Cyclotomic quiver Hecke algebras I Quiver Hecke algebras and categorification

Andrew Mathas

University of Sydney

Categorification, representation theory and symplectic geometry Hausdorff Research Institute for Mathematics November 2017

Generalised Cartan matrices

Let *I* be a (finite) indexing set

Let $C = (C_{ij})_{i,j \in I}$ be a symmetrizable generalised Cartan matrix:

 $\iff c_{ii} = 2, \ c_{ij} \le 0 \text{ if } i \ne j, \ c_{ij} = 0 \iff c_{ji} = 0$

and *DC* is symmetric for a diagonal matrix $D = \text{diag}(d_i | i \in I)$, for $d_i > 0$

We assume that C is indecomposable in the sense that if $\emptyset \neq J \subsetneq I$ then there exist $i \in I \setminus J$ and $j \in J$ such that $c_{ij} \neq 0$

A Cartan datum $(P, P^{\vee}, \Pi, \Pi^{\vee})$ for *C* consists of:

- A weight lattice *P* with basis fundamental weights $\{\Lambda_i | i \in I\}$
- Dual weight lattice $P^{\vee} = \operatorname{Hom}(P, \mathbb{Z})$
- Simple roots $\Pi = \{ \alpha_i \mid i \in I \}$
- Simple coroots $\Pi^{\vee} = \{ h_i \mid i \in I \} \subset P^{\vee}$
- A pairing such that $\langle h_i, \alpha_j \rangle = c_{ij}$ and $\langle h_i, \Lambda_j \rangle = \delta_{ij}$

Let $\mathfrak{h}^* = \mathbb{Q} \otimes_{\mathbb{Z}} P \Longrightarrow$ symmetric bilinear form on \mathfrak{h}^* : $(\alpha_i, \alpha_j) = d_i c_{ij}$ Let $P^+ = \bigoplus_{i \in I} \mathbb{N}\Lambda_i$ be the dominant weight lattice and $Q^+ = \bigoplus_{i \in I} \mathbb{N}\alpha_i$ the positive root lattice The positive root $\alpha = \sum_i a_i \alpha_i \in Q^+$ has height $\mathfrak{ht}(\alpha) = \sum_i a_i$

Andrew Mathas— Cyclotomic quiver Hecke algebras I

Outline of lectures

- Quiver Hecke algebras and categorification
 - Basis theorems for quiver Hecke algebras
 - Categorification of $U_q(\mathfrak{g})$
 - Categorification of highest weight modules
- In Brundan-Kleshchev graded isomorphism theorem
 - Seminormal forms and semisimple KLR algebras
 - Lifting idempotents
 - Cellular algebras
- Interview Content of Content o
 - Dual cell modules
 - Graded induction and restriction
 - The categorification theorem
- e Recent developments
 - Consequences of the categorification theorem
 - Webster diagrams and tableaux
 - Content systems and seminormal forms

Andrew Mathas— Cyclotomic quiver Hecke algebras I

Symmetrizable quivers

3/24

2/24

Graded modules and graded algebras

In these talks, graded will always means \mathbb{Z} -graded

A graded module M is a module with a decomposition $M = \bigoplus_{d \in \mathbb{Z}} M_d$

If $m \in M_d$ then m is homogeneous of degree d and we write deg m = d

The graded dimension of M is $\dim_q M = \sum_d (\dim M_d) q^d \in \mathbb{N}[q, q^{-1}]$

 $\implies \dim M = (\dim_q M)_{|q=1} \quad (assuming only finitely many M_d \neq 0)$

If $s \in \mathbb{Z}$ let $q^s M$ be the graded module that is equal to M but with the degree shifted upwards by s so that $(q^s M)_d = M_{d-s}$.

More generally, if $f(q) = \sum_{s} f_{s}q^{s} \in \mathbb{N}[q, q^{-1}]$ let $f(q)M = \bigoplus_{s} (q^{s}M)^{\oplus f_{s}} \implies \dim_{q} f(q)M = f(q)\dim_{q} M$

An algebra A is graded if $A = \bigoplus_{k \in \mathbb{Z}} A_k$ and $A_k A_l \subseteq A_{k+l}$

A graded A-module is a graded module M such that $A_k M_d \subseteq M_{k+d}$

A map $f: M \longrightarrow N$ is homogeneous of degree d if deg $f(m) = d + \deg m$ \implies Hom $(M, N) = \bigoplus_d \text{Hom}(M, N)_d$,

where $Hom(M, N)_d$ is the space of homogeneous maps of degree dIn the graded category, all isomorphisms are homogeneous of degree zero Andrew Mathas— Cyclotomic quiver Hecke algebras I 5/24

