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Self-injective <> projectives=injectives,
faithful <> only 0 acts as zero.

This is not the most general version,

One version of the double centralizer theorem (DCT) | but 1 will stick to it for simplicty

The DCT (Schur ~1901+1927, Thrall ~1947, Morita ~1958).
Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module.
Then there is a canonical algebra map

M should be a A-B-bimodule,
so £nd p (M) means right operators,

can: A — gndé'ndA(M) (M)7 while £n1d 3 (M) are left operators.

| will ignore this technicality.

which is an isomorphism.

» Bad news. We can not create many new algebras out of (A,M).

» Good news. We can A and B = Enda (M) against each other.

» Good news. There are plenty of which we know and like.

‘Question. What is a categorical analog of the DCT?
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One version of the double centralizer theorem (DCT)

The DCT (Schur ~1901+1927, Thrall ~1947, Morita ~1958).

Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module.

Then there is a canonical algebra map
can: A — Endgna, (M),

which is an isomorphism.

» Bad news. We can not create many new algebras out of (A,M).

» Good news. We can A and B = Enda (M) against each other.

» Good news. There are plenty of which we know and like.
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Two potential answers.

Question. What is
a categorical ana-
log of the DCT?

b

An abelian categorifi-
cation of an algebra.

A semisimple categori-
fication of an algebra.

E An additive categori-

fication of an algebra.

1

1

An abelian categori-
fication of a module.

A semisimple categori-
fication of a module.

( An additive categori-

fication of a module.

1

1

An abelian categori-
fication of the DCT.

A semisimple categori-
fication of the DCT.

( An additive categori-

fication of the DCT.

Goal. Explain both answers: first the abelian
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Two potential answers.

Question. What is
a categorical ana-
log of the DCT?

A Why only “two potential answers”? —~
Fun fact. Semisimple implies abelian, and is a special case of additive.

p In the middle the two outer ways coincide. -

An abelian categori- A semisimple categori- An additive categori-
fication of a module. fication of a module. fication of a module.

An abelian categori- A semisimple categori- An additive categori-
fication of the DCT. fication of the DCT. fication of the DCT.
Goal. Explain both answers: first the abelian , then the additive
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These are not the most general versions,
but | will stick to these for simplicity.

Abelian DCT (Etingof—Ostrik ~2003).

Let .o/ be a finite, pivotal multitensor category and M a faithful .¢/-module. Then

there is a canonical monoidal functor
can: ./ — &ndgna,, (m)(M),

which is an equivalence.

Additive DCT (~2020).
Let .o/ be a monoidal fiat category, J a two-sided cell and M a simple transitive
f 7-module with apex J. Then there is a canonical monoidal functor

can: &7 — gndzsnddj(M)(M)a

which is an equivalence when restricted to add(.7) and corestricted to

inj
é’ndgndﬂj(M)(M).
Do not worry: | will all the words! For now just note that the second

statement already sounds more complicated.
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One verson of the double cetralizr theorem (DCT)

T (Schur ~1901+1927, Thral ~1947, Morita ~1056).
Let A be 3 salfjecive, fne-dimensiona algers, 3nd X be 3 Ehul A-modle
Then ther 3 canonial sgea map

ot A Euds o),

which s an somorpism.

Two potential answers,

> Bad news. Ve con ot creste many new slgebras ot of (A.4). (5
o e W o0 G A 1 i)t i
 Goud . e s ey of G i

A keows 5, and 1 knows A, ight?

Abcian DCT (Eingt-Ostoie 2005
b3 e ol i ctgony 03 601 - Then
s o i

cans o Endaas (M),

which s a aquivalence

Additve DCT (~2020).
L2 e ovld i ey 7 i ol 2 . die it
o -module with 3pex T Then hee s 3 canonical monoidal functor

can ety -+ Endans, ou (M),

hich s am squialence when rsticed to (7 and coretricted to
Eals ).

