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1 Representation type

1.1 Gabriel’s Theorem: Finite Representation Type
In this talk we list the quivers of finite representation type. This classificication will
only depend on the shape of the quiver and not on the particular orientation of the
arrows. For this we need first the following definitions:

Definition 1. A quiver Q is of finite representation type, if the number of iso-
classes of indecomposable representations of Q is finite.

Definition 2. The underlying graph of the quiver Q is the graph without the
direction of the arrows. So we have the same vertices and for i→ j we have i− j.

In the following picture are the so called Dynkin-Diagrams which are really impor-
tant for our talk. We have that A,B,C and D are infinite diagrams and the types E,F
and G are five exceptional diagrams. A,D and E are called simply laced Dynkin
diagrams, because they have no parallel edges.
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Figure 1: Dynkin diagrams

We are now able to state the main theorem of our talk:

Theorem 1 (Gabriel’s Theorem). A connected quiver is of finite representation type
if and only if its underlying graph is one of the Dynkin diagrams of type A,D or E.

We will give a sketch of the proof at the end.
First we will concentrate on the Auslander-Reiten Quivers of Type Dn.
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2 Auslander–Reiten Quivers of Type Dn
As in the last talk we use different techniques to compute the Auslander-Reiten quiver
of Q of type Dn. If a quiver Q is of type Dn, then this means, that its underlying
graph is the Dynkin diagram of type Dn.

2.1 Knitting Algorithm
The Knitting-Algorithm for type Dn is almost the same as for type An with the dif-
ference that we need an additional fourth type of mesh:

Figure 2: Knitting Algorithm

The dimension vectors ddd = (d1, . . . , dn) which determine the isoclasses of indecompos-
able representations of quivers of type Dn are given by:

The entries di are either 0, 1 or 2, and if we have di = 2, then

1. i is one of the vertices 2, 3, . . . , n− 2,

2. for all vertices j with i ≤ j ≤ n− 2 we have dj = 2,

3. di−1 ≥ 1 and dn−1 = dn = 1.

With the dimension vectors ddd we can construct the corresponding representation M =
(Mi, ϕα), where Mi = kdi . We take ϕα = 1 if ds(α) = dt(α) and ϕα = 0 if one of
the ds(α), dt(α) is zero. For a vertex of dimension two we have exactly three arrows
αk, β1, β2 which are between a vertex of dimension 1 and a vertex of dimension 2.
With this three arrows we can look at the following three one-dimensional subspaces:

l1 =

{
im(ϕαk

) if αk points to k + 1,

ker(ϕαk
) otherwise.

The one-dimensional subspace of Mk+1.

l2 =

{
im(ϕβ1) if β1 points to n− 2,

ker(ϕβ1
) otherwise.
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l3 =

{
im(ϕβ2) if β2 points to n− 2,

ker(ϕβ2) otherwise.
The one-dimensional subspaces of Mn−2.

Under the composition of the identity maps ϕαn−3
· · ·ϕαk+1

l1 is sent to a one-dimensional
subspace l̃1 of Mn−2.

Example 1. Let Q be the quiver:

Figure 3: Quiver Q

Then

P (1) = 1
2, P (2) = 2, P (3) = 3

2 5, P (4) =
4
3
2 5

, P (5) = 5.

By using the Knitting-Algorithm we get the following Auslander-Reiten quiver:

Figure 4: Knitting Algorithm for the Quiver Q

2.2 τ-Orbits
As we have seen for type An there are also several methods to compute the τ -orbits
for type Dn.
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2.2.1 First Method: Auslander-Reiten Translation

The Auslander-Reiten Translation for type Dn is the same as for type An. We do this
shortly for Example 1 with M = 1 3

2 5 and we get τ−1M =
4
3 3
2 5

.