Quiver Hecke algebras

The symmetric group \mathfrak{S}_n acts on I^n by place permutations: $w\mathbf{i} = (i_{w(1)}, \dots, i_{w(n)})$, for $w \in \mathfrak{S}_n$ and $\mathbf{i} \in I^n$

For $\alpha \in Q^+$ let $I^{\alpha} = \{ \mathbf{i} \in I^n | \alpha = \alpha_{i_1} + \cdots + \alpha_{i_n} \}$, where $n = ht(\alpha)$

Definition (Khovanov-Lauda, Rouquier 2008)

The quiver Hecke algebra, or KLR algebra, \mathscr{R}_{α} is the unital associative \Bbbk -algebra generated by $\{1_i | i \in I^{\alpha}\} \cup \{\psi_r | 1 \leq r < n\} \cup \{y_r | 1 \leq r \leq n\}$ subject to the relations:

•
$$\mathbf{1}_{\mathbf{i}}\mathbf{1}_{\mathbf{j}} = \delta_{\mathbf{i},\mathbf{j}}\mathbf{1}_{\mathbf{i}}, \quad \sum_{\mathbf{i}\in I^{\alpha}}\mathbf{1}_{\mathbf{i}} = \mathbf{1}, \quad \psi_{r}\mathbf{1}_{\mathbf{i}} = \mathbf{1}_{s_{r}\mathbf{i}}\psi_{r},$$

•
$$y_r 1_i = 1_i y_r$$
, $y_r y_t = y_t y_r$, $\psi_r^2 1_i = Q_{i_r, i_{r+1}}(y_r, y_{r+1}) 1_i$

•
$$\psi_r y_t = y_t \psi_r$$
 if $s \neq r, r+1$, $\psi_r \psi_t = \psi_t \psi_r$ if $|r-t| > 1$

• $(\psi_r y_{r+1} - y_r \psi_r) \mathbf{1}_i = \delta_{i_r, i_{r+1}} \mathbf{1}_i = (y_{r+1} \psi_r - \psi_r y_r) \mathbf{1}_i$

•
$$(\psi_{r+1}\psi_r\psi_{r+1} - \psi_r\psi_{r+1}\psi_r)\mathbf{1}_{\mathbf{i}} = \partial Q_{i_r,i_{r+1},i_{r+1}}(y_r,y_{r+1},y_{r+1})\mathbf{1}_{\mathbf{i}}$$

Let
$$\mathscr{R}_n = \bigoplus_{\alpha \in Q_n^+} \mathscr{R}_{\alpha}$$
, where $Q_n^+ = \{ \alpha \in \mathbb{Q}^+ | \operatorname{ht}(\alpha) = n \}$

Importantly, \mathscr{R}_n is graded with the grading determined by $\deg 1_i = 0$, $\deg y_r 1_i = (\alpha_{i_r}, \alpha_{i_r})$, and $\deg \psi_r 1_i = -(\alpha_{i_r}, \alpha_{i_{r+1}})$

Quiver Hecke algebras – the *Q*-polynomials

Let $\mathbb{k} = \bigoplus_d \mathbb{k}_d$ be a positively graded commutative ring Fix polynomials $(Q_{ij}(u, v))_{i,j \in I}$ in $\mathbb{k}[u, v]$ with $Q_{ij}(u, v) = Q_{ii}(v, u)$ and

$$Q_{ij}(u,v) = \begin{cases} \sum_{a,b} q_{ab} u^a v^b, & \text{if } i \neq j, \\ 0, & \text{if } i = j, \end{cases}$$

where $q_{ab} = q_{a,b,i,j} \in \mathbb{k}_{-2(\alpha_i,\alpha_j)-a(\alpha_i,\alpha_i)-b(\alpha_j,\alpha_j)}$ and $q_{-c_{ij}0} \in \mathbb{k}_0^{\times}$ For $1 \le m < n-1$ define $\partial Q_{ijk}(u, v, w) = \delta_{ik} \frac{Q_{ij}(u,v)-Q_{ij}(w,v)}{w-u}$

Examples

$$Q_{ij}(u,v) = \begin{cases} -(u-v)^2 & \text{if } i \leftrightarrows j, \\ u-v^2, & \text{if } i \Longrightarrow j \\ u^2-v, & \text{if } i \Longleftarrow j \\ u-v, & \text{if } i \longleftarrow j \\ v-u, & \text{if } i \longleftarrow j \\ 1, & \text{if } i \not j \\ 0, & \text{if } i = j \end{cases} \rightarrow \partial Q_{iji} = \begin{cases} u+w-2v & \text{if } i \leftrightarrows j, \\ -(u+w), & \text{if } i \Longrightarrow j \\ u+w, & \text{if } i \Longrightarrow j \\ u+w, & \text{if } i \oiint j \\ -1, & \text{if } i \longrightarrow j \\ 1, & \text{if } i \leftarrow j \\ 0, & \text{otherwise} \end{cases}$$