Goal. Explsi both answrs: st th sbelan thn the sdve

Example G = 2/27/2 (Klen four group).

s ot vory 1 D v o i e o et
Satemen aready sounds mors compica

Example (G-_#o, ground fed 7).

AMod =

Mot

W progenerstor soch tht A

i)

2 progenrsor such that 1 = Eud 1)

Semiet ol
o wich i il

ity Foct) nd
iVt ) = v

Another semisimple example.
= Vet and fx M = Vect, whic s fhfol.
0 (Vet) = G-k 30 Bl aualVoct)

.

An sbelian example.
o = o, 3 fx M = Vect whic s ol
A A

a

There is still much to do.

Daniel Tubbenhauer

1K i ot of characaristic 2, KG i semisimpl and adiive—abelan. So et s
Rave 3 ok st characterstic 2, where wé hve KG = K[X, V) (X°, ')
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> G Mo b st one loment.

Then adieie:

- Only X? and ¥ have to3ct 55 26 o esch ndecomposabe, and o can
covkup nfriely many, o

b G-t s ity many sments

o knows 3. snd 8 knows . ight?

equivalence (Etingof-Ostrk ~2003)
e oy o o, st o Then
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Thanks for your attention!
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A knows B, and B knows A, right?

A-Mod ~ B-Mod
=
M progenerator such that A = Endp(M)
=
M progenerator such that B 2 Enda (M).



A knows B, and B knows A, right?

A-Mod ~ B-Mod
=
M progenerator such that A = Endp(M)
=
M progenerator such that B 2 Enda (M).

Morita ~1958.

The DCT goes hand-in-hand with classical Morita-theory.




A knows B, and B knows A, right?

If A C Endg(M), B =Enda(M) and A is semisimple, then:
> A =¢Endg(M);
» B is semisimple;
» As a A ® B°P-module we have

Il

M

@ AL ®Lg.

simples of A,B



A knows B, and B knows A, right?

If A C Endg(M), B =Enda(M) and A is semisimple, then:
> A =¢Endg(M);
» B is semisimple;
» As a A ® B°P-module we have

Il

M

@ AL ®Lg.

simples of A,B

Schur ~1901+41927.

The DCT goes hand-in-hand with classical Schur—Weyl duality.




A knows B, and B knows A, right?

If M = Ae for e? = e, M faithful and B = £nda(Ae), then:
> B~ eAeand A = Endepc(Ae);
» The B-simples are in bijection with A-simples N such that Ne # 0;

> A is encoded in the (usually) much smaller algebra B.



A knows B, and B knows A, right?

If M = Ae for e? = e, M faithful and B = £nda(Ae), then:
> B~ eAeand A = Endepc(Ae);
» The B-simples are in bijection with A-simples N such that Ne # 0;

> A is encoded in the (usually) much smaller algebra B.

Green ~1980.
The DCT applies for Schur-Weyl in the non-semisimple case.

Soergel ~1990.

The DCT applies in category O.




Example. (Looks silly, but is prototypical.)
» A =K, and fix M = K", which is faithful.
» B = Endg(K") = Mat,x,(K) and Endypat,, &) (K") = K.
» M= K® K", perfect matching of isotypic components.

Non-example. (Faithfulness missing.)
» A =K[X]/(X3), and fix M =K?, X > ($3), which is not-faithful.
» B= gndK[X]/(X3)(K2) = K[X]/(XQ) and SndK[X]/(Xz)(KQ) = K[X]/(X2)
» M2 K?®K as a K[X]/(X3)-module, M= K ® K2 as a K[X]/(X?)-module.

Non-example. (Self-injectivity missing.)
» A= (¥X) and fix M = K?, which is faithful.
» B =¢&ndpx)(K?) 2K and Endg(K?) = Matzy2(K).
» M2 K?®Kasa (XX)-module, M= K ® K? as a Mat,y»(K)-module.



Example (Schur ~1901+1927, Green ~1980).
» A =KJ[S,], and fix M = (K")®9 for n > d, which is faithful.
> B = &Endgs, ((K")®?) = S(n, d) (Schur algebra) and
Ends(n ) ((K")®9) = K[Sq].

