The double centralizer theorem categorified is...?

Or: Two different and yet similar answers

Daniel Tubbenhauer

$$\mathbf{A}\cong \mathcal{E}\mathrm{nd}_{\mathcal{E}\mathrm{nd}_{\mathbf{A}}(\mathtt{M})}(\mathtt{M})$$

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

December 2020

Daniel Tubbenhauer

The DCT (Schur \sim 1901+1927, Thrall \sim 1947, Morita \sim 1958). Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module. Then there is a canonical algebra map

 $\mathrm{can}\colon\mathrm{A}\to\mathcal{E}\mathrm{nd}_{\mathcal{E}\mathrm{nd}_{\mathrm{A}}(\mathtt{M})}(\mathtt{M}),$

 $\begin{array}{l} {\tt M} \mbox{ should be a A-B-bimodule,} \\ {\tt so $\mathcal{E}nd_A({\tt M})$ means right operators,} \\ {\tt while $\mathcal{E}nd_B({\tt M})$ are left operators.} \\ {\tt I} \mbox{ will ignore this technicality.} \end{array}$

which is an isomorphism.

- ▶ Bad news. We can not create many new algebras out of (A,M). (Same for the categorified versions.)
- ▶ Good news. We can \bigcirc play A and $B = \mathcal{E}nd_A(M)$ against each other.
- ► **Good news.** There are plenty of ► examples which we know and like.

Question. What is a categorical analog of the DCT?

This is not the most general version, but I will stick to it for simplicity. The DCT (Schur \sim 1901+1927, Thrall \sim 1947, Morita \sim 1958). Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module. Then there is a canonical algebra map

can:
$$A \to \mathcal{E}nd_{\mathcal{E}nd_A(M)}(M)$$
,

which is an isomorphism.

- ► Bad news. We can not create many new algebras out of (A, M). (Same for the categorified versions.)
- ▶ Good news. We can \checkmark_{play} A and $B = \mathcal{E}nd_A(M)$ against each other.
- ► **Good news.** There are plenty of ► examples which we know and like.

Question. What is a categorical analog of the DCT?

Two potential answers.

Goal. Explain both answers: first the abelian (easier), then the additive (harder).

Two potential answers.

Goal. Explain both answers: first the abelian (easier), then the additive (harder).

Abelian DCT (Etingof–Ostrik \sim 2003).

Let \mathscr{A} be a finite, pivotal multitensor category and M a faithful \mathscr{A} -module. Then there is a canonical monoidal functor

$$\operatorname{can}: \mathscr{A} \to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{A}}(\mathsf{M})}(\mathsf{M}),$$

which is an equivalence.

Additive DCT (\sim 2020).

Let \mathscr{A} be a monoidal fiat category, \mathcal{J} a two-sided cell and M a simple transitive $\mathscr{A}_{\mathcal{J}}$ -module with apex \mathcal{J} . Then there is a canonical monoidal functor

$$\mathrm{can}\colon \mathscr{A}_{\mathcal{J}}\to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{A}_{\mathcal{J}}}(\mathsf{M})}(\mathsf{M}),$$

which is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to $\mathscr{E}\mathrm{nd}^{\operatorname{inj}}_{\mathscr{E}\mathrm{nd}_{\mathscr{A}_{\mathcal{J}}}(\mathsf{M})}(\mathsf{M}).$

Do not worry: I will explain all the words! For now just note that the second statement already sounds more complicated.

Daniel Tubbenhauer

One version of the double centralizer theorem (DCT)

The DCT (Schur ~1901+1927, Thrall ~1947, Morita ~1958). Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module. Then there is a canonical algebra map

can: $A \rightarrow End_{rest} \to co(M)$.

which is an isomorphism.

- ► Bad news. We can not create many new algebras out of (A, N). (Same for
- ► Good news. We can (A and B = EndA(#) against each other.
- ► Good news. There are plenty of the which we know and like.

Because 200 2/5

Goal. Explain both answers: first the abelian (easier), then the additive (harder).

Excite Tablechaser The Audio anticular Access categorited is ...?

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If K is not of characteristic 2. KG is semisimple and additive:::abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/[X^2, Y^2]$

First, abelian:

X and Y have to act as zero on each simple, so KG has just K as a simple. ► KG-.#od has just one element.

