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Abstract

Today we are going to introduce the notion of the universal enveloping algebra Upgq as
well as the PBW theorem, which allows us to construct a basis for Upgq.

1 Some preliminaries and notations

Before we start with the construction of the universal enveloping algebra, we need to recall
some algebraic structures and set notations that we are going to use throughout the entire talk.

Recall that an associative unital algebra over a �eld K is a pair pA, �q, consisting of a vector
space A, together with a bilinear multiplication � : A�AÑ A, a, b ÞÑ ab, which is associa-
tive, i.e. for any a, b, c P A we have pabqc � apbcq. Unital means that there is an element
1 P A, such that a1 � 1a � a for any a P A. An algebra homomorphism is a linear map
ϕ : AÑ B, xy ÞÑ ϕpxyq � ϕpxqϕpyq for A,B associative algebras and x, y P A.

Each associative algebra pA, �q can be turned into a Lie algebra by replacing the multiplica-
tion with the commutator, i.e. for any two elements a, b P A we have ra, bs � ab � ba. We
shall denote this Lie algebra as Ap�q.

Consider the case if V is a vector space, then the space of all endomorphisms of V has the
natural structure of an associative unital algebra with multiplication being the composition of
linear operators on V . Denote this associative algebra LpVq and its underlying Lie algebra as
LpVqp�q.

To de�ne an sl2-module we need a Lie algebra homomorphism from sl2 to LpVqp�q, that is
a linear map ϕ : sl2 Ñ LpVq, which satis�es:

ϕprx, ysq � rϕpxq, ϕpyqs � ϕpxqϕpyq �ϕpyqϕpxq for all x, y P sl2.

Using the notation from the �rst talk, we get H � ϕphq, F � ϕpfq and E � ϕpeq.

This is a general construction, i.e. replacing sl2 with any Lie algebra g gives the notion of a
module over any Lie algebra. The homomorphism ϕ is usually called a representation of the
Lie algebra. As we dicussed in the �rst talk, we use module and representation interchangeably,
since they are equivalent de�nitions.
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2 Construction of the universal enveloping algebra

There is an issue with the Lie algebra homomorphismϕ : sl2 Ñ LpVqp�q, namely in the non-
trivial cases the image of ϕ is not closed with respect to composition but it is closed only with
respect to taking the commutator of the linear operators. To �x this problem we have to look
for external algebraic objects whose properties are related to g (sometimes not obviously).
We shall de�ne an associative algebra Upgq, called the universal enveloping algebra of g and
show that it has the following properties:

• The Lie algebra g is a canonical subalgebra of Upgqp�q;

• Any g-action on any vector space canonically extends to aUpgq-action on the same vector
space;

• The extension and the restriction from Upgq to g are mutually inverse isomorphisms
between the categories g-mod and Upgq-mod.

The last property is very important, since it says that there is a one-to-one correspondence
between g-modules and Upgq-modules. Thus, any g-module corresponds to a morphism of
associative algebras ψ : Upgq Ñ LpVq and the image of this morphism is always closed with
respect to composition of operators. This implies that one should study the internal structure
of Upgq. A disadvantage of the universal enveloping algebra is that in any non-trivial case it is
in�nite-dimensional, while the Lie algebra g is �nite dimensional.

De�nition 2.1. Let Rxe, f, hy be the free associative algebra with generators e, f and h and
quotient it by the ideal I, generated by the relations ef�fe � h, he�eh � 2e, hf�fh � �2f.
We call the quotient Rxe, f, hy{I the universal enveloping algebra of a Lie algebra g and denote
it as Upgq.

Remark 2.2. We will identify the elements of Rxe, f, hy with their images in Upgq.

Lemma 2.3. (a) There is a unique linear map ε : gÑ Upgq satisfying:

εpeq � e, εpfq � f, εphq � h.

(b) The map is a linear homomorphism of Lie algebras ε : gÑ Upgqp�q.

Proof. (a) Clear, since generators are mapped to generators.
(b) Follows from the de�nition of Upgq and ε preserving the Lie bracket.

Remark 2.4. The map ε is called canonical embedding of g into Upgqp�q. This map is injective,
which will be proved later.