Figure 5: Auslander-Reiten Translation for M

2.2.2 Second Method: Coxeter Functor

Also the Coxecter Functor Method stays the same as for type An.
The cartan matrix C and the Coxecter matrix Φ = −CtC−1 stay also the same. In
our Example 1 we would get:

C =


1 0 0 0 0
1 1 1 1 0
0 0 1 1 0
0 0 0 1 0
0 0 1 1 1

 (C−1) =


1 0 0 0 0
−1 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0
0 0 −1 0 1



Φ =


0 −1 1 0 0
1 −1 1 0 0
1 −1 1 1 −1
1 −1 1 0 −1
0 0 1 0 −1

 Φ−1 =


−1 1 0 0 0
−1 1 0 −1 1
0 1 0 −1 1
0 0 1 −1 0
0 1 0 −1 0


So we can compute the dimension vector of τ−1M as follows: Φ−1dim(M) = dim(τ−1M).
On the other hand: Φdim(M) = τM .

2.2.3 Arcs of punctured Polygons with n vertices

For a quiver Q of the type Dn we can also give a geometric construction similar to the
construction of type An.
But there are a few differences between the two constructions:

• Instead of triangulated polygons we use triangulated punctured polygons.
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• Instead of diagonals in the polygon we need arcs.

For every punctured polygon with n boundary vertices we have exactly n2 arcs:

Figure 6: Arcs of a punctured polygon with eight boundary vertices

left: We have exactly n− 2 arcs for every vertex a on the boundary. Since we have n
vertices on the boundary we get the first n2 − 2n arcs.

middle: For every vertex on the boundary we have an arc to the puncture. So we get
further n arcs.

right: For every vertex on the boundary we have another arc to the puncture. So we
get the last n arcs.

So we have exactly n2 arcs for the punctured polygon.
To distinguish between the n-arcs of the middle and right picture, we need a tag on
the arcs. The ones with a tag are called notched and they without are called plain.

Remark 1. If we have two boundary vertices a 6= b s.t. they are neighbours, then we
have exactly one arc that connects a and b. And if they aren’t neighbours, we have
exactly two arcs.

Figure 7: Arcs with specified endpoints
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We now want to determine the number of crossings of two arcs γ, γ′ which we denote
by e(γ, γ′). It turns out, that it is not as straightforward to determine e(γ, γ′) in a
punctured polygon as it is to say when two diagonals cross. For a rigorous definition
of crossing numbers we would need the notion of homotopy, which will not be covered.
So we will give a more intuitive definition:
If one or both arcs have both of their endpoints on the boundary, then it should be
intuitively clear that e(γ, γ′) is either 0, 1, 2. If γ and γ′ are both incident to the
puncture and a and a′ are their endpoints on the boundary, we can define e(γ, γ′) as
follows:

e(γ, γ′) =


0 if γ and γ′ are both plain,
0 if γ and γ′ are both notched,
0 if a = a′

1 if γ, γ′ have opposite tagging and a 6= a′.

Figure 8: Crossing numbers

Definition 3. Let γ and γ′ be two arcs. If e(γ, γ′) ≥ 1 then γ and γ′ cross.

Definition 4. A triangulation TM is a maximal set of non-crossing arcs.
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Example 2. We have here three triangulations of a 8-vertices polygon.

Figure 9: Examples of triangulations

Our next goal is to associate a Triangulation TQ to Q. For this we need the following
three steps:

1. We cut off a triangle M0 with an arc γ1.

2. If 1← 2 is in Q than we choose the unique γ2 as follows:

a) γ2 forms the triangle M1 with γ1 and a boundary segment.

b) γ1 is counterclockwise from γ2 in M1.

If 1→ 2 is in Q, then:

a) γ2 forms the triangle M1 with γ1 and a boundary segment.

b) γ1 is clockwise from γ2 in M1.

Repeat step 2 until we have n− 2 arcs.