Andrew Mathas— Cyclotomic quiver Hecke algebras I

6/24

Diagrammatic presentation for \mathscr{R}_n

If *D* and *E* are diagrams then the diagram $D \circ E$ is zero if the residues of the strings do no match up and, when the residues coincide, $D \circ E$ is obtained by putting *D* on top of *E* and then rescaling using isotopy

The relations become "local" operations on the diagrams that describe how to move dots and strings past crossings.

For example, the relation $y_{r+1}\psi_r \mathbf{1}_i = (\psi_r y_r + \delta_{i_r i_{r+1}})\mathbf{1}_i$ and the braid relation (in the simply laced case when $e \neq 2$), can be written as:

7/24

A spanning set

A reduced expression for $w \in \mathfrak{S}_n$ is a word $w = s_{a_1} \dots s_{a_k}$ with k minimal, where $s_a = (a, a + 1)$

If $w = s_{a_1} \dots s_{a_k}$ is reduced set $\psi_w = \psi_{a_1} \dots \psi_{a_k}$

Warning In general, ψ_{w} depends on the choice of reduced expression!

Proposition

The algebra \mathscr{R}_n is spanned by the following set of elements: $\{y_1^{k_1} \dots y_n^{k_n} \psi_w \mathbf{1}_i | k_1, \dots, k_n \in \mathbb{N}, w \in \mathfrak{S}_n \text{ and } i \in I^n \}$

Proof By definition, \mathscr{R}_n is spanned by all diagrams. Using the relations, we can move all of the dots to the top of the diagram, giving the result.

Andrew Mathas— Cyclotomic quiver Hecke algebras I

9 / 24

Symmetric polynomials and the coinvariant algebra

Let $\operatorname{Sym}_n = \Bbbk[\underline{x}]^{\mathfrak{S}_n}$ be the ring of symmetric polynomials in $\Bbbk[\underline{x}]$ By the product rule, $\partial_r(fg) = \partial_r(f)g + f\partial_r(g)$

 $\implies \partial_w$ is a Sym_n -module endomorphism of $\Bbbk[\underline{x}]$

Theorem

The polynomial ring $k[\underline{x}]$ is a free Sym_n -module with basis $\{ p_w | w \in \mathfrak{S}_n \}$.

Sketch Let $w_{[1,n]}$ be the longest element of \mathfrak{S}_n . We claim $\mathbb{P}_{w_{[1,n]}} = 1$. Now, $w_{[1,n]} = s_{n-1} \dots s_1 w_{[2,n]}$, where $w_{[2,n]}$ is the longest element of $\mathfrak{S}_{\{2,\dots,n\}}$, so

$$\mathbb{P}_{w_{[1,n]}} = \partial_{n-1} \dots \partial_1 \partial_{w_{[2,n]}} (x_2 x_3^2 \dots x_n^{n-1})$$
$$= \partial_{n-1} \dots \partial_1 (x_2 \dots x_n) \partial_{w_{[2,n]}} (x_3 \dots x_n^{n-2}) = 1$$

by induction. Now suppose that $f = \sum_{w} \lambda_{w} \mathbb{P}_{w} = 0$, for $\lambda_{w} \in \operatorname{Sym}_{n}$ and let $v \in \mathfrak{S}_{n}$ be of minimal length such that $\lambda_{v} \neq 0$. Applying $\partial_{w_{[1,n]}v^{-1}}$ to f shows that $\lambda_{v} = 0$.

Counting graded dimensions, with x_r in degree $2d_i$, completes the proof Andrew Mathas— Cyclotomic quiver Hecke algebras I 11/24

The nil Hecke algebra

Let $\alpha = n\alpha_i$, for some $i \in I \implies l^{\alpha} = \{(i, \dots, i)\}$ (omit $1_{(i^n)}$ below) $\implies \mathscr{R}_n$ is generated by $y_1, \dots, y_n, \psi_1, \dots, \psi_{n-1}$ with relations $y_r y_t = y_t y_r, \quad \psi_r^2 = 0, \quad \psi_r \psi_{r+1} \psi_r = \psi_{r+1} \psi_r \psi_{r+1}, \quad \psi_r \psi_t = \psi_r \psi_t \text{ if } |r - s| > 1, \quad \psi_r y_t - y_{s_r(t)} \psi_r = \delta_{r+1,t} - \delta_{r,t}$ \implies the ψ_r satisfy the \mathfrak{S}_n -braid relations $\implies \psi_w$ depends only on wFurther, deg $y_r = (\alpha_i, \alpha_i) = 2d_i = -\deg \psi_t$ Moreover, the ψ_r 's satisfy the relations of the nil Hecke algebra NH_n

