Representation theory of monoidal categories

Or: Cell theory for monoidal categories

Daniel Tubbenhauer

CELL THEORY

.. and we are all
made up of Finy unils Interesting
Hhat | call "%\umqv\s." theory

r H-cells

Part 1: Reps of monoids; Part 2: Reps of algebras
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Where do we want to go?

Fusion reps Fiat reps

rep theory

“categorify”

Group reps Monoid reps

generalize

Fiat mon-
oidal cats

Fusion mon-
oidal cats

Groups l—' Monoids

» Green, Clifford, Munn, Ponizovskii ~19404+4 + many others
Representation theory of monoids

» Goal Find some categorical analog
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Where do we want to go?

Fusion reps Fiat reps

rep theory

“categorify”

Group reps Monoid reps

generalize

Fiat mon-
oidal cats

Fusion mon-
oidal cats

“Categorify”
Groups l—' Monoids S
is motivated by

» Green, Clifford, Munn, Ponizovskii ~19404+4 + many others
Representation theory of monoids

» Goal Find some categorical analog
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Where do we want to go?

Stasheff polytopes = | can ignore associators

(AyAz)As As(Az{AsAL))
(A1 Az)(AzA,) OAT ((A2A3)Aq)
A(AzAz) (A1 Az)A3)A, (A1(AzAq))A,
\3'
\Yﬂl

~

K K, °

» Today Cell theory for monoidal categories

N
&
.s

Ks

» Instead of Zep(G,K) we study Zep(Zep(G,K))

» Examples we discuss Zep(G,K) and y(V®d|d € N) (“diagram cats”)
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Wherd The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co

Categories have finitely many indecomposable objects (up to iso)

Not always, but sometimes categories have dualities * (rigid, pivotal etc.)

| \_/ S
Ay (AAs) (AT A)A3)A, (A (AzA)A, =
by

K Ky Ksg

» Today Cell theory for monoidal categories
> Instead of Zep(G,K) we study Zep(Zep(G,K))

» Examples we discuss Zep(G,K) and & (V®9|d € N) (“diagram cats”)
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Wherd The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co

Categories have finitely many indecomposable objects (up to iso)

Not always, but sometimes categorles have dualltles (rigid, pivotal etc.)

l Everythlng has a bicategory ver5|on
A (AzAg) ((A74  but | completely ignore that!

o

I

K Ky Ksg

7 ﬂqe

» Today Cell theory for monoidal categories
> Instead of Zep(G,K) we study Zep(Zep(G,K))

» Examples we discuss Zep(G,K) and y(V”’\d € N) (“diagram cats”)
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Wher¢

Not always, but sometimes categones have dualltles (rigid, pivotal etc.)

The categories in this talk

Categories are monoidal
Categories are K-linear over some field K
Categories are additive &
Categories are idempotent complete &€
Hom spaces are finite dimensional dimg < co

Categories have finitely many indecomposable objects (up to iso)

l Everythmg has a bicategory ver5|on
A (AzAz) ((A14  but | completely ignore that!

Examples

Vec
Vecg/Vecs for a finite group G/monoid S
Rep(G,C), Z10j(G,K) or #nj(G,K) for a finite group G
Rep(G,K) for a finite group G sometimes works (details in a sec)

> ZRep(S,K) for a finite monoid S sometimes works
Categories & (V®9|d € N) with ®-generator V sometimes work (details later)
| 2 Quotients of tilting module categories
Projective functor categories 64
> Soergel bimodules &#bim for finite Coxeter types
Cell theory for monoidal categories " ation theory of i August 2022
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps , simple «~ elements
Ay

matter indecomposable «~ compounds

o & o S0

> Let & = Zep(G,K)

» ¥ is monoidal v~

» & is K-linear v°

» & is additive v~

» & is idempotent complete v~
» ¥ has fin dim hom spaces v~
>

& often has infinitely many indecomposable objects

» < has dualities v~
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps ’ simple «~ elements
Ay

matter indecomposable «~ compounds

o & o S0

Let & = Zep(S,K)

& is monoidal v~

S is K-linear v~

S is additive v~

< is idempotent complete v~
& has fin dim hom spaces v~

al

|
>
|
>
>
>
>
>

& has no dualities in general X

Cell theory for monoidal categories p ion theory of i i August 2022
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Finitary/fiat monoidal cats

» Take G = Z/5Z and K = Fs, then K[G] = K[X]/(X®)
» Rep(G,K) has one simple object Z; = 1

» Zep(G,K) has five indecomposable objects = [fiat
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Finitary/fiat monoidal cats

s
s«(a+1ib) = —a—+ib

L selatib)

v  t.(a+ib) =a—1ib

t
7 X ! X Y X ! X
20 @ <4 ° ° ° ® < ° °
Zzl+1:o<XoS oXo} O\X ,%o

» Take G = Z/27Zx7/27 and K = F», then K[G] = K[X, Y]/(X?, Y?)
» Rep(G,K) has one simple object Z; = 1