The main result of this section is the following universal property of Upgq:

Theorem 2.5. LetA be any associative algebra andϕ : gÑ Ap�q be any homomorphism of Lie
algebras. There exists a unique homomorphism sϕ : Upgq Ñ A of associative algebras, such that
the diagram commutes:
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g A

Upgq

ε

ϕ

D!sϕ

i.e. we have sϕ � ε � ϕ.

Proof. We need to prove the existence and uniqueness of sϕ. We shall begin with the existence.
Consider the discussed free associative algebra Rxe, f, hy. For any associative algebra A we
have the unique homomorphism ψ : RÑ A, de�ned via

ψpeq � ϕpeq, ψpfq � ϕpfq, ψphq � ϕphq (2.1)

Consider the natural projection π : R � Upgq � Rxe, f, hy{I. Let K � Kerpπq. Then we
have:

ψpef� feq � ψpeqψpfq �ψpfqψpeq
� ϕpeqϕpfq �ϕpfqϕpeq
� rϕpeq, ϕpfqs � ϕpre, fs

� ϕphq � ψphq.

This means thatψpef�fe�hq � 0. Similarly,ψphe�eh�2eq � 0 andψphf�fh�2fq �
0. This implies that the image of the kernel ψpKq is trivial. Therefore, ψ factors through
Rxe, f, hy{K � Upgq.
Denote by sϕ the homomorphism sϕ : Upgq, then the composition ϕ � sϕ � ε follows.
Now we prove the uniqueness of sϕ. Since ψ is unique, as we already said, then it implies the
uniqueness of ϕ, since ϕ � sϕ � ε gives the formulas 2.1.

Similarly as for many algebraic objects, the universal enveloping algebra is de�ned uniquely
up to isomorphism.

Proposition 2.6. Let Upgq 1 be another associative algebra such that there exists a �xed homo-
morphism ε 1 : g Ñ pUpgq 1qp�q of Lie algebras having the universal property. Then we have that
Upgq is canonically isomorphic to Upgq 1.

Proof. Set A=Upgq and ϕ=ε. We obtain sϕ � idUpgq and we know that the identity map is
unique.
Take Upgq 1=A and ϕ � ε 1. From the universal property in Theorem 2.5 we get a homomor-
phism sε 1 : Upgq Ñ Upgq 1. Similarly, the universal property of Upgq 1 gives another homomor-
phism sε : Upgq 1 Ñ Upgq.
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As next, consider the compositions sε 1 � sε � idUpgq 1 and sε � sε 1 � idUpgq, which gives the
claim.

g Upgq 1

Upgq

ε

ε 1 idUpgq 1

sε

idUpgq

sε 1

The universal property allows us to �nd some relations between the g-modules and Upgq-
modules.

Remark 2.7. IfA and B are associative algebras andψ : AÑ B a homomorphism of algebras,
then ψ : Ap�q Ñ Bp�q is a homomorphism of Lie algebras.

Proposition 2.8. (a) Let V be a g-module de�ned via the Lie algebra homomorphism ϕ : g Ñ
LpVqp�q. Then the homomorphism sϕ : Upgq Ñ LpVq, given by the universal property, endows V
with the canonical structure of a Upgq-module.
(b) Let V be a Upgq-module given by ψ : Upgq Ñ LpVq. Then the composition ψ � ε is a Lie
algebra homomorphism from g to LpVqp�q, which endows V with the canonical structure of a
g-module.
(c) Let V and W be two g-modules with the induced structures of Upgq-modules, given by (a).
Then HomgpV,Wq � HomUpgqpV,Wq.
(d) Let V andW be two Upgq-modules with the induced structures of g-modules given by (b). Then
we have HomUpgqpV,Wq � HomgpV,Wq.
(e) The operations in (a) and (b) are mutually inverse to each other.

Proof. (a) Follows immediately from the universal property.
(b) ψ � ε is a Lie algebra homomorphism. This is what Remark 2.7 implies.
(c) and (d) hold true, since for any g-module and the associated Upgq-module V the image of g
in LpVqp�q is generated by the same elements as the image of Upgq in LpVq.
(e) Follows from the de�nition of ε and its uniqueness.