 \implies there is an action of NH_n on the polynomial ring $k[\underline{x}] = k[x_1, \dots, x_n]$, where y_t acts as multiplication by x_t and ψ_r acts as a *Demazure operator*

 $\partial_r f = \frac{s_r f - f}{x_r - x_{r+1}}$, where $s_r f(x_1, \dots, x_n) = f(x_1, \dots, x_{r+1}, x_r, \dots, x_n)$ Exercise Check that $\partial_r^2 = 0$, $\partial_r \partial_{r+1} \partial_r = \partial_{r+1} \partial_r \partial_{r+1}$ and that

Exercise Check that $\partial_r^2 = 0$, $\partial_r \partial_{r+1} \partial_r = \partial_{r+1} \partial_r \partial_{r+1}$ and that $\partial_r \partial_t = \partial_t \partial_r$ if |r - t| > 1

 $\implies \text{if } w = s_{a_1} \dots s_{a_k} \text{ then } \partial_w = \partial_{a_1} \dots \partial_{a_k}, \text{ reduced, depends only on } w$ For $w \in \mathfrak{S}_n$ define the (Schubert polynomial) $\mathbb{P}_w = \partial_w (x_2 x_3^2 \dots x_n^{n-1})$ Andrew Mathas— Cyclotomic quiver Hecke algebras I 10/24

Quiver Hecke algebra basis theorem

Theorem (Khovanov-Lauda, Rouquier)

Let $\alpha = Q_n^+$. Then \mathscr{R}_{α} has basis $\{ y_1^{k_1} \dots y_n^{k_n} \psi_w \mathbf{1}_{\mathbf{i}} | k_r \ge 0, w \in \mathfrak{S}_n, \mathbf{i} \in I^{\alpha} \}$

Sketch When $\alpha = n\alpha_i$, for $i \in I$, the proof reduces to the nil-Hecke case The general case is similar in spirit. Using the relations you check that \mathscr{R}_{α} has a faithful polynomial representation

$$\Bbbk[\underline{\mathbf{x}}]_{\alpha} = \bigoplus_{\mathbf{i} \in I^{\alpha}} \Bbbk[\underline{\mathbf{x}}_{\mathbf{i}}]$$

where y_1, \ldots, y_n act by multiplication, $\mathbf{1}_i \mathbb{k}[\underline{\mathbf{x}}_j] = \delta_{ij} \mathbb{k}[\underline{\mathbf{x}}_i]$ and $\psi_r \mathbf{1}_i$ acts on $\mathbb{k}[\underline{\mathbf{x}}_i]$ via

$$\psi_r f(\underline{\mathbf{x}}_{\mathbf{i}}) = \begin{cases} \partial_r f(\underline{\mathbf{x}}_{\mathbf{i}}), \\ s_r f(\underline{\mathbf{x}}_{\mathbf{i}}), \\ Q_{i_r i_{r+1}} (y_{r+1}, y_r)^{s_r} f(\underline{\mathbf{x}}_{\mathbf{i}}) \end{cases}$$

if $i_r = i_{r+1}$ if there is an edge from i_r to i_{r+1} , otherwise

The faithfulness of the \mathscr{R}_{α} action and the freeness of $\Bbbk[\underline{x}]_{\alpha}$ implies that the elements in the spanning set are linearly independent

Cyclotomic quiver Hecke algebras

Fix a dominant weight $\Lambda \in P^+$ and for each $i \in I$ fix a monic polynomial $\kappa_i(u) \in \Bbbk[u]$ of degree (h_i, Λ) of the form:

 $\kappa_i(u) = \sum_{d=0}^{(h_i, \Lambda)} k_d u^{(h_i, \Lambda) - d}$, where $k_d \in \mathbb{k}_{d(\alpha_i, \alpha_i)}$

Definition (Khovanov-Lauda, Rouquier, Brundan-Stroppel, Brundan-Kleshchev) _____

Let $\Lambda \in P^+$ and $\alpha \in Q_n^+$. The Cyclotomic quiver Hecke algebra, or Cyclotomic KLR algebra, $\mathscr{R}^{\Lambda}_{\alpha}$ is the quotient of \mathscr{R}_{α} by the two-sided ideal generated by $\{\kappa_{i_1}(y_1)\mathbf{1}_{\mathbf{i}} \mid \mathbf{i} \in I^{\alpha}\}$. Set $\mathscr{R}^{\Lambda}_n = \bigoplus_{\alpha \in Q_n^+} \mathscr{R}^{\Lambda}_{\alpha}$