» Zep(G,K) has infinitely many indecomposable objects = 'not fiat
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. Theorem (Higman ~1954)
Finitar

Rep(G,K) is fiat 'if and only if either
(a) char(K) does not divide |G|

or
(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic

VLTR ™ ° ° ° ° °

D11t @ ° ° ° ° °

> Take G = Z/2ZxZ/2Z and K = T, then K[G] = K[X, Y]/(X2, Y?)
> Zep(G,K) has one simple object Z; = 1

> Zep(G,K) has infinitely many indecomposable objects = 'not fiat

Cell theory for monoidal categories
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Finitan

Theorem (Higman ~1954)
Rep(G,K) is fiat if and only if either

(a) char(K) does not divide |G|
or

(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic

N
°

> Take G =7Z
> Zep(G,K) h
> Zep(G,K) h

Examples and nonexamples

Rep(S3,F2), Zep(Dodd, F2) are fiat

coa ey’

Rep(Sa, F2), Zep(Deven, F2) are not fiat

similar

° °
®
/(X2 Y?)
not fiat

Cell theory for monoidal categories

Blue circle = cyclic subgroups, green = 2-Sylows
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. Theorem (Higman ~1954)
Finitarn

Rep(G,K) is fiat if and only if either
(a) char(K) does not divide |G|

or
(b) char(K) = p divides |G| and the p-Sylow subgroups of G are cyclic

L |

VLIRS Together with Zr0j(G,K) and #nj(G, K) (these are [always fiat )|~ @
Higman's theorem provides many examples of fiat categories

D11t @ ® ° ° ° °

A Higman theorem for monoids is widely open
but one shouldn’t expect it too be very nice, e.g.

T, has finite representation type over C < n < 4 2 F
» Take G = Z/zzmxzmyzzsanma T~ = T3, tmen N[O — N[N, IJ/(X .,Y )

» Zep(G,K) has one simple object Z; = 1

> Zep(G,K) has infinitely many indecomposable objects = 'not fiat

Cell theory for monoidal categories
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Finitary/fiat monoidal cats

®

° - ©

‘ Reps ’ simple «~ elements
Ay

matter indecomposable «~» compounds
® % o &9

> Let & = F(V®9d € N) (+ K-linear - + @) for some nice V
» & is monoidal v~
» & is K-linear v°
» & is additive v~
» & is idempotent complete v~
» & has fin dim hom spaces (v~

» & often has infinitely many indecomposable objects !

» & has dualities (v") depends but is easy to check
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Finitary /fi=s bl

s

Almost examples

Temperley—Lieb (TL), Brauer or Deligne categories

C
C

0

> Let
» S is
» S is f\\
» S is . . L
and other diagram categories in the same spirit
> S is
> < h Catch These usually have infinitely many indecomposable objects

= truncate these appropriately

» & often has infinitely many indecomposable objects |

> & has dualities (v")
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Finitary
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D
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vV Vv v VvV VY
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>

Y oo

Example/Theorem (Alperin, Kovacs ~1979)

simples in Zep(G, K):

[

“Finite TL", i.e. V any simple of G = SLy(F,«) over characteristic p
S (V®|d eN)is fiat , eg. p=5 K="Fs, k=2, V = (Fas)*:

GModule of dimension 1 over GF(S),

GModule of dimension 4 over GF(S),

GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule

G:=SpecialLinearGroup(2,5°2);
| indecomposables in Zep(G,K): Istyclic(Sylowsubgroup(6,5));

of
of

of

indecomposables in & (V®9|d € N):

dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension

4 over GF(5),
6 over GF(5),
8 over GF(5)
9 over GF(5),
10 over GF(5),
12 over GF(5),
16 over GF(5),
16 over GF(5),
20 over GF(5),
24 over GF(5),
25 over GF(5),
30 over GF(5),
40 over GF(5)

false

GHodule of dimension 1 over GF(S),

GHodule 14 of dimension 4 over GF(S),

GHodule of dimension 4 over GF(S),
GHodule of dimension 6 over GF(5),
GHodule of dimension 12 over GF(S),
GHodule of dimension 8 over GF(5),
GHodule of dimension 9 over GF(S),
GHodule of dimension 16 over GF(S),
GHodule of dimension 10 over GF(5),
GHodule of dimension 24 over GF(5),
GHodule of dimension 20 over GF(5),
GHodule of dimension 20 over GF(S),
GHodule of dimension 16 over GF(S),
GHodule of dimension 30 over GF(5),

GHodule
GHodule
GHodule
GHodule

of dimension 46 over GF(5),
of dimension 20 over GF(S),
of dimension 40 over GF(5),
of dimension 60 over GF(S),

