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Abstract

Today we are going to introduce the notion of the universal enveloping algebra £(g) as
well as the PBW theorem, which allows us to construct a basis for L((g).

1 Some preliminaries and notations

Before we start with the construction of the universal enveloping algebra, we need to recall
some algebraic structures and set notations that we are going to use throughout the entire talk.

Recall that an associative unital algebra over a field K is a pair (A, -), consisting of a vector
space A, together with a bilinear multiplication - : A x A — A, a,b +— ab, which is associa-
tive, i.e. for any a,b,c € A we have (ab)c = a(bc). Unital means that there is an element
1 € A, such that al = Ta = a for any a € A. An algebra homomorphism is a linear map
@ :A > B,xy — o(xy) = ¢(x)@(y) for A, B associative algebras and x,y € A.

Each associative algebra (A, -) can be turned into a Lie algebra by replacing the multiplica-
tion with the commutator, i.e. for any two elements a,b € A we have [a,b] = ab — ba. We
shall denote this Lie algebra as A(—).

Consider the case if V is a vector space, then the space of all endomorphisms of V has the
natural structure of an associative unital algebra with multiplication being the composition of
linear operators on V. Denote this associative algebra £(V) and its underlying Lie algebra as

£y,

To define an sl;-module we need a Lie algebra homomorphism from sl; to £(V)(7), that is
a linear map @ : sl — £(V), which satisfies:

o([xy]) = [ex), e(y)] = e(x)e(y) — (y)e(x) for all x,y € sl,.

Using the notation from the first talk, we get H = @(h), F = ¢@(f) and E = @(e).

This is a general construction, i.e. replacing sl, with any Lie algebra g gives the notion of a
module over any Lie algebra. The homomorphism ¢ is usually called a representation of the
Lie algebra. As we dicussed in the first talk, we use module and representation interchangeably,
since they are equivalent definitions.



2 Construction of the universal enveloping algebra

There is an issue with the Lie algebra homomorphism ¢ : sl; — £(V)(=), namely in the non-
trivial cases the image of ¢ is not closed with respect to composition but it is closed only with
respect to taking the commutator of the linear operators. To fix this problem we have to look
for external algebraic objects whose properties are related to g (sometimes not obviously).
We shall define an associative algebra $(g), called the universal enveloping algebra of g and
show that it has the following properties:

« The Lie algebra g is a canonical subalgebra of ﬂ(g)(_);

« Any g-action on any vector space canonically extends to a $1(g)-action on the same vector
space;

+ The extension and the restriction from $(g) to g are mutually inverse isomorphisms
between the categories g-mod and 4(g)-mod.

The last property is very important, since it says that there is a one-to-one correspondence
between g-modules and 4(g)-modules. Thus, any g-module corresponds to a morphism of
associative algebras 1 : {(g) — £(V) and the image of this morphism is always closed with
respect to composition of operators. This implies that one should study the internal structure
of 4l(g). A disadvantage of the universal enveloping algebra is that in any non-trivial case it is
infinite-dimensional, while the Lie algebra g is finite dimensional.

Definition 2.1. Let R{e, f, h) be the free associative algebra with generators e, f and h and
quotient it by the ideal I, generated by the relations ef — fe = h, he—eh = 2e, hf —fh = —2f.

We call the quotient R{e, f, h)/I the universal enveloping algebra of a Lie algebra g and denote
it as $4(g).

Remark 2.2. We will identify the elements of R(e, f, h) with their images in {(g).

Lemma 2.3. (a) There is a unique linear map € : g — $(g) satisfying:
ele)=e, €(f)=f, e(h)=h.
(b) The map is a linear homomorphism of Lie algebras € : g — il(g)(f).

Proof. (a) Clear, since generators are mapped to generators.
(b) Follows from the definition of {{(g) and € preserving the Lie bracket. O

Remark 2.4. The map e is called canonical embedding of g into M(g)(_). This map is injective,
which will be proved later.

The main result of this section is the following universal property of {(g):

Theorem 2.5. Let A be any associative algebra and ¢ : g — A(~) be any homomorphism of Lie
algebras. There exists a unique homomorphism @ : $l(g) — A of associative algebras, such that
the diagram commutes:



i.e. we have @ o € = .

Proof. We need to prove the existence and uniqueness of @. We shall begin with the existence.
Consider the discussed free associative algebra R{e, f,h). For any associative algebra A we
have the unique homomorphism 1\ : R — A, defined via

be) = o), () =o®, V()=o) 2.)

Consider the natural projection 7w : R — 4(g) =~ R{e,f,h)/I. Let K = Ker(m). Then we
have:

This means that \(ef — fe —h) = 0. Similarly, p(he —eh —2e) = 0 and {(hf — fh+2f) =
0. This implies that the image of the kernel {(K) is trivial. Therefore, 1 factors through
Re, f, /K = (g).
Denote by @ the homomorphism @ : £(g), then the composition ¢ = @ o € follows.
Now we prove the uniqueness of @. Since 1 is unique, as we already said, then it implies the
uniqueness of @, since @ = @ o € gives the formulas[2.1] O

Similarly as for many algebraic objects, the universal enveloping algebra is defined uniquely
up to isomorphism.