3. We have two arcs left to determine: γn−1, γn. Depending on the orientation of
the arrows, we choose them with the following four possibilities:
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Figure 10: Four possibilities to construct the triangulation from Q

Example 3. We now want to compute the triangulation from Q:

(a) Quiver Q (b) Triangulation from the
quiver Q

Figure 11: Construction of the Triangulation from the quiver Q
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If we take an arc γ /∈ TQ, than we can associate the indecomposable representation
Mγ = (Mi, ϕα) of Q as follows:
The dimension vector ddd is given by di = e(γ, γi).

(a) Illustration of the crossings
of γ and γi

(b) The isomorphic indecomposable representation of Mγ

Figure 12: Construction of the indecomposable representation Mγ

Remark 2. The map γ 7→ Mγ is a bijection between the set of arcs that are not in
TQ and the set of isoclasses of indecomposable representations of Q.

The Auslander-Reiten translation τ is given by an elementary clockwise rotation of
the punctured polygon with simultaneous change of the tags at the puncture. So in
our example the projective representation P (i) is given by τ−1 of the arc γi, and the
injective representation I(i) is given by τ of the arc γi.

Figure 13: τ for arcs γ

Now we can construct the Auslander-Reiten quiver of our Example 1 starting with
the projectives and applying the elementary rotation to compute the τ -orbits until we
reach the injective in each τ -orbit.
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Figure 14: Auslander-Reiten quiver in terms of arcs in punctured polygons

2.2.4 Computing Hom Dimensions, Ext Dimensions, and Short Exact Sequences

With the Auslander-Reiten quiver of type Dn we can compute the dimensionsHom(M,N)
and Ext1(M,N) as in type A.

2.2.4.1 Dimension of Hom(M,N)
Let M,N be indecomposable representations of Q. As in type A the dimension of
Hom(M,N) is determined by the relative positions of the two representations in the
Auslander-Reiten quiver. Instead of maximal slanted rectangles we have to use ham-
mocks.
The definitions of a sectional path and the sets Σ→(M) and Σ←(M) stay the same.
The hammock will be constructed by the following algorithm:
As in type An we start by labeling each vertex Σ→(M) with the number 1. As a next
step we consider the almost split sequence 0→M → E → τ−1M → 0. The summands
of E lie in Σ→(M) and τ−1M does not. Then we can label the vertex τ−1M by the
sum of the labels of the indecomposable summands of E minus the label of M . So
τ−1M is 0, 1 or 2 because of the 1, 2 or 3 summands of E. We can construct these also
recursively and if we get a label smaller then zero, we just take zero.
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(a) Dimension of Hom(P(5), - ) (b) Dimension of Hom(P(3), - )

(c) Dimension of Hom(P(2), - ) (d) Dimension of Hom(P(1), - )

Figure 15: Dimensions of Hom(M, - ) for M = P(1),P(2),P(3) and P(5)

2.2.4.2 Ext1(M,N)Ext1(M,N)Ext1(M,N)
To compute Ext1(M,N) we can also use the same formula as for type An:

dim(Ext1(M,N)) = dim(Hom(N, τM))

2.2.4.3 Short Exact Sequences
Finding short exact sequences that represent the elements of Ext1(M,N) is more
difficult than for type A. Because dim(Ext1(M,N)) can be also two.
From the last talk we know that each element of Ext1(M,N) can be represented by a
short exact sequence 0→ N → E →M → 0 with E a representation of Q. But there
can be more than only two choices for E. We illustrate that with an example:

Example 4. In the figure 16 below there are four non-split short exact sequences which
starts at N and ends at M:

0→ N → E1 ⊕ E2 ⊕H2 →M → 0
0→ N → F1 ⊕ F2 ⊕H2 →M → 0

0→ N → G1 ⊕G2 →M → 0
0→ N → H1 ⊕H2 →M → 0

Remark 3. It is important to note that while there are four non-split short exact
sequences, the dimension of Ext1(M,N) is only two. Thus any two of the above
sequences span the vector space Ext1(M,N).
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Figure 16: Computing short exact sequences

3 Gabriel’s Theorem
To prove Gabriel’s Theorem we have to define a quadratic form q associated to Q and
we have to introduce its roots.