+a few more (45 in total)

Cell theory for monoidal categories
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Finitary/fiat monoidal cats

Example/Theorem (folklore)

V any 2d simple of a finite group G
F (V29 d € N) is finitary ,
e.g. K=TF,, V the two dim simple of G = Ds:

[
. _ GModule of dimension 1 over GF(2),
sftmples I £ L GModule of dimension 2 over GF(2)
—________________________|]
]

G:=DihedralGroup(6);

indecomposables in Zep(G,K): IsCyclic(Sylowsubgroup(G,2));
false

[

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(2)

]

indecomposables in y(v@d‘d = N): GModule M of dimension 2 over GF(2),

» & often has infinitely many indecomposable objects |

> & has dualities (v")
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Finitary/fiat monoidal cats

o O

provide many examples of finitary/fiat “diagram lookalike cats”

The state of the arts for algebraic modules is roughly the same as for algebraic numbers:

Algebraic modules a la Alperin

there are some results, but not so many

z w z¥
2 algebraic log3/log2 transcendental | 3 algebraic
2 algebraic ilog3/log2 transcendental | 3 transcendental
e’ transcendental T transcendental | -1 algebraic
e  transcendental 71' transcendental | e™ transcendental
2 transcendental V2 algebraic 4 algebraic
2V2  transcendental 7\/§ algebraic 4*  transcendental

TABLE 1. Possibilities for z* when z or w is transcendental.
In the monoid case next to nothing is known

» & has fin dim hom spaces (

» & often has infinitely many indecomposable objects |

> & has dualities (

Cell theory for monoidal categories

)
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Example/Theorem (Craven ~2013)

V any simple of Mi; in characteristic 2
F(V®d € N)is finitary ,
e.g. V the 10 dim simple of G = Mh;:
[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF 2!,

simples in %ep(G,K): GModule of dimension 32 over GF(2),
GModule of dimension 44 over GF(2)
1

indecomposables in Zep(G,K): 6 := sub<sym(11)|(1,10)(2.8)(3,11)(5,7), (1,4,7,6) (2,11,10,9)>;

IsCyclic(SylowSubgroup(G,2)); false
[
GModule of dimension 1 over GF(2),
GModule M of dimension 10 over GF(2),
GModule of dimension 90 over GF(2),
a 3 ®d| ) GModule of dimension 32 over GF(2),
IndeCOmpOSables In ‘Sﬂ(v d e N . GModule of dimension 96 over GF(2),
GModule of dimension 144 over GF(2),
GModule of dimension 112 over GF(2)
1

- There are many similar results known, but they all look a bit random, e.g.
> Proposition 8.9 Let G be the Held sporadic group He. If p = 2 then a simple module
is algebraic if and only if it is trivial or lies outside the principal block. If p = 3 then
» | asimple module is algebraic if and only if it does not have dimension 6172 or 10879,
and if p =5 then the simple modules with dimension 1, 51, 104, 153, 4116, 4249, and
p o 6528are algebraic.
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

X<, Yed: Ye@/ZX

X<, Ye3IZ:Y eX

X< Y&e3Z,7Z:Y ezX7

X~ Y & (X< Y)A (Y <, X)
X~prY & (XZRrY)A(Y <R X)
X~rY & (X<rRY)A(Y <1r X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» H-cells = intersections of left and right cells

» Slogan Cells measure information loss

Cell theory for monoidal categories P ion theory of i i August 2022
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

X<, Yed: Ye@/ZX

X<, Ye3IZ:Y eX

X< Y&e3Z,7Z:Y ezX7

X~ Y & (X< Y)A (Y <, X)
X~prY & (XZRrY)A(Y <R X)
X~rY & (X<rRY)A(Y <1r X)

Lef Green cells in categories
eft, B ={X,Y,Z,...} set of indecomposables of a finitary monoidal category &
> @ = is direct summand of

» Slogan Cells measure information loss
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

X<, Yed: Ye@/ZX

X<, Ye3IZ:Y eX

X< Y&e3Z,7Z:Y ezX7

X~ Y & (X< Y)A (Y <1 X)
X~rY < (X <R Y)A(Y <g X)
X~rY & (X<rRY)A(Y <1r X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”
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Cells in monoidal cats

The categor

Example (Zep(Ss, C))

Indecomposable objects Z; 2 1 e~ [T 11, Zp ¢ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

1 @E@E: g is in the lowest cell

Only one cell

XNLY<:>(X§LY)/\(Y§LX)
XNRY<:>(X§RY)/\(Y§RX)
X~rY & (X<RY)A(Y <1r X)

bles B:

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”

Cell theory for monoidal categories p ion theory of

August 2022

a/7



Cells in monoidal cats

The categor Example (Zep(Ss,C))

