integer solutions for D(x4 + 7) = y2 where D ∈ {2, 3, 5, 7, 11, 13}.
We first check whether there are any points over Q2:

MAGMA IN A NUTSHELL 87

> _<x>:=PolynomialRing(Rationals());

> Dset:={2,3,5,7,11,13};

> {D:D in Dset|IsLocallySolvable(HyperellipticCurve(D*(x^4+7)),2)};

-------result-------

> { 2, 7 }

In other words, we have proven that there are no integer solutions for all values except
D = 2 and D = 7.

For D = 2 one has the solution (x, y) = (1, 4). This implies that our curve is isomorphic to
an elliptic curve. The rational points of an elliptic curve form a finitely generated group,
and Magma can compute an upper bound on the free rank of that group:

> _<x>:=PolynomialRing(Rationals());

> C2:=HyperellipticCurve(2*(x^4+7));

> p0:=C2![1,4];

> E,C2toE:=EllipticCurve(C2,p0);

> RankBound(E);

-------result-------

> 1 true

Let us compute what this group is.

> G,GtoE:=MordellWeilGroup(E);

> G;

-------result-------

> Abelian Group isomorphic to Z/2 + Z

> Defined on 2 generators

> Relations:

> 2*G.1 = 0

We can even get solutions:

> [Inverse(C2toE)(GtoE(g)):g in OrderedGenerators(G)];

-------result-------

> [(-1 : -4 : 1), (1 : -4 : 1)]

This gives us the solutions (x, y) = (−1,±4) and (x, y) = (1,±4). Using the group law,
arbitrarily many solutions can be constructed from these.

Exercise 9E.1. Do the case D = 7. 3

88 D. TAYLOR AND D. TUBBENHAUER

9F. Combinatorics and graph theory. Let us set up the following graph (blue, undashed)
in MAGMA:

This works as follows:

> G := Graph< 5 | { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 1 },

{ 1, 5 }, { 2, 5 }, { 1, 3 } >;

The graph P has five vertices, and the above given edges.
An amazing fact is that testing whether a graph is planar (can be drawn in the plane

without intersecting edges) is easy to check: the algorithm used by MAGMA runs in O(n),
where n is the number of vertices.

MAGMA can check this as follows:

> IsPlanar(G);

-------result-------

> true

MAGMA also knows the set of faces:

> F:=Faces(G);

> F;

-------result-------

> [

> [{1, 5}, {5, 2}, {2, 1}],

> [{1, 2}, {2, 3}, {3, 1}],

> [{1, 3}, {3, 4}, {4, 1}],

> [{1, 4}, {4, 3}, {3, 2}, {2, 5}, {5, 1}]

>]

We can use this to record the orientation of edges defining a face saying {a, b} is 1 if a < b
and {a, b} is −1 if a > b. The following code does that for us:

> Ds := [[1 : x in [1..#F[i]]] : i in [1..#F]];

> for i in [1..#F] do

> for j in [1..#F[i]] do

> if InitialVertex(F[i][j]) gt TerminalVertex(F[i][j]) then

> Ds[i][j] := -1;

> end if;

> end for;

> end for;

MAGMA IN A NUTSHELL 89

> Ds;

-------result-------

> [

> [1, -1, -1],

> [1, 1, -1],

> [1, 1, -1],

> [1, -1, -1, 1, -1]

>]

The first three faces are triangles, and the final displayed face is the outside one in the
picture above. We can access the faces and their edges by using:

> F[1];

> F[2][1];

-------result-------

> [{1, 5}, {5, 2}, {2, 1}]

> {1, 2}

The dual graph D(G) of a planar graph G is the graph with vertices being faces of G, and
edges between touching faces (there will be a loop when the same face appears on both sides
of an edge). Is there are way to get the dual graph in MAGMA? Well, here we go:

> nstar := #F;

> Gstar := MultiDigraph< nstar | >;

> Fs := [SequenceToSet(f) : f in F];

> for u in [1..nstar-1] do

> for v in [u+1..nstar] do

> M := Fs[u] meet Fs[v];

> for e in M do

> p := Position(F[u],e);

> q := Position(Edges(G),e);

> if Ds[u][p] eq 1 then

> Gstar,edge := AddEdge(Gstar,VertexSet(Gstar)!u, VertexSet(Gstar)!v);

> else

> Gstar,edge := AddEdge(Gstar,VertexSet(Gstar)!v,VertexSet(Gstar)!u);

> end if;

> end for;

> end for;

> end for;

> for i := 1 to Size(G) do

> , EdgeSet(G).i , , EdgeSet(Gstar).i;