 Only X² and Y² have to act as zero on each indecomposable, and one can cook-up infinitely many, e.g.

► KG-..#od has infinitely many elements.

-

of knows 28, and 28 knows of, right?

Morita emissionee (Ftimes-Ostrik - 2003) Let $\mathscr{B} = \mathscr{E}\mathrm{nd}_{\mathscr{A}}(M)$ for M a faithful, exact \mathscr{A} -module. Then

.4/-mod ≃ :8-mod.

Example $\mathcal{A} = \mathcal{V}_{ect_G}$ and $\mathcal{B} = G_{ect} \mathcal{M}_{ect}$ have the "same" module categories, which is a very non-trivial fact.

> --

$\operatorname{can}: \mathscr{G}_{\mathcal{T}} \to \mathscr{E}\operatorname{nd}_{\mathscr{E}\operatorname{nd}_{\mathcal{T}_{\mathcal{T}}}(\mathsf{C}_{\mathcal{T}})}(\mathsf{C}_{\mathcal{T}}),$

- is an equivalence when restricted to add(T) and corestricted to $\operatorname{diad}_{\operatorname{gal}_{\mathcal{L}},(C_{\mathcal{J}})}^{[n]}(C_{\mathcal{J}}).$
- "Endomorphismensatz". We have
- where *up*, is the asymptotic category (semisimplef).
- ► Morita equivalence. We have

This looks weaker than the abelian DCT, but this is what we can or

There is still much to do...

Abelian DCT (Etingof-Ostrik ~2003).

Let .4/ be a finite, pivotal multitensor category and M a faithful .4/-module. Then there is a canonical monoidal functor

 $\operatorname{can}: \mathcal{A} \to \mathcal{E}\operatorname{ad}_{\mathcal{E}\operatorname{ad}_{\mathcal{A}}(M)}(M),$

which is an equivalence.

Additive DCT (~2020).

Let .of be a monoidal fiat category. T a two-sided cell and M a simple transitive $\mathcal{A}_{\mathcal{T}}$ -module with spex \mathcal{J} . Then there is a canonical monoidal functor

 $\operatorname{can}\colon \mathscr{A}_{\mathcal{T}}\to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{mbr}_{\mathcal{L}}(M)}(M),$

which is an equivalence when restricted to $add(\mathcal{J})$ and corestricted to and the second (M).

Do not worry: I will second all the words! For now just note that the second statement already sounds more complicated.

Raid Selected The Adds convice these competies is 7 Basellar 200 \$/5

Example (G-. #od, ground field C).

- Let $\mathcal{A} = G_{\mathcal{A}} \mathcal{M}$ od, for G being a finite group. As \mathcal{A} is semisimple abelianmadditive. Simples are simple G-modules.
- ▶ For any $N, N \in \mathcal{A}$, we have $N \otimes N \in \mathcal{A}$

for all $g \in G$, $m \in \mathbb{N}$, $n \in \mathbb{N}$. There is a trivial module \mathbb{C} . The regular .of-module M: .of → diad-(.of):

► The decategorification is the regular K₂(.sf)-module

Semisimple example.

- ▶ .qf = ¥ect, and fix M = Vect^{⊕n}, which is faithful.
- *S* = d^{*}ad_{Ynt}(Vect^{⊕n}) ≃ .*M*at_{s+n}(Yect) and d^{*}ad_{Asten}(Yect^{⊕n}) ≃ Yect.

Another semisimple example.

- ► of = Vect_, and fix M = Vect, which is faithful.

- ► .al = H-.Alod. and fix M = Vect. which is faithful.

 $\operatorname{\operatorname{\mathscr{E}nd}}_{\operatorname{\operatorname{\mathsf{sd}}}_{\mathcal{C}}}(C_{\mathcal{T}})\simeq \operatorname{\operatorname{\mathsf{sd}}}_{\mathcal{T}}$

-

way, let explain why it is weaker, which finally explains all words in the add

of knows 28, and 28 knows of, right?

Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module. Then there is a canonical algebra map

can: $A \rightarrow End_{rest} \to co(M)$.

Semisimple example.

Another semisimple example.

▶ .qf = ¥ect, and fix M = Vect^{⊕n}, which is faithful.