1 @E@E: g is in the lowest cell

Indecomposable objects Z; 2 1 e~ [T 11, Zp ¢ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

bles B:

Only one cell
AV AVANFNNA VS
X Example (Zep(G,C)) )
X ~ » X)
1@Z®Z" = Zis in the lowest cell
X o Only one cell R X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”
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Cells in monoidal cats

The categor

Example (Zep(Ss, C)) bles B:

Indecomposable objects Z; 2 1 e~ [T 11, Zp ¢ EP Z3 W@

1 @EP@EP = EP is in the lowest cell

1 @E@Eé g is in the lowest cell

Only one cell
AV AVANFNNA VS
X Example (Zep(G, C)) )
R » X)
1@Z®Z* = Zis in the lowest cell
X o Only one cell R X)

Left, right and tw|Example (semisimple + dual (replaces O™ Nlnce classes

leZ®Z" = Zis in the lowest cell

» Get monoida Only one cell r terms

» | tell you later which ones are “idempotent”
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A P | s

Example (& (V®9|d € N) for the 2d simple S; rep over IF,)

Cells in m

The categg bles B:

Indecomposable objects Z; =2 1 «w [T, Zp < EP Zz = P(1)

EP@EP%Za@&
EP®Z3 gE}HGBZa
Z3® Z3 %EPGBEP

Two cells

N 22,23 Sy =277

Ib 1 I = Vec
A~VRY S (ASRY)A(Y SR A)

X~rY & (X<RY)A(Y <1r X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”
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A P | s

Cells in m

The categg

EP@EP%Za@A
EP®Z3 %EP@Za
Z3® Z3 gEP@EP

Two cells

N Zz, Z3 Sy =277
Ib 1 I = Vec

Example (< (V®?|d € N) for the 2d simple S; rep over F»)

Indecomposable objects Z; 22 1« [TT1, Z «~ H-, Z3 = P(1)

bles B:

X~

In general, for & C Zep(G,K)
the top J cell is the cell of projectives

X~RY & (XIRYJAY <R XJ

X)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”

Cell theory for monoidal categories
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PN | s

Example (< (V®?|d € N) for the 2d simple S; rep over F»)

Cells in m

The categg bles B:

Indecomposable objects Z; 22 1« [TT1, Z «~ H-, Z3 = P(1)

EP@EP%Za@&
EP®Z3 ':“E}]@Za
Z3® Z3 gEP@EP

Two cells

N 22,23 Sy =277

Ib 1 I = Vec

X~R Y (ASRYJATY SR X)
< In general, for & C Zep(G,K) X
“~lthe top J cell is the cell of projectives )

Warning

Left, right and t hce classes

For & C Zep(S,K)
» Get monoidathe top J cell is usually not the cell of projectives} terms

Dualities are helpful

» | tell you lat
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Cells in monoidal cats

The categol

Left, right 3

Example/theorem (folklore)

F(V®9d € N) for “finite TL" over F
There are (k+ 1) cells

~
Tr Zok 15y Lopk—a Sn = Very

T3 Zs 1, Zyh o S = Verps
T Zp 1, 253y S = Verp
Jh Zp—1,.., 225 S = Verp
Ib Zo=1,..,2Z, S = Ver

where ¥er is the semisimplification of SLy(IF,) tilting modules

and the other 4, are “higher” Verlinde cats

bles B:

psSses

» Get monoidal semicategories &7, S by killing higher order terms

» | tell yo

Cell theory for monoidal categories

u later which ones are “idempotent”

pi ion theory of

August 2022
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Cells in monoidal cats

The categorical cell orders and equivalences for the set of indecomposables B:

Example (projective functors)

A some reasonable algebra, 1 = e; + e primitive orthogonal idempotents
%64 finitary monoidal category of projective functors + id functor

There are 2 cells

Ae; ® e1A  Ae ® A
Aer ® e1A | A ® eA

Jb A Sy = Z(A-Mod)

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

Jt Sy =7

» Get monoidal semicategories &7, S by killing higher order terms

» | tell you later which ones are “idempotent”

Cell theory for monoidal categories P ion theory of i i August 2022




Cells in Example (Soergel bimodules)

The cat &bim is fiat monoidal category for finite Coxeter type L B
Cells = p cells

For type B> one has e.g.
T Bio12 1 Zdeg=0 Vec

Bi, Bio1 Bz

5/7{ gde —o Vec
g—0 7./27.
B>y B>, Bo1> /

Tm

Jo By Sy = Yec PNOL2
T Bi212 S Zdeg—0 Vec
B B N
Left, rig T 812211 B, 182212 Ir Zdeg=0 Vecy 2z 3
» Get jm Bl ny gdeg:O YVec 2
B ~ =
> | te To 0 S = Vec p

Cell theory for monoidal categories P ion theory of i i August 2022 a/7




Reps of monoidal cats

Frobenius: act on linear spaces

her dio Darstellung der endlichen Gruppen
durch lineare Substitutionen.