We abuse notation and identify the elements $\psi_1, \ldots, \psi_{n-1}, y_1, \ldots, y_n, 1_i$, and ψ_w of \mathscr{R}_n with their images in \mathscr{R}_n^{\wedge}

Corollary

The algebra $\mathscr{R}_{n}^{\Lambda}$ is spanned by the elements $\{ y_{1}^{k_{1}} \dots y_{n}^{k_{n}} \psi_{w} \mathbf{1}_{i} | k_{r} \geq 0, w \in \mathfrak{S}_{n}, i \in I^{\alpha} \}$

It is not obvious how to find a smaller spanning set

Andrew Mathas— Cyclotomic quiver Hecke algebras I

13 / 24

The nil Hecke algebra case

Fix $i \in I$ and take $\alpha = n\alpha_i$, $\Lambda = n\Lambda_i$ and $\kappa_i(u) = u^n$. Then $\mathscr{R}^{\Lambda}_{\alpha}$ is a cyclotomic quotient of the quiver Hecke algebra \mathscr{R}_{α} that we considered in the nil Hecke case.

Recall that
$$\mathbb{P}_1 = x_2 x_3^2 \dots x_{n-1}^{n-1}$$
. For $v, w \in \mathfrak{S}_n$ define
 $\psi_{vw} = \psi_{v^{-1}} y_2 y_3^2 \dots y_{n-1}^{n-1} \psi_w$
 $\implies \deg \psi_{vw} = d_i \Big(n(n-1) - 2\ell(v) - 2\ell(w) \Big)$

Proposition

The algebra $\mathscr{R}^{\wedge}_{\alpha}$ has graded cellular basis { $\psi_{vw} | v, w \in$ }. In particular, $\mathscr{R}^{\wedge}_{\alpha}$ has a unique irreducible module, up to grading shift

To prove this you need to explicitly describe how the y_r 's act on the irreducible module after which you can show that multiplication by $y_2y_3^2 \dots y_{n-1}^{n-1}$ sends the "bottom" basis element to the "top" basis element and so, in particular, is non-zero

Finiteness of cyclotomic quiver Hecke algebras

Proposition

The algebra \mathscr{R}_n^{\wedge} is finitely generated as a k-module

Proof It is enough to show that for any $\mathbf{i} \in I^n$ there exists a monic polynomial $h_r(u) \in \mathbb{k}[u]$ such that $h_r(y_r)\mathbf{1}_{\mathbf{i}} = 0$. By definition, such a polynomial exists when r = 1. Hence, by induction, it is enough to show how to construct $h_{r+1}(u)$ from $h_r(u)$

Case
$$i_r \neq i_{r+1}$$
: Let $h'_r(u)$ be such that $h'_r(y_r) \mathbf{1}_{s_r \mathbf{i}} = 0$. Then
 $h'_r(y_{r+1}) Q_{i_r i_{r+1}}(y_r, y_{r+1}) \mathbf{1}_{\mathbf{i}} = h'_r(y_{r+1}) \psi_r^2 \mathbf{1}_{\mathbf{i}} = \psi_r h_r(y_r) \mathbf{1}_{s_r \mathbf{i}} \psi_r = 0$
Case $i_r = i_{r+1}$: Let $\varphi_r = \psi_r(y_r - y_{r+1}) \mathbf{1}_{\mathbf{i}} = ((y_{r+1} - y_r)\psi_r - 2) \mathbf{1}_{\mathbf{i}}$.
 $\implies \varphi_r \psi_r \mathbf{1}_{\mathbf{i}} = -2\psi_r \mathbf{1}_{\mathbf{i}} \implies (1 + \varphi_r)^2 = \mathbf{1}_{\mathbf{i}}$
 $\implies y_{r+1} \mathbf{1}_{\mathbf{i}} = (1 + \varphi_r) y_r (1 + \varphi_r) \mathbf{1}_{\mathbf{i}} \implies h_r(y_{r+1}) \mathbf{1}_{\mathbf{i}} = 0$

Currently, bases for \mathscr{R}_n^{\wedge} can be found in the literature only in type A

Andrew Mathas— Cyclotomic quiver Hecke algebras I

14 / 24

Induction and restriction functors

For $\beta \in Q^+$ and $i \in I$ define $1_{\beta,1} = \sum_{j \in I^{\alpha}} 1_{ji}$. Define functors: $e_i : \mathscr{R}_{\beta+\alpha_i} \operatorname{-Mod} \longrightarrow \mathscr{R}_{\beta} \operatorname{-Mod}; M \mapsto 1_{\beta,i}M$ $f_i : \mathscr{R}_{\beta} \operatorname{-Mod} \longrightarrow \mathscr{R}_{\beta+\alpha_i} \operatorname{-Mod}; N \mapsto \mathscr{R}_{\beta_a+\alpha_i} \otimes_{\mathscr{R}_{\beta}} N$ Proposition (Khovanov-Lauda, Rouquier)

The functors (e_i, f_i) are an adjoint pair.