> end for;

-------result-------

> {1, 2} < [2, 1], 1 >

> {1, 3} < [1, 4], 2 >

> {1, 4} < [4, 1], 3 >

> {1, 5} < [3, 2], 4 >

> {2, 3} < [2, 4], 5 >

> {2, 5} < [4, 3], 6 >

> {3, 4} < [3, 4], 7 >

Exercise 9F.1. Interpret the output above. 3

90 D. TAYLOR AND D. TUBBENHAUER

9G. Cryptography. The braid groups are groups that describe real world braids such as

algebraically. They are (almost always) infinite and their internal structure is a bit delicate.
Fix a group G, the platform group. A classical way to encrypt a message is to use con-

jugation. This works as follows. Write ga = aga−1 for conjugation. Fix a public element
g ∈ G. Then party A chooses privately a ∈ G and party B chooses privately b ∈ G. Then A
communicates ga and b communicates gb, and the common secret is gab = gba A third party
C has access to g, ga and gb, but finding gab from the known data is difficult as long as the
conjugacy problem is difficult to solve.

Braids groups were proposed as platform groups since it is not immediately clear how to
solve the conjugacy problem for them. However, a fast way to solve conjugacy problems was
actually discovered using MAGMA! See [BC06, Conjugacy problem in braid groups]. Let us
discuss how that works.

First, we set up the braid group in seven strands:

> B := BraidGroup(7);

> f := FundamentalElement(B);

> f eq LCM({B.i : i in [1..6]});

> InducedPermutation(d);

-------result-------

> true

> (1, 7)(2, 6)(3, 5)

What is happening? The B.i are crossing generators that correspond to the simple trans-
position (i, i+1) and pull, say, the left string atop the right. f is the lowest common multiple
of the B.i, often called the half twist . Its induced permutation is the longest possible.
The key now is the existence of a unique way of writing any given braid as product of

simple elements of a certain form. By definition, the simple elements of our choice are the
nontrivial divisors of f.

Now we get a normal form : every positive braid x (from now on we restrict to positive
braids for simplicity) can be written as

x = fkA1 . . . Ar

for simple elements Ai satisfying A−1
i−1f ∧ Ai = 1.

We compute this normal form using GCD repeatedly:

> function MyNormalForm(x)

> f := FundamentalElement(Parent(x));

MAGMA IN A NUTSHELL 91

> k := 0;

> seq := [];

> while not IsId(x) do

> d := GCD(x,f);

> if d eq f then

> k +:= 1;

> else

> Append(~seq,InducedPermutation(d)^(-1));

> end if;

> x := d^(-1)*x;

> end while;

> return k,seq;

> end function;

> B := BraidGroup(2);

> MyNormalForm(B.1*B.2*B.1*B.2*B.1*B.1*B.2*B.1);

-------result-------

> [

> (1, 2, 3)

>]

> 2

This function computes the normal form with the output being k, the exponent of f, and
the induced permutation for A1 . . . Ar.

We call the number k the infimum of x and denote it by inf(x). Similarly, sup(x) = k+ r
is the supremum of x, while r is the canonical length . Using these define the super
summit set Sx of x as:

Sx = {y conjugate to x|inf(y) = infs(x), sup(y) = sups(x)},

where infs(x) = max{inf(y)|y conjugate to x} and sups(x) = min{sup(y)|y conjugate to x}.
It turns out that (y conjugate to x ⇔ Sx ∩ Sy ̸= ∅), and the latter is a fairly easy to check

condition. At least with MAGMA!
We first setup a function that gives a representative of Sx:

> function MySuperSummitRepresentative(x)

> n := NumberOfStrings(Parent(x));

> conj := Id(Parent(x));

> count := n*(n-1)/2-1;

> inf := Infimum(x);

> while count gt 0 and CanonicalLength(x) gt 0 do

> x,c := Cycle(x); count-:=1;

> conj := conj*c;

> if Infimum(x) gt inf then

> count := n*(n-1)/2-1;

> inf := Infimum(x);

> end if;

> end while;

> count := n*(n-1)/2-1;

> sup := Supremum(x);

> while count gt 0 and CanonicalLength(x) gt 0 do

> x,c := Decycle(x); count-:=1;

> conj := conj*c;

> if Supremum(x) lt sup then

> count := n*(n-1)/2-1;

92 D. TAYLOR AND D. TUBBENHAUER

> sup := Supremum(x);

> end if;

> end while;

> return x,conj;

> end function;

> B := BraidGroup(3);

> MySuperSummitRepresentative(B.1*B.2*B.1*B.2*B.1*B.1*B.2*B.1);