Von G. FROBENIUS.

Schur: act on projective spaces

Uber die Darstellung der endlichen Gruppen

durch gebrochene lineare Substitutionen.
(Von Herrn J. Sohur in Beglin.)

Varying the source/target gives slightly different theories

» Start with examples |In a sec
» Choose the type of categories you want to represent Finitary/fiat monoidal

» Choose the type of categories you want as a target | Finitary

Cell theory for monoidal categories P ion theory of i i August 2022 5/7




Rensof manaidal catc

Some flavors, varying source/target

Categorical reps of groups (subfactors, fusion cats, etc.)
a la Jones, Ocneanu, Popa, others ~1990

Categorical reps of Lie groups/Lie algebras
a la Chuang—Rouquier, Khovanov-Lauda, others ~2000

Categorical reps of algebras ( abelian , tensor cats, etc.)
a la Etingof, Nikshych, Ostrik, others ~2000

Categorical reps of monoids/algebras (fadditive , finitary/fiat monoidal cats, etc.)
a la Mazorchuk, Miemietz, others ~2010

» Start with examples |In a sec
» Choose the type of categories you want to represent Finitary/fiat monoidal
» Choose the type of categories you want as a target | Finitary

» Build a theory |Depends crucially on the setting

Cell theory for monoidal categories P ation theory of i i August 2022 5/7



Reps of monoidal cats

> Let & = Rep(G,K)
» The regular cat module M: & — &nd(¥):

M— M@ _

l i

N——N®_
» The decategorification is an /N -module
Example (G = 55,K = C)

221D, ZeH Zef

1 00 01 0 0 01
M(Z)] e~ [0 1 0], [MZL)]e~[1 1 1|, [M(ZL)]~ |0 1 0
0 0 1 01 0 1 0 0

Cell theory for monoidal categories P ion theory of i i August 2022 5/7




Reps of monoidal cats

» Let K C G be a subgroup
> RZep(K,K) is a cat module of Zep(G,K) via

M(K,1) = Resg @ _: Rep(G,K) — énd(Zep(K,K)),

M———— Resg (M) ® _

fJ J{Resﬁ(f)@

N———— ResE(N)® _
» The decategorifications are 'N -modules

Example (G = 55, K = 5, K=C,M = M(K, 1))

oo—m, H-meH @—ﬂ

10 11 01
Mz (5 1) Ml (5 7). ™M@ (5 )
Cell theory for monoidal categories P ion theory of i i August 2022
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Reps of monoidal cats

» Let ¢ € H?(K,C*), and M(K, ¢) be the category of projective K-modules

with Schur multiplier ¢, i.e. a vector spaces V with p: K — End(V) such that

p(g)p(h) = ¢(g, h)p(gh), for all g, h € K
» Note that M(K,1) = Rep(K) and
®: M(K, 9) KM(K, ) = M(K, 1)
» M(K, ) is also a cat module of &:

RestXId
—_—

Rep(G,C) K M(K, ) Rep(K) X M(K, ) 2, M(K, )

» The decategorifications are 'N -modules — the same ones from before!
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Reps of monoidal cats

» Let ¢ € H?(K,C*), and M(K, ¢) be the category of projective K-modules

with Sc M(K, ¢) are solutions to equations on the Grothendieck level ) such that

and

the categorical level

» Note that M(K,1) = Rep(K) and

®: M(K, ¢) KM(K, ¥) = M(K, 1))
> M(K, ) is also a cat module of &:

ResEXId
—_—

Rep(G,C) K M(K, ¢) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are 'N -modules — the same ones from before!
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Reps of monoidal cats

» Let p € H?(K,C*), and M(K, ) be the category of projective K-modules

with ScIM(K, ¢) are solutions to equations on the Grothendieck level ) such that

and
the categorical level

» Note that M

(K 1) — RPan( k) and

Rep(G

» The decateg

Goal
Find some setting where M(K| o) naturally fit into

Theory
I
Rep(G,C)

M(K,p) | More.

Cell theory for monoidal categories pi ion theory of

2 M(K, )

m before!
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Reps of monoidal cats Source/target

| want finitary/fiat categories to act

> Let p € H*(K,C¥) My target categories are finitary |Projective K-modules

with Schur multiplier @, 1.e. a vector spaces V with p: K — End(V) such that

p(g)p(h) = (g, h)p(gh), for all g, h € K
» Note that M(K,1) = Rep(K) and
&1 M(K, ) EM(K, ) > M(K, 1)
> M(K, ) is also a cat module of &:

ResEXId
—_—

Rep(G,C) X M(K, o) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are 'N -modules — the same ones from before!
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Reps of monoidal cats Source/target