In particular, these functors are exact and send projectives to projectives There are natural cyclotomic analogues of these functors:

 $e_i^{\wedge}:\mathscr{R}^{\wedge}_{\beta+lpha_i}\operatorname{-Mod}\longrightarrow\mathscr{R}^{\wedge}_{\beta}\operatorname{-Mod}; M\mapsto 1_{\beta,i}M$

$$f_i^{\Lambda}:\mathscr{R}_{\beta}^{\Lambda}\operatorname{-Mod}\longrightarrow\mathscr{R}_{\beta+\alpha_i}^{\Lambda}\operatorname{-Mod}; N\mapsto\mathscr{R}_{\beta_a+\alpha_i}^{\Lambda}\otimes_{\mathscr{R}_{\beta}^{\Lambda}} N$$

Theorem (Kashiwara, Rouquier)

The functors $(e_i^{\wedge}, f_i^{\wedge})$ are an adjoint pair.

Theorem (Kang-Kashiwara, Li)

Let k be a commutative graded ring. Then $\mathscr{R}^{\wedge}_{\alpha}$ is free as a k-module.

Andrew Mathas— Cyclotomic quiver Hecke algebras I

Grothendieck groups

Let $\mathbb{A} = \mathbb{Z}[q, q^{-1}]$, for q an indeterminate

Let $\operatorname{Rep}(\mathscr{R}_n^{\Lambda})$ be the Grothendieck group of the finitely generated graded \mathscr{R}_n^{Λ} -modules, modulo short exact sequences

So, $\operatorname{Rep}(\mathscr{R}_n^{\Lambda})$ is the \mathbb{A} -module generated by symbols [M], as M runs over the isomorphism classes of finitely generated \mathscr{R}_n^{Λ} -modules, with relations

- [qM] = q[M] (q acts as grading shift)
- [M] = [L] + [N], whenever $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ is exact

Similarly, let $\operatorname{Proj}(\mathscr{R}_n^{\wedge})$ be the split, or projective, Grothendieck group of finitely generated projective \mathscr{R}_n^{\wedge} modules modulo direct sums

Observe that e_i^{Λ} and f_i^{Λ} induce linear endomorphisms of

 $\operatorname{Rep}(\mathscr{R}^{\Lambda}) = \bigoplus_{n \geq 0} \operatorname{Rep}(\mathscr{R}^{\Lambda}_{n}) \quad \text{and} \quad \operatorname{Proj}(\mathscr{R}^{\Lambda}) = \bigoplus_{n \geq 0} \operatorname{Proj}(\mathscr{R}^{\Lambda}_{n})$

given by $e_i^{\Lambda}[M] = [e_i^{\Lambda}M]$ and $f_i^{\Lambda}[M] = [f_i^{\Lambda}M]$

Similarly, we have Grothendieck groups $\operatorname{Rep}(\mathscr{R}_n)$ and $\operatorname{Proj}(\mathscr{R}_n)$ and the functors e_i and f_i induce endomorphisms of

 $\operatorname{Rep}(\mathscr{R}) = \bigoplus_{n \ge 0} \operatorname{Rep}(\mathscr{R}_n) \quad \text{and} \quad \operatorname{Proj}(\mathscr{R}) = \bigoplus_{n \ge 0} \operatorname{Proj}(\mathscr{R}_n)$

Andrew Mathas— Cyclotomic quiver Hecke algebras I

Categorification of $U_a^-(\mathfrak{g})$

Theorem (Khovanov-Luda, Rouquier)

Suppose that \Bbbk is a field. Then there are \mathbb{A} -algebra isomorphisms $U_{\mathbb{A}}^{-}(\mathfrak{g}) \cong \operatorname{Proj}(\mathscr{R})$ and $(U_{\mathbb{A}}^{-}(\mathfrak{g}))^{\vee} \cong \operatorname{Rep}(\mathscr{R})$