> K[S4] = eS(n, d)e and the K[Sy]-simples are in bijection with S(n, d)-simples
N such that Ne # 0.

Example (Soergel’s Struktursatz ~1990).

> A a finite-dimensional algebra for Og(gc). Fix M = Ae, which is faithful for
the right choice of idempotent e,, (the big projective).

» B =~¢Enda(Aey,) = enAey, (Soergel's Endomorphismensatz ~1990:
B=coinvariant algebra) and énde, Ae,, (Aew,) = A.

» A can be recovered from e, Ae,,, although A is much more complicated.
Explicitly, for gc = sl, one gets e.g.

A= 1#5/(a\b:0), B~ C{s, bla}, As= —— S



Example G = Z /27 xZ/27 (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us
have a look at characteristic 2, where we have KG = K[X, Y]/(X?, Y?)

First, abelian:
» X and Y have to act as zero on each simple, so KG has just K as a simple.
» KG-_# od has just one element.

Then additive:

» Only X? and Y? have to act as zero on each indecomposable, and one can
cook-up infinitely many, e.g.

o e e e e oo

» KG-#od has infinitely many elements.



Example G = Z/27xZ/2Z (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us

have a look at characteristic 2, where we have KG = K[X, Y]/(X?, Y?)

First, abelian:

>
| 2

The

Theorem (Higman ~1953). ple.
For char(K) = p, KG-#od is...
...always a finite, pivotal multitensor category.
. monoidal fiat if and only if (p 1 |G| or the p-Sylow subgroup of G is cyclic). "
COUR=UP TITITITtETY 1T1idiTy, €. 8.
X X X
@ — @ o — O ® < ...

» KG-_/ od has infinitely many elements.



Example (G-.# od, ground field C).

» Let .o/ = G- #od, for G being a finite group. As .&f is semisimple,
abelian=additive. Simples are simple G-modules.

» For any M,N € .o/, we have M®Q N € .&/:
g(m®n)=gm®gn

forall g€ G,m &M, néeN. There is a trivial module C.
» The regular .&/-module M: «of — &ndc(.of):

M—MQ®_

fl [Fe-

N——N®_

» The decategorification is the regular Ko(.</)-module.



Example (G-.# od, ground field C).

» Let K C G be a subgroup.
» K-Mod is a .&/-module, with action

Resg ® _: G-Mod — Endc(K-Mod),

M——— ResZ(M) @ _

fl J{Resﬁ(f)@ .

N———— Resg(N) ® _

which is indeed an action because Resg is a ®-functor.
» The decategorifications are Ko(.2/)-modules.



Left partial preorder >; on indecomposable objects by
F >, G < there exists H such that F is isomorphic to a direct summand of HG.

Left cells £ are the equivalence classes with respect to >/, on which >; induces a
partial order. Similarly, right and two-sided, denoted by R and J respectively.
Cell .&/-modules associated to L are:

add({F | F >, £})/"kill >,-bigger stuff".

Examples.

» Cells in ./ give ®-ideals.

» If .o/ is semisimple, then FF* and F*F both contain the identity, so cell theory
is trivial. The cell .¢/-module is the regular .¢/-module.

» For Soergel bimodules cells are Kazhdan—Lusztig cells and cell modules
categorify Kazhdan—Lusztig cell modules.

» For categorified quantum groups you can push everything to cyclotomic KLR
algebras, and cell modules categorify simple modules.



A finite, pivotal multitensor category .&/:

» Basics. ./ is K-linear and monoidal, ® is K-bilinear. Moreover, ./ is abelian
(this implies idempotent complete).

» Involution. ./ is pivotal, e.g. F** = F.

» Finiteness. Hom-spaces are finite-dimensional, the number of is
finite, finite length, enough projectives.

» Categorification. The abelian Grothendieck ring gives a finite-dimensional
algebra with involution.