Proposition 2.6. Let $l(g)’ be another associative algebra such that there exists a fixed homo-

morphism e’ 1 g — (ﬂ(g)’)(_) of Lie algebras having the universal property. Then we have that
$U(g) is canonically isomorphic to $A(g)’.

Proof. Set A=4l(g) and @=€. We obtain ® = idy(,) and we know that the identity map is
unique.

Take 4(g)'=A and ¢ = €’. From the universal property in Theorem We get a homomor-
phism €’ : $(g) — $(g)’. Similarly, the universal property of £{(g)’ gives another homomor-
phism € : $l(g)’ — U(g).



As next, consider the compositions €’ 0 € = idgg) and € o el = idg(g), which gives the

claim.
g
eh

idu(e) C_ $(g)

€—> u(g)/ :) idu(g)’

O

The universal property allows us to find some relations between the g-modules and $(g)-
modules.

Remark 2.7. If A and B are associative algebras and1 : A — B a homomorphism of algebras,
then ) : A(=) — B(-) is a homomorphism of Lie algebras.

Proposition 2.8. (a) Let V be a g-module defined via the Lie algebra homomorphism ¢ : g —
£(V)(5). Then the homomorphism @ : $l(g) — £(V), given by the universal property, endows V
with the canonical structure of a $1(g)-module.

(b) Let V be a $U(g)-module given by : U(g) — £(V). Then the composition \p o € is a Lie
algebra homomorphism from g to £(V)(), which endows V with the canonical structure of a
g-module.

(c) Let V and W be two g-modules with the induced structures of $1(g)-modules, given by (a).
Then Homg(V, W) = Homyg,(V; W).

(d) Let V and W be two $A(g)-modules with the induced structures of g-modules given by (b). Then
we have Homy(g) (Vs W) = Homg(V, W).

(e) The operations in (a) and (b) are mutually inverse to each other.

Proof. (a) Follows immediately from the universal property.

(b) P o € is a Lie algebra homomorphism. This is what Remark [2.7 implies.

(c) and (d) hold true, since for any g-module and the associated 4((g)-module V the image of g
in £(V)(~) is generated by the same elements as the image of {(g) in £(V).

(e) Follows from the definition of € and its uniqueness. O

Let g-mod be the category of all left g-modules and $I(g)-mod be the category of all left
$(g)-modules. The next corollary defines this very important relation.

Corollary 2.9. The operations defined in Proposition|2.8 (a) and (b) are mutually inverse isomor-
phisms between the categories g-mod and $(g)-mod, i.e. there is a functor F : g-mod — (g)-
mod, another functor G : (g)-mod — U(g)-mod and two natural isomorphisms b : Fo G =
Idﬂ(g)fmod andn:GoF= Idgfmod-

Remark 2.10. The equivalence of the categories defined above allows us to use the notions of
a g-module and ((g)-module interchangeably.

If Vis a g-module with v € V and u € (g), then we denote the action of u on v by u(v). In
particular, e(v) = E(v), f(v) = F(v), h(v) = H(v).



Remark 2.11. There is another way to construct I(g).
First, define the tensor algebra T(g) of a Lie algebra g as follows:
TO:=C, T :=g T? = g®g, more generally T" := gQg®---Qg.

n times
Then, the tensor algebra is the associative unital algebra T(g) := TeT'eT?®... with
multiplication given by concatenation of tensor words and the empty word for a unit element.
Let ] denote the two-sided ideal of T(g), generated by all elements of the form x@y —y ®x —
[x,y], where x,y € g. Then the universal algebra ((g) is constructed by taking the quotient
of the tensor algebra by the ideal ], namely T(g)/].

3 The PBW theorem

The definition of £{(g) doesn’t give us enough information about this algebra, for instance
we don’t know if it is finite-dimensional or infinite- dimensional. It is not even clear yet that €
is injective.

This part of the talk will be focussed on the construction of an explicit basis of 4/(g).
Theorem 3.1 (Poincaré-Birkhoff-Witt). The set {f'he* : 1,k € No} is a basis of 44(g).

Remark 3.2. The theorem is usually called the PBW theorem. The monomials f'hie® are
called standard monomials. They form a basis of the polynomial algebra C[f, h, e], which is
commutative, unlike {(g).

Before we prove Theorem 3.1 we need two intermediate results.
Lemma 3.3. The standard monomials generate $1(g).

Proof. Recall the free algebra R{e, f,h). Its basis is given by arbitrary monomials x1x; ... Xy
where k € Ny and x; € {e,f,h} foralli=1,...k.

We need to prove that each such monomial can be written as a linear combination of standard
monomials.

We shall use induction on k:

« k = T: nothing to prove;

« For k > 1 consider some monomial x1x; ... Xy as above.
We call a pair of indices (1,j), 1 < 1 < j < k an inversion, of one of the following
situations holds true:

xi =h Xi=¢e Xi=e
XjZf, X)'Zf, Xth.