In fact, these are isomorphisms of twisted bialgebras where the multiplication on $\operatorname{Rep}(\mathscr{R})$ and $\operatorname{Proj}(\mathscr{R})$ is induced by the convolution product: if $M \in \mathscr{R}_{\alpha}$ -Mod and $N \in \mathscr{R}_{\beta}$ -Mod then $M \circ N = \mathscr{R}_{\alpha+\beta} \mathbb{1}_{\alpha,\beta} \otimes \mathscr{R}_{\alpha} \otimes \mathscr{R}_{\beta} M \otimes N$

Quantum groups

The quantum group $U_q(\mathfrak{g})$ associated with $(C, P, P^{\vee}, \Pi, \Pi^{\vee})$ is the unital associative $\mathbb{Q}(q)$ -algebra with generators $\{E_i, F_i, K_i^{\pm} \mid i \in I\}$, subject to the relations:

$$\begin{aligned} & \mathcal{K}_{i}\mathcal{K}_{j} = \mathcal{K}_{j}\mathcal{K}_{i}, \quad \mathcal{K}_{i}\mathcal{K}_{i}^{-1} = 1, \quad [E_{i}, F_{j}] = \delta_{ij}\frac{\mathcal{K}_{i}-\mathcal{K}_{i}^{-1}}{q-q^{-1}} \\ & \mathcal{K}_{i}E_{j}\mathcal{K}_{i}^{-1} = q^{d_{i}c_{ij}}E_{j}, \quad \mathcal{K}_{i}F_{j}\mathcal{K}_{i}^{-1} = q^{-d_{i}c_{ij}}F_{j} \\ & \sum_{0 \leq c \leq 1-c_{ij}}(-1)^{c}\left[\begin{smallmatrix} 1-c_{ij}\\ c \end{smallmatrix}\right]_{i}E_{i}^{1-c_{ij-c}}E_{j}E_{i}^{c} = 0 \\ & \sum_{0 \leq c \leq 1-c_{ij}}(-1)^{c}\left[\begin{smallmatrix} 1-c_{ij}\\ c \end{smallmatrix}\right]_{i}F_{i}^{1-c_{ij-c}}F_{j}F_{i}^{c} = 0 \end{aligned}$$
where $q_{i} = q^{d_{i}}, [m]_{i}! = \prod_{k=1}^{m}(q^{k}-q^{-k})/(q-q^{-1}),$
nd $\begin{bmatrix} a\\ b\end{bmatrix}_{i} = [b]_{i}!/[a]_{i}![b-a]_{i}! \text{ for integers } a < b, m \in \mathbb{N}. \end{aligned}$
et $U_{q}^{+}(\mathfrak{g}) = \langle E_{i} \mid i \in I \rangle$ and $U_{q}^{-}(\mathfrak{g}) = \langle F_{i} \mid i \in I \rangle$
 \Rightarrow There is a PBW decomposition $U_{q}(\mathfrak{g}) \cong U_{q}^{-}(\mathfrak{g}) \otimes U_{q}^{0}(\mathfrak{g}) \otimes U_{q}^{+}(\mathfrak{g})$
inally, the Lusztig integral form of $U_{q}(\mathfrak{g})$ is the A-subalgebra $U_{A}(\mathfrak{g})$
f $U_{q}(\mathfrak{g})$ generated by the quantised divided powers $E_{i}^{(k)} = E_{i}^{k}/[k]_{i}!$
nd $F_{i}^{(k)} = F_{i}^{k}/[k]_{i}!$ for $k \geq 0$ and $i \in I$
ew Matas—Cyclotomic quiver Hecke algebras I

18

Canonical bases

0

а

Andr

The Grothendieck groups $\operatorname{Rep}(\mathscr{R})$ and $\operatorname{Proj}(\mathscr{R})$ come equipped with distinguished bases:

 $\operatorname{Rep}(\mathscr{R}_n) = \langle [D] | D \text{ self-dual irreducible } \mathscr{R}_n \text{-modules} \rangle$

 $\operatorname{Proj}(\mathscr{R}_n) = \langle [P] | P \text{ self-dual indecomposable projective } \mathscr{R}_n \text{-modules} \rangle$

Warning: different dualities are used in $\operatorname{Rep}(\mathscr{R}_n)$ and in $\operatorname{Proj}(\mathscr{R}_n)$. We will give more precise details later

On the quantum group side, $U_q^-(\mathfrak{g})$ and $U_q^-(\mathfrak{g})^{\vee}$ also come equipped with distinguished bases: Lusztig's canonical basis and dual canonical basis or, equivalently, Kashiwara's upper and lower global crystal bases

Theorem (Varagnolo-Vasserot, Brundan-Stroppel, Brundan-Kleshchev, Webster)

Assume that \Bbbk is a field of characteristic zero and that C is a symmetric Cartan matrix ($d_i = 1$ for all $i \in I$). Then canonical basis of $U_q^-(\mathfrak{g})$ coincides with the basis of self-dual projective indecomposable modules and the dual canonical basis coincides with the basis of self-dual irreducible modules.