S = d^{*}ad_{Ynt}(Vect^{⊕n}) ≃ .*M*at_{s+n}(Yect) and d^{*}ad_{Asten}(Yect^{⊕n}) ≃ Yect.

► of = Vect_, and fix M = Vect, which is faithful.

► .al = H-.Alod. and fix M = Vect. which is faithful.

-

- ► Bad news. We can not create many new algebras out of (A, N). (Same for
- ► Good news. We can (A and B = EndA(#) against each other.
- ► Good news. There are plenty of the which we know and like.

Question. What is a categorical analog of the DCT?

Because 200 2/5

Two potential answers.

Goal. Explain both answers: first the abelian (easier), then the additive (harder).

Resid Tablecturer The Audio secondary Assess subspatial is ...?

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If K is not of characteristic 2. KG is semisimple and additive:::abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/[X^2, Y^2]$

First, abelian:

X and Y have to act as zero on each simple, so KG has just K as a simple. ► KG-.#od has just one element.

Example

 Only X² and Y² have to act as zero on each indecomposable, and one can cook-up infinitely many, e.g.

► KG-..#od has infinitely many elements.

-

of knows 28, and 28 knows of, right?

Morita emissionee (Ftimes-Ostrik - 2003) Let $\mathscr{B} = \mathscr{E}\mathrm{nd}_{\mathscr{A}}(M)$ for M a faithful, exact \mathscr{A} -module. Then

.4/-mod ≃ :8-mod.

 $\mathcal{A} = \mathcal{V}_{ect_G}$ and $\mathcal{B} = G_{ect} \mathcal{M}_{ect}$ have the "same" module categories, which is a very non-trivial fact.

> --

Additive example (~2020) $\mathcal{T} = \mathcal{T}(W, \mathbb{C})$ Sourcel bimodules for W finite, the convariant algebra and over C. J a two-sided cell and C_T the cell \mathcal{G}_T -module.

· Additive DCT. We have

$\operatorname{can}: \mathscr{G}_{\mathcal{T}} \to \mathscr{E}\operatorname{nd}_{\mathscr{E}\operatorname{nd}_{\mathcal{T}_{\mathcal{T}}}(\mathsf{C}_{\mathcal{T}})}(\mathsf{C}_{\mathcal{T}}),$

- is an equivalence when restricted to add(T) and corestricted to $\operatorname{diad}_{\operatorname{gal}_{\mathcal{L}},(C_{\mathcal{J}})}^{[n]}(C_{\mathcal{J}}).$
- "Endomorphismensatz". We have
- $\operatorname{\operatorname{\mathscr{E}nd}}_{\operatorname{\operatorname{\mathsf{sd}}}_{\mathcal{C}}}(C_{\mathcal{T}})\simeq \operatorname{\operatorname{\mathsf{sd}}}_{\mathcal{T}}$ where *up*, is the asymptotic category (semisimplef).
- ► Morita equivalence. We have \mathcal{G}_{2} -stmod $\simeq \mathcal{G}_{2}$ -stmod

-

This looks weaker than the abelian DCT, but this is what we can or way, let explain why it is weaker, which finally explains all words in the add

Thanks for your attention!

Let .4/ be a finite, pivotal multitensor category and M a faithful .4/-module. Then there is a canonical monoidal functor

 $\operatorname{can}: \mathcal{A} \to \mathcal{E}\operatorname{ad}_{\mathcal{E}\operatorname{ad}_{\mathcal{A}}(M)}(M),$

which is an equivalence.

Additive DCT (~2020).

Let .of be a monoidal fiat category. T a two-sided cell and M a simple transitive $\mathcal{A}_{\mathcal{T}}$ -module with spex \mathcal{J} . Then there is a canonical monoidal functor

 $\operatorname{can}\colon \mathscr{A}_{\mathcal{T}}\to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{mbr}_{\mathcal{L}}(M)}(M),$

which is an equivalence when restricted to $add(\mathcal{J})$ and corestricted to and the second (M).

Do not worry: I will second all the words! For now just note that the second statement already sounds more complicated.

Raid Salastaat The Auth consists therein competent is 7 Basellar 200 \$/5

Example (G-. #od, ground field C).