) | want finitary/fiat categories to act
> Let pe H (K C*) My target categories are finitary P"OJGCUVe K-modules

WI (L& T T P XL WA WA Ch that

Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» Note that M(K,1) = Rep(K) and

®: M(K, ) XM(K, ) = M(K, )
> M(K, ) is also a cat module of &:

Resﬁ&ld
—_—

Rep(G,C) K M(K, ¢) Rep(K) ® M(K,¢) 2 M(K, o)

» The decategorifications are 'N -modules — the same ones from before!
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Reps of monoidal cats Source/target

5 | want finitary/fiat categories to act
> Letpe H (K C*) My target categories are finitary PVOJGCUVe K-modules

Wi 1 L 1 X T Fal 1/ AY Ch that
Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» No Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

> M(K, ) is also a cat module of &:

Resﬁ&ld
—_—

Rep(G,C) B M(K, ) Rep(K) B M(K,¢) = M(K, ¢)

» The decategorifications are 'N -modules — the same ones from before!
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Reps of monoidal cats Source/target

5 | want finitary/fiat categories to act
> Letpe H (K C*) My target categories are finitary F)rC)JeCt'Ve K-modules

(L& T T P XL WA WA

wi ch that
Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» No Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

> M Example (Zep(Ss, C) and M = M(S3, ¢))
M is transitive because T = Z; ® Z» @ Z3 has a connected action matrix
11 1 2
Tew |1 2 1] e
> T 11 1
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Reps of monoidal cats Source/target

5 | want finitary/fiat categories to act

> Letpe H (K C*) My target categories are finitary PVOJeCt'Ve K-modules
Wi 1 Vel | X I Fal 1/ AY Ch that

Decat

M is called transitive if it is nonzero and is generated by any nonzero X

» No Cat

M is called simple (transitive) if there are no nontrivial &-stable ideals

> M Example (Zep(Ss, C) and M = M(S3, ¢))
M is transitive because T = Z; ® Z» @ Z3 has a connected action matrix
11 1 2
Tew |1 2 1] e
> T 11 1

Example (Zep(Ss, C) and M = M(S3, ¢))

M is simple because its transitive and hom spaces are boring
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Reps Of maonnidal cate
Theorem (Mazorchuk—Miemietz ~2014)
» Let In the correct framework odules
witHcat reps satisfy a Jordan—Hélder theorem wrt simple cat reps|c |- that
o albh) — Ala PYalah) far All o h c K
Goal
For fixed &, find the periodic table of simple cat reps
OIIBITh CUCTEMBI 3JIEMEHTOB'D, G;?.“a‘;*“ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Tiss0  Zr=90  ?=180.

Nb=94  Tasl
2
6.6 Os=199. 3
H=1 Ag=108 Hg=200.
ca-tiz 4
Ur=116 Aus197?
5
S| 2 Bi=210? 5
Te=1287
I-127 6
Li=7 3 Ti-204.
Ba=137 Pb=207. 7

?In=75 Th=118?

. Memenbers.

Au,

Cell theory for monoidal categories theory of

gust 2022 5/7



Reps Theorem (Ocneanu ~1990, folklore)
Completeness

> All simples of Zep(G, C) are of the form M(K, ¢). les
n that

We have M(K, ¢) = M(K’, ') < the subgroups and cocycles are conjugate
P TPUT] = P85 TP BT, ToT am g5 T v

» Note that M(K,1) = Rep(K) and
®: M(K, ¢) KM(K, ¥) = M(K, 1))
> M(K, ) is also a cat module of &:

®

GSG
R Rep(K) B M(K, p) £ M(K, ¢)

Rep(G,C) B M(K, ¢)

» The decategorifications are 'N -modules — the same ones from before!

August 2022 5/7
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Theorem (Ocneanu ~1990, folklore)

Reps
Completeness
> All simples of Zep(G, C) are of the form M(K, ). les
Non-redundancy n that
We have M(K, ¢) = M(K’, ') < the subgroups and cocycles are conjugate
PUE U] — PR PR, TOr am gL Ir= Tv
Example (G = Sz at the top, G = S; at the bottom)
> Nof
K| 1|2z/p2z]|2/32]|Ss
- 4|1 ] 1 1 |1
H? 1 1 1 1
k| 1] 2 3 |3 o
> Thd K || 1 | zz | 232 | 2/az | @2z | S5 | Dy | Ar | S el
# 1 2 1 1 2 1 1 1 1
H? 1 1 1 1 Z/2Z 1 | Z)2Z | Z)2Z | Z/2Z
k|| 1| 2 3 4 4,1 352 | 43 | 53

Cell theory for monoidal categories

ion theory of

August 2022 5/7



Reps ¢

» Lg
w

» M

Cell theory for monoidal categories pi

Example/theorem (Etingof, Ostrik ~2003)