A monoidal fiat category .«f:

» Basics. ./ is K-linear and monoidal, ® is K-bilinear. Moreover, ./ is additive
and idempotent complete.

» Involution. .&f is pivotal, e.g. F** 2 F.

» Finiteness. Hom-spaces are finite-dimensional, the number of
indecomposables | is finite.

» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.




A finite, pivotal multitensor category .o/:
» Basics. .o/ is K-linear and monoidal, ® is K-bilinear. Moreover, .¢/ is abelian
(this implies idempotent complete).
» Involution. ./ is pivotal, e.g. F** = F.

> Flnlteness Hom spaces are finite-dimensional, the number of

The crucial difference...
...is what we like to consider as “elements” of our theory:

Abelian prefers simples,
additive prefers indecomposables.

This is a difference — for example in the fiat case there is simply no Schur’s lemma.

> TVOTOTIOT—S— TS PIVOTa, T T — T

» Finiteness. Hom-spaces are finite-dimensional, the number of
indecomposables | is finite.

» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.




A finite, pivotal multitensor category .o/:
» Basics. . is K-linear and monoidal, ® is K-bilinear. Moreover, ./ is abelian

(this implies idempotent complete).
» |p\/n|||+inn of ic niuntal o o BF*X* >~ R

> Fi Abelian examples. } i<
fil H-_ 0d for H a finite-dimensional Hopf algebra. (Think: KG, G finite.)
» C Finite Serre quotients of G-.# od for G being a reductive group. nal

algebra with involution.

A Abelian and additive examples.

H-_# od for H a finite-dimensional, semisimple Hopf algebra. (Think: CG, G finite.)
Vects for G graded K-vector spaces, e.g. ¥ect = Vects.

» Finiteness. Hom-spaces are finite-dimensional, the number of

undecomposables ‘ is finite.
» C Additive examples. byl

al
H-Zroj for H a finite-dimensional Hopf algebra. (Think: KG, G finite.)

Finite quotients of G-Zilt for G being a reductive group.




A finite, pivotal multitensor category .o/:
» Basics. .o/ is K-linear and monoidal, ® is K-bilinear. Moreover, .¢/ is abelian
(this implies idempotent complete).
» Involution. ./ is pivotal, e.g. F** = F.

» Finiteness. Hom-spaces are finite-dimensional, the number of is

finite, finite length, enough projectives.
» Categorification. The abelian Grothendieck ring gives a finite-dimensional

al Why | like the additive case.
A All the example | know from my youth are not abelian, but only additive:
mo
» B Diagram categories, categorified quantum group dditive
a and their Schur quotients, Soergel bimodules,
> In tilting module categories etc.
> F
F And these only fit into the fiat and not the tensor framework.
|

» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.



Faithful <> only 0 (the object) acts as zero (functor).

Abelian. An .¢/-module M: This already clarifies the abelian DCT.

» Basics. M is K-linear and abelian. The action is a monoidal functor
M: ./ — éndg jex(M) (K-linear, left exactness).

» Finiteness. Hom-spaces are finite-dimensional, the number of is
finite, finite length, enough projectives.

» Categorification. The abelian Grothendieck group gives a finite-dimensional
Go(.«/)-module.

Additive. An .&/-module M:

» Basics. M is K-linear, additive and idempotent complete. The action is a
monoidal functor M: .&/ — &ndg (M) (K-linear).

» Finiteness. Hom-spaces are finite-dimensional, the number of
‘ indecomposables | is finite.

» Categorification. The additive Grothendieck group gives a finite-dimensional
Ko(.«/ )-module.



Abelian. An .¢/-module M:

» Basics. M is K-linear and abelian. The action is a monoidal functor
M: ./ — éndg jex(M) (K-linear, left exactness).

» Finiteness. Hom-spaces are finite-dimensional, the number of is

finite, finite length, enough projectives.

» Categorification. The abelian Grothendieck group gives a finite-dimensional

@ Example.
Everything is constructed such that
Additivg the regular ./-module .&/ exists.
» Ba ) is a
. Smarter version of the regular .e/-module are cell .o/-modules.
> Fin But of course there are many examples.