- Let $\mathcal{A} = G_{\mathcal{A}} \mathcal{M}$ od, for G being a finite group. As \mathcal{A} is semisimple abelianmadditive. Simples are simple G-modules.
- ▶ For any $N, N \in \mathcal{A}$, we have $N \otimes N \in \mathcal{A}$

for all $g \in G$, $m \in \mathbb{N}$, $n \in \mathbb{N}$. There is a trivial module \mathbb{C} . The regular .of-module M: .of → diad-(.of):

► The decategorification is the regular K₂(.sf)-module

-

of knows 28, and 28 knows of, right?

Daniel Tubbenhauer

$$\begin{array}{l} \operatorname{A-}\mathcal{M}\operatorname{od}\simeq\operatorname{B-}\mathcal{M}\operatorname{od}\\\Leftrightarrow\\ \exists \mathtt{M} \text{ progenerator such that } \mathtt{A}\cong\mathcal{E}\operatorname{nd}_{\mathrm{B}}(\mathtt{M})\\\Leftrightarrow\\ \exists \mathtt{M} \text{ progenerator such that } \mathtt{B}\cong\mathcal{E}\operatorname{nd}_{\mathrm{A}}(\mathtt{M}).\end{array}$$

A knows B, and B knows A, right?

Morita \sim 1958.

The DCT goes hand-in-hand with classical Morita-theory.

If $A \subset \mathcal{E}nd_{\mathbb{K}}(M)$, $B = \mathcal{E}nd_{A}(M)$ and A is semisimple, then:

- ► $A = \mathcal{E}nd_B(M);$
- ▶ B is semisimple;
- $\blacktriangleright\,$ As a $A\otimes B^{\operatorname{op}}\text{-module}$ we have

If $A \subset \mathcal{E}nd_{\mathbb{K}}(M)$, $B = \mathcal{E}nd_{A}(M)$ and A is semisimple, then:

- ► $A = \mathcal{E}nd_B(M);$
- ▶ B is semisimple;
- $\blacktriangleright\,$ As a $A\otimes B^{\operatorname{op}}\text{-module}$ we have

Schur ${\sim}1901{+}1927.$

The DCT goes hand-in-hand with classical Schur-Weyl duality.

If M = Ae for $e^2 = e$, M faithful and $B = \mathcal{E}nd_A(Ae)$, then:

- ▶ $B \cong eAe \text{ and } A \cong \mathcal{E}nd_{eAe}(Ae);$
- ▶ The B-simples are in bijection with A-simples N such that $Ne \neq 0$;
- ▶ A is encoded in the (usually) much smaller algebra B.

◀ Back

If M = Ae for $e^2 = e$, M faithful and $B = \mathcal{E}nd_A(Ae)$, then:

- ▶ $B \cong eAe \text{ and } A \cong \mathcal{E}nd_{eAe}(Ae);$
- ▶ The B-simples are in bijection with A-simples N such that $Ne \neq 0$;
- ▶ A is encoded in the (usually) much smaller algebra B.

Back

Green \sim 1980.

The DCT applies for Schur-Weyl in the non-semisimple case.

Soergel ${\sim}1990.$

The DCT applies in category \mathcal{O} .

Example. (Looks silly, but is prototypical.)

- ▶ A = K, and fix $M = K^n$, which is faithful.
- ▶ $B = \mathcal{E}nd_{\mathbb{K}}(\mathbb{K}^n) \cong Mat_{n \times n}(\mathbb{K}) \text{ and } \mathcal{E}nd_{Mat_{n \times n}(\mathbb{K})}(\mathbb{K}^n) \cong \mathbb{K}.$
- ▶ $M \cong \mathbb{K} \otimes \mathbb{K}^n$, perfect matching of isotypic components.

Non-example. (Faithfulness missing.)

- ▶ $A = \mathbb{K}[X]/(X^3)$, and fix $M = \mathbb{K}^2$, $X \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, which is not-faithful.
- ▶ $B = \mathcal{E}nd_{\mathbb{K}[X]/(X^3)}(\mathbb{K}^2) \cong \mathbb{K}[X]/(X^2)$ and $\mathcal{E}nd_{\mathbb{K}[X]/(X^2)}(\mathbb{K}^2) \cong \mathbb{K}[X]/(X^2)$.
- $\blacktriangleright \ \mathtt{M} \cong \mathbb{K}^2 \otimes \mathbb{K} \text{ as a } \mathbb{K}[X]/(X^3) \text{-module, } \mathtt{M} \cong \mathbb{K} \otimes \mathbb{K}^2 \text{ as a } \mathbb{K}[X]/(X^2) \text{-module.}$

Non-example. (Self-injectivity missing.)