3.1 Quadratic forms
Definition 5. An n-ary integral quadratic form q is a homogeneous polynomial of
degree 2 in n variables x1, x2, . . . , xn and with coefficients in Z. So we can write q in
the following way:

q(x1, x2, . . . , xn) =

n∑
i,j=1

aijxixj

with aij ∈ Z.
We will often think of a quadratic form as a map:

q : Zn → Z, xxx = (x1, . . . , xn) 7→ q(xxx).

Remark 4. q(rxxx) = r2q(xxx), ∀r ∈ Z

Definition 6. With the quadratic form q we can define its symmetric bilinear form
(xxx,yyy) as follows:

(xxx,yyy) = q(xxx+ yyy)− q(xxx)− q(yyy).

Remark 5. So when we compute (xxx,yyy), we get

(xxx,yyy) =
∑
i,j

aij(xiyj + xjyi)
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Remark 6. We can also recover q(xxx) by:

q(xxx) =
1

2
(xxx,xxx)

Definition 7. Let Q be a quiver without oriented cycles, then we define its quadratic
form by q : Zn → Z with:

q(xxx) =
∑
i∈Q0

x2i −
∑
α∈Q1

xs(α)xt(α).

Remark 7. q only depends on the underlying graph of Q.

Example 5. The quadratic form of the quiver

is

q(xxx) = x21 + x22 + x23 − x1x2 − x2x3

If we calculate q on the dimension vector ddd of a representation of Q, we can see,
that the value of q only depends on the dimension vector and not on the particular
representation itself.
This means that q is constant on Ed, where Ed denotes the space of all representations
M = (Mi, ϕα)i∈Q0,α∈Q1

of Q with dimension vector ddd.

Proposition 1. For any representation M of dimension vector ddd we have q(ddd) =
dim(Hom(M,M))− dim(Ext1(M,M)).

Next we will introduce some more notions about quadratic forms:

Definition 8. Let q be a quadratic form:

1. q is called positive definite if q(xxx) > 0, for all xxx 6= 0.

2. q is called positive semi-definite if q(xxx) ≥ 0, for all xxx.

Lemma 1. Assume that Q is connected. Let ddd = (di) ∈ Zn\{0} be such that (ddd,xxx) = 0
for all xxx ∈ Zn. Then

1. q is positive semi-definite

2. di 6= 0 for all i

3. q(xxx) = 0 if and only if xxx = a
bddd, for some integers a, b.

Definition 9. The Euclidean diagrams are defined in the picture below:
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Figure 17: Euclidean diagrams

Now we are able to prove the main ingredient to understand Gabriel’s Theorem:

Theorem 2. Let Q be a connected quiver. Then

1. q is positive definite if and only if Q is of Dynkin type A,D,E.

2. q is positive semi-definite if and only if Q is of Euclidean type Ã, D̃, Ẽ, or of
Dynkin type A,D,E.

Proof. ¬ Q Euclidean ⇒ q positive semi-definite.
For every Euclidean Diagram we need to find a vector δδδ s.t. (δδδ,xxx) = 0 for all xxx. Then
with Lemma 1 follows that q is positive semi-definite. The vectors δδδ s.t. (δδδ,xxx) = 0 for
all xxx are shown in the following figure:
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Figure 18: Vector δδδ s.t. (δδδ,xxx) = 0

­ q positive semi-definite ⇒ Q Euclidean or Q Dynkin
Assume Q is not Euclidean nor Dynkin. Then Q contains a proper subquiver Q′ of
Euclidean type. Let q′ be the quadratic form of Q′ and δδδ be the dimension vector
given in the figure above.

• If Q and Q′ have the same set of vertices, then Q has more arrows than Q′

⇒ 0 = q′(δδδ) > q(δδδ). So we get a contradiction.

• If Q has more vertices than Q′, then we can choose a vertex i0 in Q s.t. i0 → j0
with j0 ∈ Q′. We define xxx by xi = 2δi ∀i ∈ Q′0, xi0 = 1 and xj = 0 for all other
vertices j in Q.