Let g-mod be the category of all left g-modules and Upgq-mod be the category of all left
Upgq-modules. The next corollary de�nes this very important relation.

Corollary 2.9. The operations de�ned in Proposition 2.8 (a) and (b) are mutually inverse isomor-
phisms between the categories g-mod and Upgq-mod, i.e. there is a functor F : g-modÑ Upgq-
mod, another functor G : Upgq-modÑ Upgq-mod and two natural isomorphisms δ : F �Gñ
IdUpgq�mod and η : G � Fñ Idg�mod.

Remark 2.10. The equivalence of the categories de�ned above allows us to use the notions of
a g-module and Upgq-module interchangeably.
If V is a g-module with v P V and u P Upgq, then we denote the action of u on v by upvq. In
particular, epvq � Epvq, fpvq � Fpvq, hpvq � Hpvq.
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Remark 2.11. There is another way to construct Upgq.
First, de�ne the tensor algebra Tpgq of a Lie algebra g as follows:
T 0 :� C, T 1 :� g, T 2 :� gb g, more generally Tn :� gb gb � � � b gloooooooomoooooooon

n times

.

Then, the tensor algebra is the associative unital algebra Tpgq :� T 0 ` T 1 ` T 2 ` . . . with
multiplication given by concatenation of tensor words and the empty word for a unit element.
Let J denote the two-sided ideal of Tpgq, generated by all elements of the form xby�ybx�
rx, ys, where x, y P g. Then the universal algebra Upgq is constructed by taking the quotient
of the tensor algebra by the ideal J, namely Tpgq{J.

3 The PBW theorem

The de�nition of Upgq doesn’t give us enough information about this algebra, for instance
we don’t know if it is �nite-dimensional or in�nite- dimensional. It is not even clear yet that ε
is injective.

This part of the talk will be focussed on the construction of an explicit basis of Upgq.

Theorem 3.1 (Poincaré-Birkho�-Witt). The set tfihjek : i, j, k P N0u is a basis of Upgq.

Remark 3.2. The theorem is usually called the PBW theorem. The monomials fihjek are
called standard monomials. They form a basis of the polynomial algebra Crf, h, es, which is
commutative, unlike Upgq.

Before we prove Theorem 3.1 we need two intermediate results.

Lemma 3.3. The standard monomials generate Upgq.

Proof. Recall the free algebra Rxe, f, hy. Its basis is given by arbitrary monomials x1x2 . . . xk
where k P N0 and xi P te, f, hu for all i � 1, . . . k.
We need to prove that each such monomial can be written as a linear combination of standard
monomials.
We shall use induction on k:

• k � 1: nothing to prove;

• For k ¡ 1 consider some monomial x1x2 . . . xk as above.
We call a pair of indices pi, jq, 1 ¤ i   j ¤ k an inversion, of one of the following
situations holds true:#

xi � h

xj � f,

#
xi � e

xj � f,

#
xi � e

xj � h.

Proceed by induction on the number of inversions in x1x2 . . . xk. If the monomials are
already ordered, i.e. there are no inversions, we get x1x2 . . . xk, which is standard.
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Otherwise, �x an inversion pi, i� 1q:

x1 . . . xi�1 xixi�1 xi�2 . . . xk � x1 . . . xi�1 xi�1xi . . . xk�x1 . . . xi�1rxi, xi�1sxi�2 . . . xk.

We notice that the bracket rxi, xi�1s can take values in the set t�h,�2e,�2fu, the
second summand is of degree k � 1. The �rst summand has one inversion less than
x1x2 . . . xk, hence the claim holds true for any k.

Remark 3.4. Consider the vector space Cra, b, cs. By using the induction on the degree of a
monomial, we can describe the actions of E, F and H on V :

Fpaibjckq � ai�1bjck, (3.1)

Hpaibjckq �

#
bj�1ck, if i � 0
FpHpai�1bjckqq � 2aibjck, otherwise

(3.2)

Epaibjckq �

$'&
'%
ck�1, if i, j � 0
HpEpbj�1ckqq � 2Epbj�1ckq, otherwise
FpEpaa�1bjckqq �Hpai�1bjckq if i � 0,

(3.3)

where i, j, k P N0.
We can modify a little the last two equations above to get:

Hpaibjckq �

#
bj�1ck, if i � 0
FpHpai�1bjckqq � rH, Fsai�1bjck, otherwise ;

(3.2*)

Epaibjckq �

$'&
'%
ck�1, if i, j � 0
HpEpbj�1ckqq � rE,Hspbj�1ckq, if i � 0, j � 0,
FpEpaa�1bjckqq � rE, Fspai�1bjckq if i � 0,

(3.3*)

where i, j, k P N0.