- ▶ $A = \begin{pmatrix} \mathbb{K} & \mathbb{K} \\ 0 & \mathbb{K} \end{pmatrix}$, and fix $M = \mathbb{K}^2$, which is faithful.
- $\blacktriangleright \ \mathrm{B} = \mathcal{E}\mathrm{nd}_{(\mathbb{K}^{\mathbb{K}})}(\mathbb{K}^2) \cong \mathbb{K} \text{ and } \mathcal{E}\mathrm{nd}_{\mathbb{K}}(\mathbb{K}^2) \cong \mathrm{Mat}_{2\times 2}(\mathbb{K}).$
- $\blacktriangleright \ \mathtt{M}\cong \mathbb{K}^2\otimes \mathbb{K} \text{ as a } \big(\begin{smallmatrix} \mathbb{K} & \mathbb{K} \\ 0 & \mathbb{K} \end{smallmatrix}\big)\text{-module, } \mathtt{M}\cong \mathbb{K}\otimes \mathbb{K}^2 \text{ as a } \mathrm{Mat}_{2\times 2}(\mathbb{K})\text{-module.}$

Example (Schur \sim 1901+1927, Green \sim 1980).

- ▶ $A = \mathbb{K}[S_d]$, and fix $M = (\mathbb{K}^n)^{\otimes d}$ for $n \geq d$, which is faithful.
- ▶ B = \mathcal{E} nd_{K[S_d]}((Kⁿ)^{⊗d}) \cong S(n, d) (Schur algebra) and \mathcal{E} nd_{S(n,d)}((Kⁿ)^{⊗d}) \cong K[S_d].
- ▶ $\mathbb{K}[S_d] \cong eS(n, d)e$ and the $\mathbb{K}[S_d]$ -simples are in bijection with S(n, d)-simples N such that $Ne \neq 0$.

Example (Soergel's Struktursatz \sim 1990).

- A a finite-dimensional algebra for O₀(g_ℂ). Fix M = Ae, which is faithful for the right choice of idempotent e_{w₀} (the big projective).
- ▶ B = $\mathcal{E}nd_A(Ae_{w_0}) \cong e_{w_0}Ae_{w_0}$ (Soergel's Endomorphismensatz ~1990: B=coinvariant algebra) and $\mathcal{E}nd_{e_{w_0}Ae_{w_0}}(Ae_{w_0}) \cong A$.
- ► A can be recovered from e_{w0}Ae_{w0}, although A is much more complicated. Explicitly, for g_C = sl₂ one gets e.g.

$$\mathbf{A} = \ 1 \xleftarrow[b]{a} s \ /(a|b=0), \quad \mathbf{B} \cong \mathbb{C}\{s,b|a\}, \quad As = \quad \xleftarrow[b]{b} s$$

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic 2, $\mathbb{K}G$ is semisimple and additive=abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/(X^2, Y^2)$

First, abelian:

- ▶ X and Y have to act as zero on each simple, so $\mathbb{K}G$ has just \mathbb{K} as a simple.
- ▶ $\mathbb{K}G$ - \mathcal{M} od has just one element.

Then additive:

► Only X² and Y² have to act as zero on each indecomposable, and one can cook-up infinitely many, *e.g.*

$$\bullet \xleftarrow{X} \bullet \xrightarrow{Y} \bullet \xleftarrow{X} \bullet \xrightarrow{Y} \bullet \xleftarrow{X} \dots \xrightarrow{Y} \bullet \xleftarrow{X} \bullet$$

▶ $\mathbb{K}G$ - \mathcal{M} od has infinitely many elements.

Back

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic 2, $\mathbb{K}G$ is semisimple and additive=abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/(X^2, Y^2)$

First, abelian:

• $\mathbb{K}G$ - \mathcal{M} od has infinitely many elements.

◀ Back

Example (G- \mathcal{M} od, ground field \mathbb{C}).