⇒ q(xxx)− 1 + 2δj0 = q′(2δδδ)
⇔ q(xxx) = q′(2δδδ) + 1− 2δj0

Since q′(2δδδ) = 4q′(δδδ) = 0⇒ q(xxx) = 1− 2δj0 < 0 we get a contradiction.

® q positive definite ⇒ Q Dynkin
For each Euclidean diagram we would have q(δδδ) = 0. ⇒ q would not be positive
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definite, so Q must be Dynkin.

¯ Q Dynkin ⇒ q positive definite
If we extend Q at one vertex labeled n+ 1, then we get an Euclidean quiver Q and q
denotes its quadratic form.
Suppose: ∃xxx ∈ Zn\{0} s.t. q(x) ≤ 0.
Let xxx ∈ Zn+1, with xi = xi if i 6= n+ 1 and xn+1 = 0
⇒ q(xxx) = q(xxx) ≤ 0⇒ q(xxx) = 0 (since q is positive semi-definite.)
By Lemma 1 it follows that xxx = a

b δ but this is not possible since xn+1 = 0.
⇒ q is positive definite.

3.2 Roots
For a positive semi-definite quadratic form, there are two kind of roots:

Definition 10. Let xxx ∈ Zn\{0}.

• If q(xxx) = 1, then xxx is called real root.

• If q(xxx) = 0, then xxx is called imaginary root.

Remark 8. Every root α is of the form α =
∑
i aieieiei with ai ∈ Z and eieiei the standard

basis vector in Zn.

Definition 11. Let α =
∑
i aieieiei be a root.

• α is called positive if all ai ≥ 0.

• α is called negative if all ai ≤ 0.

Let Φ be the set of all roots. Φ+ the set of all positive roots and Φ− the set of all
negative roots.

Remark 9. If q is positive semi-definite, then each root is either positive or negative
and Φ = Φ− tΦ+, and Φ− = −Φ+. (Would also hold for q not positive semi-definite)

Corollary 1. If Q is of Dynkin type, then there are finitely many roots and each root
is a real root.

In order to understand the proof of Gabriel’s Theorem we need a few more notions.

Remark 10. We need the notion of an orbit:

OM = {M ′ ∈ rep(Q) | M ′ ∼= M}.

Lemma 2. Let ddd ∈ Zn. Then there is at most one orbit O of codimension zero in Ed.
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Lemma 3. If

is a non-split short exact sequence of representations, then

dim(OL⊕N ) < dim(OM )

Proposition 2. Let Q be a connected quiver and let M be a representation of Q of
dimension vector ddd. Then

codim(OM ) = dim(End(M))− q(d) = dim(Ext1(M,M))

Remark 11. codim(OM ) = dim(Ed)− dim(OM )

Corollary 2. If q(ddd) ≤ 0 then there are infinitely many isoclasses of representations
of Q of dimension vector ddd.

Proof. Let ddd s.t. q(ddd) ≤ 0 and let M be a representation of Q s.t. dim(M) = ddd.
Then by Proposition 2 it follows, that:

codim(OM ) ≥ dim(End(M)) ≥ 1 and by Remark 11 follows that dim(Ed) > dim(OM )

This shows that we have infinitely many isoclasses of representations of Q.

Now we are ready to give a sketch of the proof of Gabriel’s Theorem.