The Hopf algebra T = (g, z|g" =1,z" =0, gz = (zg)
for a primitive complex nth root of unity ¢ € C
T is the Taft algebra

Rep(T,C) is fiat monoidal with two cells

Rep(T,C) has infinitely many simple reps

but only finitely many Grothendieck classes of simple reps

There are infinity many twists of the actions

9 &) QL
X X . B8
88 BT IR
& 20 Y& B

KA <P

X7
&R

Hules
ch that

ation theory of

August 2022 5/7



Cells and reps of monoidal cats

Clifford, Munn, Ponizovskii ~19404++ | H-reduction
There is a one-to-one correspondence

Simples With onhe-to-one Simples Of (any)

—
apex J(e) H(e) C J(e)
Reps of monoids are controlled by #(e) cells

» We already have cell theory in monoidal cats

» Goal Find an H-reduction in the monoidal setup

Cell theory for monoidal categories P ion theory of i i August 2022
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Cells and rep Duflo involution

. D = D(L) is Duflo if it satisfies the universal property:
Clifford, Mun 3 v: D — 1 such that
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

SIf
a

“Duflo involution = nonnegative pseudo idempotent”

Having a Duflo involution implies that £ has a
nonnegative pseudo idempotent
= coefficients from N wrt the basis of classes of indecomposables

Reps of monoids are controlled by #(e) cells

» We already have cell theory in monoidal cats

» Goal

Cell theory for monoidal categories P ion theory of i i August 2022

Find an H-reduction in the monoidal setup
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Cells and rep Duflo involution

. D = D(L) is Duflo if it satisfies the universal property:
Clifford, Mun 3 v: D — 1 such that
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

Sif “Duflo involution = nonnegative pseudo idempotent”
Having a Duflo involution implies that £ has a

a

nonnegative pseudo idempotent

= coefficients from N wrt the basis of classes of indecomposables

Example (Zep(G,C))
The unique Duflo involution is 1

Reps o e) cells

» We already have cell theory in monoidal cats

» Goal Find an H-reduction in the monoidal setup
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Cells and rep Duflo involution

. D = D(L) is Duflo if it satisfies the universal property:
Clifford, Mun 3 ~: D — 1 such that
There is a one-| Fy: FD — F right splits (Fyos = idr) for all F € L

Sif “Duflo involution = nonnegative pseudo idempotent”
Having a Duflo involution implies that £ has a

a

nonnegative pseudo idempotent

= coefficients from N wrt the basis of classes of indecomposables
Example (Zep(G,C))

The unique Duflo involution is 1

Example (&bim of dihedral type, n odd)

Reps o e) cells

» \Wq pseudo idempotents (left) and nonnegative pseudo idempotent (right):

(D D
» Gdg ’ ¢
b1, b1a1, ... | b2, bi2aa, . .. b1, b121, ... | b2, D121, - ..

ba1,b2101, - | b2, bara, o bogbaror, ... | boybaro,. ..
by by
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Cells and reps of monoidal cats

Cllffor.d’ L Example/tlluéorem (folkl(;re)
There is a one-
S (V®9|d € N) for “finite TL" over F

Slmpl There are (k + 1) cells any)
ape)< Tt Zpk—la--'aZZpk—Q yH glyerpk Z(e)

Js Zp 1y Zp_y I =Very
T Zp2_1, sy Zp3_2 S = “I/erpz
Jh Zp—1,.., 252 5 F = Verp

. Ib Zoz]l,...,Zp,z I = Ver
» Goal FindThe Steinberg modules Z,;_; are the Duflo involutions

» We alread

Cell theory for monoidal categories P ion theory of i i August 2022 6/7




Cells and reps of monoidal cats

In spirit of Clifford, Munn, Ponizovskii ~1940-+ | H-reduction
There is a one-to-one correspondence (currently only proven in the fiat case)

simples with] one-to-one [ Simples of

—
apex J 5Ly
Reps are controlled by the %, categories

» Each simple has a unique maximal J where having a pseudo idempotent is
replaced by Duflo involutions ' Apex

» This implies (smod means the category of simples):

&-smod 7 ~ F-smod

Cell theory for monoidal categories P ion theory of i i August 2022 6/7




Cells Example (Zep(G, C))
H-reduction is not really a reduction and we need Ocneanu’s classification

In spirit of Clifford, Munn, Ponizovskii ~1940-H | H-reduction
There is a one-to-one correspondence (currently only proven in the fiat case)

simples with] one-to-one [ Simples of

>
apex J 52y
Reps are controlled by the % categories

» Each simple has a unique maximal J where having a pseudo idempotent is
replaced by Duflo involutions ' Apex

» This implies (smod means the category of simples):

&-smod 7 ~ F-smod
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Cells Example (Zep(G, C))
H-reduction is not really a reduction and we need Ocneanu’s classification