Proceed by induction on the number of inversions in x1x; ... Xy. If the monomials are
already ordered, i.e. there are no inversions, we get x1X2 . .. Xk, which is standard.



Otherwise, fix an inversion (i,1+ 1):

X1 ...xi,1xi+2 Ce XK = X ...xi,1. CeXRHEXT e X1 [ Xy X X2 - Xk

We notice that the bracket [xi,X;;1] can take values in the set {+h, +2e, +2f}, the
second summand is of degree k — 1. The first summand has one inversion less than
X1X2 ... Xy, hence the claim holds true for any k.

d

Remark 3.4. Consider the vector space C|a, b, c|. By using the induction on the degree of a
monomial, we can describe the actions of E, F and H on V:

F(a'blc®) = attTvick, (3.1)
bitlek ifi=0

. . s 3.2
F(H(a' 'blc¥)) — 2ablck, otherwise 32

waver-
1 if1,j =0
E(a'b/c®) = { H(E(b/ k) — 2E(biTck), otherwise (3.3)
F(E(a®"blc*)) 4+ H(ai™bick) if 1 # 0,
where 1, j, k € Np.
We can modify a little the last two equations above to get:

bitlck ifi=0

. . . . 3.2%
F(H(a*""bic¥)) + [H, Fla*~"bic¥, otherwise ; (2)

H(a'b/c*) = {

1 ifi,j =0
E(a'b'c®) = < H(E(bI~Tck)) + [E, H](bI7"c¥), if i = 0,5 # 0, (3.3
F(E(a® "bc*)) + [E, F](a~"bick) if i # 0,
where 1, j, k € Np.

Lemma 3.5. The equations (3.1)-(3.3) from the remark above define on V the structure of a g-
module.

Proof. We have to check the three relations for the g-structure.

« We begin with the relation [H, F] = —2F.
For 1,j, k € Ny we have:

H(F(aibjck)) CAY H(ai+]bjck) (-2)

= F(H(a'b/c¥)) — 2a* 10 e &) F(H(albick)) — 2F(aibich),
which implies that [H, F] = —2F.



« Now we have to prove the relation [E, F| = —2F. For i, j, k € Ny we have:

E(F(a'bic®)) E) E(ai*Tuck) &) FE(aibick)) — H(albick),
and the relation is proved.

« As next, we prove the relation [H, E] = 2E, which we rewrite as EH — HE = —2E.
For any j, k € Ny and i = 0 we have:

E(H(bR) = B0+ ¢%) B HE®ICR) — 2E(bIc)

and the relation [H, E] = 2E is proved on monomials of the form bick.

The part with the proof of this relation for monomials a‘b/c¥, where i € N and j, k € Ny
is more complicated.

For this we use induction on i:

1. The case i = 0 is done.

2. For the case i > 1, write the relation [H, E] = 2E as HE — EH — 2E = 0.
Apply HE — EH — 2E to the monomial atbic¥, use the equations (3.1)-(3.3), together
with the modified equations (3.2%) and (3.3%) to obtain:

(HE — EH — 2E)(a'blc¥) =

= (HFE + H[E, F] — EFH — E[H, F] — 2FE — 2[E, F])(a'~'b/c). 34
By induction we have —2FE = F[E, H], using [H, F] = —2F, we have:
H[E, F] = HEF — HFE,
E[H, F] = EHF — EFH,
—2[E,F] = [E, [H, F]]-
Applying these relations to (3.4) gives us:
(HE — EH — 2E)(a'b/c*) = ([F, [E, H]] + [E, [H, F]]) (a*"bick). (3.5)

We know that [E, F] = H, so we can add the zero term 0 = [H,H] = —[H, H] =
—[H, [E, F]] = [H, [F, E]] to the equation (3.5) and get:

(HE — EH — 2E)(a'blc¥) =
= ([F, [E, H]] + [E, [H, F]] + [H, [F, E]])(a'""blc*).

“ v

Jacobi identity for £(V)(~)

Hence, the last relation is satisfied.



Now we are ready to prove the PBW theorem.
Proof. To prove that the standard monomials form a basis in 4{(g) we need to show:
« They generate 4((g);
+ The are linearly independent.

The first part was proved in Lemma [3.3]
What is left to prove is the linear independency.
Consider now the £{(g)-module V from Lemma 3.5}
Then for all i,j, k € Ny for the constant polynomial 1 € V we have:

FIHK*(1) = a'blc*.

The elements a'b/c € V are linearly independent.
Hence, the linear operators FFH'EX are linearly independent as well.
These linear operators are exactly the images of the standard monomials under the homomor-
phism, defining the L(g)-structure on V, it follows that the standard monomials are linearly
independent and this proves the statement of the theorem.

O

Corollary 3.6. The canonical embedding € : g — Ll(g)(f) is injective.

Proof. We know that the elements e, f and h form a basis of g and that the elements €(e) = e,
e(f) = f and e(h) = h are linearly independent in {{(g) by PBW. O

This means we can identify g with €(g).
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