- ► Let A = G-Mod, for G being a finite group. As A is semisimple, abelian=additive. Simples are simple G-modules.
- ▶ For any $M, N \in \mathcal{A}$, we have $M \otimes N \in \mathcal{A}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G$, $m \in M$, $n \in N$. There is a trivial module \mathbb{C} .

▶ The regular \mathscr{A} -module M : $\mathscr{A} \to \mathscr{E}\mathrm{nd}_{\mathbb{C}}(\mathscr{A})$:

▶ The decategorification is the regular $K_0(\mathscr{A})$ -module.

Back

Example (G- \mathcal{M} od, ground field \mathbb{C}).

- Let $K \subset G$ be a subgroup.
- ► K-Mod is a A-module, with action

$$\mathcal{R}\textit{es}^{\mathcal{G}}_{\mathcal{K}}\otimes_: \operatorname{\mathcal{G}} extsf{M}\operatorname{od}
ightarrow \operatorname{\mathscr{E}nd}_{\mathbb{C}}(\operatorname{\mathcal{K}} extsf{-Mod}),$$

which is indeed an action because $\mathcal{R}es_{K}^{G}$ is a \otimes -functor.

▶ The decategorifications are $K_0(\mathscr{A})$ -modules.

Left partial preorder \geq_L on indecomposable objects by

 $F \ge_L G \Leftrightarrow$ there exists H such that F is isomorphic to a direct summand of HG.

Left cells \mathcal{L} are the equivalence classes with respect to \geq_L , on which \geq_L induces a partial order. Similarly, right and two-sided, denoted by \mathcal{R} and \mathcal{J} respectively. Cell \mathscr{A} -modules associated to \mathcal{L} are:

$$\operatorname{add}({F | F \geq_{L} \mathcal{L}})/ \text{``kill} \geq_{L} \text{-bigger stuff''}.$$

Examples.

- ▶ Cells in \mathscr{A} give \otimes -ideals.
- ► If A is semisimple, then FF* and F*F both contain the identity, so cell theory is trivial. The cell A-module is the regular A-module.
- ► For Soergel bimodules cells are Kazhdan–Lusztig cells and cell modules categorify Kazhdan–Lusztig cell modules.
- For categorified quantum groups you can push everything to cyclotomic KLR algebras, and cell modules categorify simple modules.

- A finite, pivotal multitensor category A:
 - ▶ Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is abelian (this implies idempotent complete).
 - ▶ Involution. \mathscr{A} is pivotal, e.g. $F^{\star\star} \cong F$.
 - ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
 - ► Categorification. The abelian Grothendieck ring gives a finite-dimensional algebra with involution.

A monoidal fiat category \mathscr{A} :

- ▶ Basics. \mathscr{A} is K-linear and monoidal, \otimes is K-bilinear. Moreover, \mathscr{A} is additive and idempotent complete.
- ▶ Involution. \mathscr{A} is pivotal, e.g. $F^{\star\star} \cong F$.
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

A finite, pivotal multitensor category \mathscr{A} :

- ▶ Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is abelian (this implies idempotent complete).
- ▶ Involution. \mathscr{A} is pivotal, e.g. $F^{\star\star} \cong F$.
- ▶ Finiteness. Hom-spaces are finite-dimensional, the number of simples is

The crucial difference...

...is what we like to consider as "elements" of our theory:

Abelian prefers simples, additive prefers indecomposables.

This is a \bigcirc difference – for example in the fiat case there is simply no Schur's lemma.

- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

A finite, pivotal multitensor category \mathscr{A} :

а

▶ Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is abelian (this implies idempotent complete).

Abelian and additive examples.

H- \mathscr{M} od for H a finite-dimensional, semisimple Hopf algebra. (Think: $\mathbb{C}G$, G finite.) \mathscr{V} ect_G for G graded \mathbb{K} -vector spaces, *e.g.* \mathscr{V} ect = \mathscr{V} ect₁.

Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.

Additive examples.

onal

H- \mathscr{P} roj for H a finite-dimensional Hopf algebra. (Think: $\mathbb{K}G$, G finite.) Finite quotients of G- \mathscr{T} ilt for G being a reductive group. /e

A finite, pivotal multitensor category \mathscr{A} :

а

F

- ▶ Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is abelian (this implies idempotent complete).
- ▶ Involution. \mathscr{A} is pivotal, e.g. $F^{\star\star} \cong F$.
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck ring gives a finite-dimensional Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, categorified quantum group and their Schur quotients, Soergel bimodules, tilting module categories *etc.*

And these only fit into the fiat and not the tensor framework.

 Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

dditive

Abelian. An *A*-module M:

- ▶ Basics. M is K-linear and abelian. The action is a monoidal functor M: $\mathscr{A} \to \mathscr{E}\mathrm{nd}_{\mathbb{K},\mathit{lex}}(\mathsf{M})$ (K-linear, left exactness).
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- ► Categorification. The abelian Grothendieck group gives a finite-dimensional G₀(A)-module.

Additive. An *A*-module M:

- Basics. M is K-linear, additive and idempotent complete. The action is a monoidal functor M: A → End_K(M) (K-linear).
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- ► Categorification. The additive Grothendieck group gives a finite-dimensional K₀(𝔄)-module.

Abelian. An *A*-module M:

- ▶ Basics. M is K-linear and abelian. The action is a monoidal functor $M: \mathscr{A} \to \mathscr{E}nd_{\mathbb{K}, \mathit{lex}}(M)$ (K-linear, left exactness).
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck group gives a finite-dimensional Example.

```
      G0
      Example.

      Everything is constructed such that

      Additive

      Ba

      mc

      Smarter version of the regular A-module are cell A-modules.

      Fir

      But of course there are many more examples.

      indecomposables is finite.
```

► Categorification. The additive Grothendieck group gives a finite-dimensional K₀(𝔄)-module.

Semisimple example.

▶
$$\mathscr{A} = \mathscr{V}$$
ect, and fix $M = \text{Vect}^{\oplus n}$, which is faithful.

▶
$$\mathscr{B} = \mathscr{E}\mathrm{nd}_{\mathscr{V}\mathrm{ect}}(\mathrm{Vect}^{\oplus n}) \cong \mathscr{M}\mathrm{at}_{n \times n}(\mathscr{V}\mathrm{ect}) \text{ and } \mathscr{E}\mathrm{nd}_{\mathscr{M}\mathrm{at}_{n \times n}}(\mathscr{V}\mathrm{ect})(\mathrm{Vect}^{\oplus n}) \cong \mathscr{V}\mathrm{ect}.$$

Another semisimple example.

▶
$$\mathscr{A} = \mathscr{V}ect_{\mathcal{G}}$$
, and fix M = Vect, which is faithful.

$$\blacktriangleright \ \mathscr{B} = \mathscr{E}\mathrm{nd}_{\mathscr{V}\mathrm{ect}_{\mathcal{G}}}(\mathsf{Vect}) \cong \mathcal{G}\text{-}\mathscr{M}\mathrm{od} \text{ and } \mathscr{E}\mathrm{nd}_{\mathcal{G}\text{-}\mathscr{M}\mathrm{od}}(\mathsf{Vect}) \cong \mathscr{V}\mathrm{ect}_{\mathcal{G}}.$$

An abelian example.

▶
$$\mathscr{A} = H$$
- \mathscr{M} od, and fix M = Vect, which is faithful.

$$\blacktriangleright \ \mathscr{B} = \mathscr{E}\mathrm{nd}_{\mathrm{H}\text{-}\mathscr{M}\mathrm{od}}(\mathsf{Vect}) \cong \mathrm{H}^*\text{-}\mathscr{M}\mathrm{od} \text{ and } \mathscr{E}\mathrm{nd}_{\mathrm{H}^*\text{-}\mathscr{M}\mathrm{od}}(\mathsf{Vect}) \cong \mathrm{H}\text{-}\mathscr{M}\mathrm{od}.$$

 \mathscr{A} knows \mathscr{B} , and \mathscr{B} knows \mathscr{A} , right?

$\begin{array}{l} \mbox{Morita equivalence (Etingof-Ostrik} \sim 2003). \\ \mbox{Let } \mathscr{B} = \mathscr{E} \mathrm{nd}_{\mathscr{A}}(\mathsf{M}) \mbox{ for } \mathsf{M} \mbox{ a faithful, exact } \mathscr{A}\mbox{-module. Then} \end{array}$

 \mathscr{A} -mod $\simeq \mathscr{B}$ -mod.