In spirit of Clifford, Munn, Ponizovskii ~1940-H | H-reduction

Example (& bim)
H-reduction reduces the classification problem a lot
but one needs extra work to complete it (the &, are complicated)

53,3 | 33,3 | 434 | 53,1 | 23,1 type F4
333 | 93,3 | 43,4 | 23,1 | 53,1
443 | 443 | 944 | 641 | 641 |, 53,3 Dy gﬁep(,&l)
51321361491 311
213513614311 ]9%1

310,10 | 250,10 | 120,10 type E6
210,50 | 350,50 | 320,50 |> 310,10 Dy :%ep(Sg))

110,20 | 350,20 | 620,20

&-smod 7 ~ F-smod
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Finitary ot moneidal cats

Finitary ot moneidal cats

[ -
° . [ ]

‘ Rem demerts

maier ndscorpoante — comgogeds

SCRF

R )
> 5 s moncidsl v
> 5 s Klnesr
> s sdditve

7 s dampotent complete v
b i dim o spaces <

00 0
mEo o,
o @M ol
0 o m

> Take G = 2/52 and K = 5 then KIG] = KIX)/06)

> 5 otn s ety many ndecomposale objcs | > 26p(G.K) has e sl b 2= 1
[ > 2ep(G.) v e indecomposatie bjcss [
i

2. b R s

0 () dos it 6
[ e p i 61 30 S e o G e ce]

Rl 7), oD )3
ry

Cell theory for monoidal categories

e

i e

& X
o

> AN

2 .

2

" e g cegnis i e s i
2

G T sy v ity it ot

> ot b ity many indecomposale cbjcts |

> 5 has dusities (<) .

L L —
J = g = =ca)
> i Mm»(hn«wum,(éc es
7 st Tt s o st o e

R )t ot it o e
-y R o R e 1
oty ] Gk cs o il .

o There e iy many ot o the ctions:

. [T
Hlasn

There is still much to do...

p theory of

> Toke G = 2/222/2% snd X = F5. thn K[G] = KIX, Y102 Y2)
> (G, ) has one simple object 2, = 1
> 80(G. ) has nfitly any indecompesable bjcts > [FGERY

el n moncidl cats

The catef e 51
AV €N o Fta T
% v,
s R v
a Fs vy
2 e
. 5 B
Lo G fhere yer mnwwusum(mm"‘“
Voo cs
N e o e ek e

> el youotr whic onesare “dempotent

el and reps of monoidal cats

st of Clfn, Mnn, Pz 1040+ [ERRRHRR
Toar ot ome carmpandanc (caraty s rown  che ot )

simples with) one.o-ong [ Simples of
(onatorons,
apex J I

> Exchsimple has 3 nique masinal 7 where haing 3 pseudo dampoten s
eplced by Dot involsions Apex

» Thsimples (s means the category o simpls)
Sty = sl
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Finitary ot moneidal cats

Finitary ot moneidal cats

Finitary ot moneidal cats

.) . (l 0

0 0 0 0 o
> Let 7 = Rep(G.K) o 7 o X o o . o e
A LY AP L : :
It o | l oo v
00 00 2 . .
> 7 sttt
o —
+ 7 bas i i b spces '+ Toke G = 2/52 and K = T, ten K[G] X KIXL/OX) ke G 2/222/2 300 X = . thn K(G] > KIX. YO V)
A R | 2. ) s e s cbict 7= 1 e ) b e simgeabict 7,1
[ eT—— » e ) s s ndcomporatle st = [l [ S —— =
i ol in mocidn cots
T
20,50 s A e
6] chr(K) do mot e G1 Temperiey-Liab (TL). Brauar o Daligne catugories The categof s B:
> o SV ) e
B i) i 6 s e St i o e o] @ 7N .
@ v
(572, (O e
x o x >l
000 et 5 Fux vy
o x .y 2
ot @ ¢ L2t : @ v
RS ), RO )t = e @
A [y .7y L, e 'y e st 'i’ushmm-«-"ﬂ
- TeG A LT — L) i
> o Gt S s 5555 g Nl
B > e ———— > 11l ot i cmes e e
> Rep{G.K) eue circe = oyl roue > has dualities (v") a
Reps [ Frsm e e O 0| ol nd ep of mancidl s
e -l I st o Cltic, Mann, Poiznss 1940+ [EGRHRH
> U mu ml umity ¢ € uies
B e e v, O,
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R )t ot it o e
.y R o R e 1
oty ] Gk cs o il .

oy There e iy many s of the cions

. [T
Hlasn

Thanks for your attention!

p theory of

simples with) one.o-ong [ Simples of
(onatorons,
apex J I

> Exchsimple has 3 nique masinal 7 where haing 3 pseudo dampoten s
eplced by Dot involsions Apex

» Thsimples (s means the category o simpls)
Sty = sl
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