Theorem 3 (Gabriel’s Theorem). Let Q be connected quiver. Then

1. Q is of finite representation type if and only if Q is of Dynkin type A,D or E.

2. If Q is of Dynkin type A,D or E, then the dimension vector induces a bijection
ψ from isoclasses of indecomposable representations of Q to the set of positive
roots:

ψ : ind(Q) −→ Φ+ ψ(M) = dim(M)

Proof. We first sketch part (2), since we will need it for part (1):
(2) Note that since Q is of Dynkin type A,D,E we know from Theorem 2 that q is
positive-definite.
First we show that ψ is well-defined: We take M as an indecomposable representation
of Q, and show that q(dim(M)) = 1. From Proposition 1 we know that:

q(ddd) = dim(Hom(M,M))− dim(Ext1(M,M))

This implies, that we only need to show that End(M) ∼= k and Ext1(M,M) = 0 to
get that q(ddd) = 1.
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To show that End(M) ∼= k we do an induction on the dimension of M :
For the simple representation it follows that End(M) ∼= k.
To show that it holds for dim(M) > 1, we assume End(M) � k and End(L) ∼= k for
all proper subrepresentations L of M .
With the knowledge of talk 9, that every endomorphism ofM can be written as λ1M+g
for some λ ∈ k and some nilpotent endomorphism g, we can define the following map
i:

with the projection map π.
By taking g s.t im(g) has minimal dimension, we can show over

that i is injective and define the short exact sequence:

By applying the functor Hom(−, L) we get the surjective morphism

with which we can conclude by Proposition 1 that Ext1(im(g), L) = 0.
By considering the following diagram we get from Ext1(im(g), L) = 0, that the bottom
row splits.

By using this fact, we can conclude that L = M or L = 0.
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But im(g) ∩ L 6= 0 ⇒ L 6= 0 and L ⊂ ker(g) with g non-zero ⇒ L 6= M . So we get
dim(End(M)) = 1. Again with Proposition 1 we finally get that dim(M) is a positive
root and ψ is well defined.
Now it only remains to show that ψ is bijective.

• ψ is injective because if we take M,M ′ two indecomposable representations
s.t. dim(M) = dim(M ′), Ext1(M,M) = 0 from above, then by Proposition 2
codim(OM ) = codim(OM ′) = 0 and so M ∼= M ′.

• To show that ψ is surjective we take a representation M s.t. dim(M) = ddd and
the orbit OM of maximal dimension in Ed and show that M is indecomposable.
We do this by contradiction:
Let M = M1 ⊕M2 then if Ext1(M1,M2) = Ext1(M2,M1) = 0 it follows from
Proposition 1 that

1 = q(ddd) = dim(Hom(M1 ⊕M2,M1 ⊕M2)) ≥ 2⇒ Contradiction

So M is indecomposable, ψ(M) = ddd⇒ ψ surjective.
If Ext1(M1,M2) 6= 0 then there would be a non-split short exact sequence

0 −→M2 −→ E −→M1 −→ 0

Then by Lemma 3 follows that dim(OM ) < dim(OE). But this is a contradiction
due to the maximality of OM . So Ext1(M1,M2) = Ext1(M2,M1) = 0.

⇒ part (2) is proved.
Now we can finally prove the first part:
"⇒" Assume Q is not of Dynkin type A,D,E, then by Theorem 2 part 1 it follows
that ∃ddd 6= 0 s.t. q(ddd) ≤ 0. By Corollary 2 follows then, that there are infinitely
many isoclasses of representations of Q of dimension vector ddd ⇒ Q is not of finite
representation type.
"⇐" If Q is of Dynkin type A,D,E then we know by part (2) that we have a bijection
between ind(Q) and Φ+.
By Corollary 1 it follows that there are finitely many roots of q and so Φ+ is also
finite.
⇒ ind(Q) is also finite.
⇒ Q is of finite representation type.
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4 Problems

4.1 Problem 1
We want to compute the Auslander-Reiten quiver of the following quiver Q:

So we get with P (1) = 1
2, P (2) = 2, P (3) = 3

245, P (4) = 4 and P (5) = 5:
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4.2 Problem 2
We want to compute the Auslander-Reiten quiver of the following quiver Q:

So we get with P (1) = 1
2, P (2) = 2, P (3) = 3

2 4, P (4) = 4 and P (5) =
5
3
2 4

:

5 Literatur
All the informations are from the book:
Quiver Representations from Ralf Schiffler.

22