Example.

 $\mathscr{A} = \mathscr{V}ect_{\mathcal{G}}$ and $\mathscr{B} = \mathcal{G}-\mathscr{M}od$ have the "same" module categories, which is a very non-trivial fact.

 $\mathscr{S} = \mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C} , \mathcal{J} a two-sided cell and $C_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$ -module.

► Additive DCT. We have

$$\operatorname{can}\colon \mathscr{S}_{\mathcal{J}} \to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{S}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}),$$

is an equivalence when restricted to $\mathrm{add}(\mathcal{J})$ and corestricted to $\mathscr{E}\mathrm{nd}^{\mathrm{inj}}_{\mathscr{E}\mathrm{nd}_{\mathscr{I}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}).$

"Endomorphismensatz". We have

$$\mathscr{E}\mathrm{nd}_{\mathscr{A}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})\simeq\mathscr{A}_{\mathcal{J}}$$

where $\mathcal{A}_{\mathcal{J}}$ is the asymptotic category (semisimple!).

Morita equivalence. We have

$$\mathscr{G}_{\mathcal{J}}$$
-stmod $\simeq \mathscr{A}_{\mathcal{J}}$ -stmod.

This looks weaker than the abelian DCT, but this is what we can prove right now. Anyway, let explain why it is weaker, which finally explains all words in the additive DCT.

 $\mathscr{S} = \mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C} , \mathcal{J} a two-sided cell and $C_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$ -module.

► Additive DCT. We have

$$\operatorname{can}\colon \mathscr{S}_{\mathcal{J}} \to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{S}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}),$$

is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to

 End^{inj}_{End,d_J(C_J)}(C_J).
 To make C_J faithful, quotient S by "bigger stuff" and get S_J.

 $\operatorname{add}(\mathcal{J})$: Since "lower stuff" still acts pretty much in an uncontrolable way, restrict to only things in \mathcal{J} .

Monta equivalence. vve nave

inj means injective endofunctors.

In this case you could also consider projective endofunctors.

 $\mathscr{S} = \mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C} , \mathcal{J} a two-sided cell and $C_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$ -module.

► Additive DCT. We have

$$\operatorname{can} \colon \mathscr{S}_{\mathcal{J}} \to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{S}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}),$$

is an equivalence $\mathscr{A}_{\mathcal{J}}$ is the "degree zero part" of $\mathscr{G}_{\mathcal{J}}$. tricted to $\mathscr{E}_{nd_{\mathscr{A}_{\mathcal{J}}}}(C_{\mathcal{J}})(C_{\mathscr{I}})(C_{\mathscr{I}})$ is the crystal associated to $\mathscr{G}_{\mathcal{J}}$."

"Endomorphismensatz". We have

$$\mathscr{E}\mathrm{nd}_{\mathscr{A}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})\simeq\mathscr{A}_{\mathcal{J}}$$

where $\mathcal{A}_{\mathcal{J}}$ is the asymptotic category (semisimple!).

▶ Morita equivalence. We have

$$\mathscr{G}_{\mathcal{J}}$$
-stmod $\simeq \mathscr{A}_{\mathcal{J}}$ -stmod.

 $\mathscr{S} = \mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C} , \mathcal{J} a two-sided cell and $C_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$ -module.

► Additive DCT. We have

$$\mathrm{can}\colon \mathscr{S}_{\mathcal{J}} \to \mathscr{E}\mathrm{nd}_{\mathscr{E}\mathrm{nd}_{\mathscr{S}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}),$$

is an equivalence when restricted to $\mathrm{add}(\mathcal{J})$ and corestricted to $\mathscr{E}\mathrm{nd}^{\mathrm{inj}}_{\mathscr{E}\mathrm{nd}_{\mathscr{I}_{\mathcal{J}}}(\mathsf{C}_{\mathcal{J}})}(\mathsf{C}_{\mathcal{J}}).$

"Endomorphismensatz". We have

stmod are simple transitive modules.

where $\mathscr{A}_{\mathcal{T}}$ is the asymptotic category (semisimple).

▶ Morita equivalence. We have

$$\mathscr{G}_{\mathcal{J}}$$
-stmod $\simeq \mathscr{A}_{\mathcal{J}}$ -stmod.

Back