Lemma 3.5. The equations (3.1)-(3.3) from the remark above de�ne on V the structure of a g-
module.

Proof. We have to check the three relations for the g-structure.

• We begin with the relation rH, Fs � �2F.
For i, j, k P N0 we have:

HpFpaibjckqq
p3.1q
� Hpai�1bjckq

p3.2q
�

� FpHpaibjckqq � 2ai�1bjck
p3.1q
� FpHpaibjckqq � 2Fpaibjckq,

which implies that rH, Fs � �2F.
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• Now we have to prove the relation rE, Fs � �2F. For i, j, k P N0 we have:

EpFpaibjckqq
p3.1q
� Epai�1bjckq

p3.3q
� FpEpaibjckqq �Hpaibjckq,

and the relation is proved.

• As next, we prove the relation rH,Es � 2E, which we rewrite as EH�HE � �2E.
For any j, k P N0 and i � 0 we have:

EpHpbjckqq � Epbj�1ckq
p3.3q
� HpEpbjckqq � 2Epbjckq

and the relation rH,Es � 2E is proved on monomials of the form bjck.
The part with the proof of this relation for monomials aibjck, where i P N and j, k P N0
is more complicated.
For this we use induction on i:

1. The case i � 0 is done.
2. For the case i ¥ 1, write the relation rH,Es � 2E as HE� EH� 2E � 0.

ApplyHE�EH�2E to the monomial aibjck, use the equations (3.1)-(3.3), together
with the modi�ed equations (3.2*) and (3.3*) to obtain:

pHE� EH� 2Eqpaibjckq �

� pHFE�HrE, Fs � EFH� ErH, Fs � 2FE� 2rE, Fsqpai�1bjckq.
(3.4)

By induction we have �2FE � FrE,Hs, using rH, Fs � �2F, we have:

HrE, Fs � HEF�HFE,

ErH, Fs � EHF� EFH,

�2rE, Fs � rE, rH, Fss.

Applying these relations to (3.4) gives us:

pHE� EH� 2Eqpaibjckq � prF, rE,Hss � rE, rH, Fssqpai�1bjckq. (3.5)

We know that rE, Fs � H, so we can add the zero term 0 � rH,Hs � �rH,Hs �
�rH, rE, Fss � rH, rF, Ess to the equation (3.5) and get:

pHE� EH� 2Eqpaibjckq �

� prF, rE,Hss � rE, rH, Fss � rH, rF, Essqlooooooooooooooooooooooomooooooooooooooooooooooon
Jacobi identity for LpVqp�q

pai�1bjckq.

Hence, the last relation is satis�ed.
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Now we are ready to prove the PBW theorem.

Proof. To prove that the standard monomials form a basis in Upgq we need to show:

• They generate Upgq;

• The are linearly independent.

The �rst part was proved in Lemma 3.3.
What is left to prove is the linear independency.
Consider now the Upgq-module V from Lemma 3.5.
Then for all i, j, k P N0 for the constant polynomial 1 P V we have:

FiHjKkp1q � aibjck.

The elements aibjck P V are linearly independent.
Hence, the linear operators FiHjEk are linearly independent as well.
These linear operators are exactly the images of the standard monomials under the homomor-
phism, de�ning the Upgq-structure on V , it follows that the standard monomials are linearly
independent and this proves the statement of the theorem.

Corollary 3.6. The canonical embedding ε : g ãÝÑ Upgqp�q is injective.

Proof. We know that the elements e, f and h form a basis of g and that the elements εpeq � e,
εpfq � f and εphq � h are linearly independent in Upgq by PBW.

This means we can identify g with εpgq.

8


	Some preliminaries and notations
	Construction of the universal enveloping algebra
	The PBW theorem