19 / 24

Categorification of highest weight modules

For each dominant weight $\Lambda \in P^+$ there is a unique irreducible integral highest weight module $L(\Lambda)$ for $U_q(\mathfrak{g})$.

Let $v_{\Lambda} \in L(\Lambda)$ be a highest weight vector and define $L_{\mathbb{A}}(\Lambda) = U_{\mathbb{A}}(\mathfrak{g})v_{\Lambda}$ and $L_{\mathbb{A}}(\Lambda)^{\vee} = \bigoplus L_{\mathbb{A}}(\Lambda)^{\vee}_{\mu}$, where $L_{\mathbb{A}}(\Lambda)^{\vee}_{\mu} = \operatorname{Hom}_{\mathbb{A}}(L_{\mathbb{A}}(\Lambda)_{\mu}, \mathbb{A})$

Theorem (Kang-Kashiwara, Webster)

Let C be a generalised symmetrizable Cartan matrix. Then $L_{\mathbb{A}}(\Lambda) \cong \bigoplus_{n \ge 0} \operatorname{Proj}(\mathscr{R}_n^{\Lambda}) \quad \text{and} \quad L_{\mathbb{A}}(\Lambda)^{\vee} \cong \bigoplus_{n \ge 0} \operatorname{Rep}(\mathscr{R}_n^{\Lambda})$

Prior to this result, Lauda and Vazirani proved the weaker statement that the irreducible \mathscr{R}_n^{Λ} -modules categorify the crystal of $L(\Lambda)$

Andrew Mathas— Cyclotomic quiver Hecke algebras I

21 / 24

Further reading I

- J. Brundan, *Quiver Hecke algebras and categorification*, in Advances in representation theory of algebras, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013, 103–133.
- J. Brundan and A. Kleshchev, *Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras*, Invent. Math., **178** (2009), 451–484.
- J. Brundan and C. Stroppel, *Highest weight categories arising from Khovanov's diagram algebra III: category* O, Represent. Theory, **15** (2011), 170–243. arXiv:0812.1090.
- S.-J. Kang and M. Kashiwara, *Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras*, Invent. Math., **190** (2012), 699–742.
- M. Kashiwara, *Biadjointness in cyclotomic Khovanov-Lauda-Rouquier algebras*, Publ. Res. Inst. Math. Sci., **48** (2012), 501–524.
- M. Khovanov and A. D. Lauda, *A diagrammatic approach to categorification of quantum groups. I*, Represent. Theory, **13** (2009), 309–347.

Canonical bases for integrable highest weight modules

Combining the last two results proves the following:

Corollary (Varagnolo-Vasserot, Brundan-Stroppel, Brundan-Kleshchev, Webster)

Assume that \Bbbk is a field of characteristic zero and that C is a symmetric Cartan matrix ($d_i = 1$ for all $i \in I$). Then:

- The canonical basis of L_A(Λ) coincides with
 {[P]| self dual projective indecomposable *R*^Λ_n-module, n ≥ 0 }
- The dual canonical basis of L_A(Λ)[∨] coincides with
 {[D]| self dual irreducible 𝔅^Λ_n-modules, n ≥ 0 }

In general, this result cannot hold for non-symmetric Cartan matrices because there are known examples where the structure constants for the canonical bases are polynomials with negative coefficients

Andrew Mathas— Cyclotomic quiver Hecke algebras I

22 / 24

Further reading II

- ____, *A diagrammatic approach to categorification of quantum groups II*, Trans. Amer. Math. Soc., **363** (2011), 2685–2700.
- A. D. Lauda and M. Vazirani, *Crystals from categorified quantum groups*, Adv. Math., **228** (2011), 803–861.
- G. Li, Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier algebras of Type A, J. Algebra, 2017, accepted Oct. 2016. arXiv:1412.3747.
- R. Rouquier, 2-Kac-Moody algebras, 2008, preprint. arXiv:0812.5023.
- ____, *Quiver Hecke algebras and 2-Lie algebras*, Algebra Colloq., **19** (2012), 359–410.
- M. Varagnolo and E. Vasserot, *Canonical bases and KLR-algebras*, J. Reine Angew. Math., **659** (2011), 67–100.
- B. Webster, *Canonical bases and higher representation theory*, Compos. Math., **151** (2015), 121–166. arXiv:1209.0051.