-------result-------

> B.2 * B.1 * B.2^2 * B.1 * B.2 * B.1 * B.2

> <ARTIN, 2, [

> (1, 2, 3)

>], 0> B.1 * B.2 * B.1 * B.2^-1 * B.1^-1 * B.2^-1

> <ARTIN, -1, [

> (1, 3, 2),

> (1, 3, 2),

> (2, 3),

> (1, 2)

>], -1>

Exercise 9G.1. What is the function MySuperSummitRepresentative(x) doing? List the
main commands and what they do. 3

> function MyIsConjugate(x,y)

> x,c_x := MySuperSummitRepresentative(x);

> S := {@ x @};

> conj := {@ c_x @};

> y,c_y := MySuperSummitRepresentative(y);

> if y eq x then

> return true, 1, c_x*c_y^(-1);

> end if;

> pos := 1;

> while pos le #S do

> for s in { MinimalElementConjugatingToSuperSummit(S[pos],a)

> : a in Generators(Parent(x))} do

> ns := LeftNormalForm(s^(-1)*S[pos]*s);

> if ns notin S then

> Include(~S,ns);

> Include(~conj,LeftNormalForm(conj[pos]*s));

> if y eq ns then

> return true, #S, conj[pos]*s*c_y^(-1);

> end if;

> end if;

> end for;

> pos +:=1;

> end while;

> return false, #S, _;

> end function;

> B := BraidGroup(3);

> MyIsConjugate(B.1,B.2)

-------result-------

> true 2 B.2 * B.1

> <ARTIN, -2, [

MAGMA IN A NUTSHELL 93

> (1, 3, 2),

> (2, 3),

> (2, 3),

> (1, 2, 3),

> (1, 3, 2)

>], 0>

Exercise 9G.2. doing? List the main commands of MyIsConjugate(x) and what they do. 3

References

[BC06] W. Bosma and J. Cannon, editors. Discovering mathematics with Magma, volume 19 of Algorithms and
Computation in Mathematics. Springer-Verlag, Berlin, 2006. Reducing the abstract to the concrete.
doi:10.1007/978-3-540-37634-7.

[BC23] W. Bosma and J. Cannon, editors. Handbook of Magma Functions. Magma is distributed by the
Computational Algebra Group at the University of Sydney. 2023. URL: https://magma.maths.usyd.
edu.au/magma/handbook/.

[CP01] J. Cannon and C. Playoust. An Introduction to Algebraic Programming with Magma. 2001. URL:
https://magma.maths.usyd.edu.au/magma/pdf/intro.pdf.

[Cra08] D. Craven. Computing with Magma. 2008. URL: https://web.mat.bham.ac.uk/D.A.Craven/magma.
html.

[Tub23] D. Tubbenhauer. Magma in a nutshell on YouTube. 2023. URL: https://www.youtube.com/

playlist?list=PLuFcVFHMIfhJ07kMJWR1SsoyD2MxprDdL.

D.T.: The University of Sydney, School of Mathematics and Statistics F07, Office Carslaw
609, NSW 2006, Australia, www.maths.usyd.edu.au/u/don/

Email address: donald.taylor@sydney.edu.au

D.T.#2: The University of Sydney, School of Mathematics and Statistics F07, Office
Carslaw 827, NSW 2006, Australia, www.dtubbenhauer.com, https://orcid.org/0000-0001-
7265-5047

Email address: daniel.tubbenhauer@sydney.edu.au

https://doi.org/10.1007/978-3-540-37634-7
https://magma.maths.usyd.edu.au/magma/handbook/
https://magma.maths.usyd.edu.au/magma/handbook/
https://magma.maths.usyd.edu.au/magma/pdf/intro.pdf
https://web.mat.bham.ac.uk/D.A.Craven/magma.html
https://web.mat.bham.ac.uk/D.A.Craven/magma.html
https://www.youtube.com/playlist?list=PLuFcVFHMIfhJ07kMJWR1SsoyD2MxprDdL
https://www.youtube.com/playlist?list=PLuFcVFHMIfhJ07kMJWR1SsoyD2MxprDdL
https://www.maths.usyd.edu.au/u/don/
http://www.dtubbenhauer.com

	1. Introduction
	2. Magma – what, why, how?
	3. Lecture 0 – Types, conditionals and loops
	4. Lecture 1 – A few little games and finite groups
	5. Lecture 2 – Group theory examples
	6. Lecture 3 – Lattices and Lie theory
	7. Lecture 4 – Representation theory of finite dimensional algebras
	8. Lecture 5 – Noncommutative algebras
	9. A few additional examples
	References