Wdecomposables ‘ 1s finite.

» Categorification. The additive Grothendieck group gives a finite-dimensional
Ko(.e/)-module.



Semisimple example.
b .o = Vect, and fix M = Vect®", which is faithful.

> B = Endyect(Vect®) = A at,n(Vect) and
gnd/ﬂat"x"(“l/ect)(ve(:t@n) = Yect.

Another semisimple example.
» ./ = Vectg, and fix M = Vect, which is faithful.
> B = Endyect(Vect) 2 G-Mod and Ende._goa(Vect) = Vectg.

An abelian example.
» .o =H-_#od, and fix M = Vect, which is faithful.
> B = Endy._goa(Vect) = H*- A od and Endp«_ygoa(Vect) =2 H- A od.



Exact <> the unit acts as an exact functor.

(ld knows :% and (% knOWS bd right7 | If M is semisimple, then exactness is automatic.
’ ’ .

Morita equivalence (Etingof-Ostrik ~2003).
Let B = &nd 5 (M) for M a faithful, exact ./-module. Then

.o/-mod ~ ZB-mod.

Example.
o = Vectg and B = G-_#M od have the “same” module categories, which is a
very non-trivial fact.



Sorry, this example is not self-contained.

va knows % ’ and % knows VQf, right? But just to explain all the ingredients carefully is another talk.

Additive example (~2020).
& =S (W, C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and Cs the cell #7-module.

» Additive DCT. We have

can: L7 — é”ndgndyj(cj)(ci)a

is an equivalence when restricted to add(J) and corestricted to
é’ndgﬂdﬂj(cj)(cj).
» “Endomorphismensatz”’. We have
éndy, (Cq) ~ oy

where ./ 7 is the asymptotic category (semisimple!).
» Morita equivalence. We have

F7-stmod ~ o 7-stmod.

This looks weaker than the abelian DCT, but this is what we can prove right now.
Anyway, let explain why it is weaker, which finally explains all words in the additive DCT.




o/ knows 23, and 2B knows .«/, right?

Additive example (~2020).
& =S (W, C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and Cs the cell #7-module.

» Additive DCT. We have

can: L7 — é”ndgndyj(cj)(ci)a

is an equivalence when restricted to add(7) and corestricted to

gndgﬂdﬂj(cj)(cj)- To make C faithful,
» “Endomorphismensatzduotient & by “bigger stuff”
and get S7.

6Ndy (V7] = 7
add(J): Since “lower stuff” still acts pretty much in an uncontrolable way,
v

restrict to only things in J.
» [viorma CUUTVdICTICE. VVE TT1dVE

inj means injective endofunctors.
In this case you could also consider projective endofunctors.




o/ knows 23, and 2B knows .«/, right?

Additive example (~2020).
& =S (W, C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and Cs the cell #7-module.

» Additive DCT. We have

can: L7 — é”ndgndyj(cj)(ci)a

is an equivalence tricted to

o o7 is the. “degree zero part” of 7.
é’ndgidﬂj(cj)(c “.of 7 is the crystal associated to S7."

» “Endomorphismensatz”’. We have
éndy,(Cy) ~ oy

where ./ 7 is the asymptotic category (semisimple!).
» Morita equivalence. We have

F7-stmod ~ o 7-stmod.



o/ knows 23, and 2B knows .«/, right?

Additive example (~2020).
& =S (W, C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and Cs the cell #7-module.

» Additive DCT. We have

can: L7 — é”ndgndyj(cj)(ci)a

is an equivalence when restricted to add(7) and corestricted to
inj
é’ndgndﬂj(cj)(cj).
» “Endomorphismensatz”’. We have

stmod are simple transitive modules.

The analogs of categories of simple modules downstairs.
where ¢/ 7 TsrTe dSYTITPTUTIC CAtEGOUTy (SEMIISITTPTET

» Morita equivalence. We have

F7-stmod ~ o 7-stmod.
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