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One version of the double centralizer theorem (DCT)

The DCT (Schur ∼1901+1927, Thrall ∼1947, Morita ∼1958).
Let A be a self-injective, finite-dimensional algebra, and M be a faithful A-module.
Then there is a canonical algebra map

can : A→ EndEndA(M)(M),

which is an isomorphism.

I Bad news. We can not create many new algebras out of (A, M). (Same for
the categorified versions.)

I Good news. We can play A and B = EndA(M) against each other.

I Good news. There are plenty of examples which we know and like.

Question. What is a categorical analog of the DCT?

M should be a A-B-bimodule,
so EndA(M) means right operators,
while EndB(M) are left operators.

I will ignore this technicality.

Self-injective⇔ projectives=injectives,
faithful⇔ only 0 acts as zero.

This is not the most general version,
but I will stick to it for simplicity.
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Two potential answers.

Question. What is
a categorical ana-
log of the DCT?

A semisimple categori-
fication of an algebra.

An abelian categorifi-
cation of an algebra.

An additive categori-
fication of an algebra.

A semisimple categori-
fication of a module.

An abelian categori-
fication of a module.

An additive categori-
fication of a module.

A semisimple categori-
fication of the DCT.

An abelian categori-
fication of the DCT.

An additive categori-
fication of the DCT.

Goal. Explain both answers: first the abelian (easier), then the additive (harder).

Why only “two potential answers”?

Fun fact. Semisimple implies abelian, and is a special case of additive.

In the middle the two outer ways coincide.
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Abelian DCT (Etingof–Ostrik ∼2003).
Let A be a finite, pivotal multitensor category and M a faithful A -module. Then
there is a canonical monoidal functor

can : A → EndEndA (M)(M),

which is an equivalence.

Additive DCT (∼2020).
Let A be a monoidal fiat category, J a two-sided cell and M a simple transitive
AJ -module with apex J . Then there is a canonical monoidal functor

can : AJ → EndEndAJ (M)(M),

which is an equivalence when restricted to add(J ) and corestricted to

EndinjEndAJ (M)(M).

Do not worry: I will explain all the words! For now just note that the second
statement already sounds more complicated.

These are not the most general versions,
but I will stick to these for simplicity.
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A knows B, and B knows A, right?

A-Mod ' B-Mod

⇔
∃M progenerator such that A ∼= EndB(M)

⇔
∃M progenerator such that B ∼= EndA(M).

Back

Morita ∼1958.

The DCT goes hand-in-hand with classical Morita-theory.

Schur ∼1901+1927.

The DCT goes hand-in-hand with classical Schur–Weyl duality.

Green ∼1980.

The DCT applies for Schur–Weyl in the non-semisimple case.

Soergel ∼1990.

The DCT applies in category O.

Example G = Z/2Z×Z/2Z (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us
have a look at characteristic 2, where we have KG ∼= K[X ,Y ]/(X 2,Y 2)

First, abelian:

I X and Y have to act as zero on each simple, so KG has just K as a simple.

I KG -Mod has just one element.

Then additive:

I Only X 2 and Y 2 have to act as zero on each indecomposable, and one can
cook-up infinitely many, e.g.

• • • • • ... • •YX YX X Y X

I KG -Mod has infinitely many elements.

Back

Theorem (Higman ∼1953).

For char(K) = p, KG -Mod is...

...always a finite, pivotal multitensor category.

... monoidal fiat if and only if (p - |G | or the p-Sylow subgroup of G is cyclic).

Example (G -Mod, ground field C).

I Let A = G -Mod, for G being a finite group. As A is semisimple,
abelian=additive. Simples are simple G -modules.

I For any M, N ∈A , we have M⊗ N ∈A :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial module C.

I The regular A -module M: A → EndC(A ):

M //

f

��

M⊗
f⊗
��

N // N⊗

.

I The decategorification is the regular K0(A )-module.

Back

Semisimple example.

I A = V ect, and fix M = Vect⊕n, which is faithful.

I B = EndV ect(Vect⊕n) ∼=Matn×n(V ect) and
EndMatn×n(V ect)(Vect⊕n) ∼= V ect.

Another semisimple example.

I A = V ectG , and fix M = Vect, which is faithful.

I B = EndV ectG (Vect) ∼= G -Mod and EndG -Mod(Vect) ∼= V ectG .

An abelian example.

I A = H-Mod, and fix M = Vect, which is faithful.

I B = EndH-Mod(Vect) ∼= H?-Mod and EndH?-Mod(Vect) ∼= H-Mod.

Back Upshot

A knows B , and B knows A , right?

Morita equivalence (Etingof–Ostrik ∼2003).
Let B = EndA (M) for M a faithful, exact A -module. Then

A -mod 'B-mod.

Example.
A = V ectG and B = G -Mod have the “same” module categories, which is a
very non-trivial fact.

Back An additive example

Exact⇔ the unit acts as an exact functor.
If M is semisimple, then exactness is automatic.

A knows B , and B knows A , right?

Additive example (∼2020).
S = S (W ,C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and CJ the cell SJ -module.
I Additive DCT. We have

can : SJ → EndEndSJ (CJ )(CJ ),

is an equivalence when restricted to add(J ) and corestricted to

EndinjEndAJ (CJ )(CJ ).

I “Endomorphismensatz”. We have

EndAJ (CJ ) 'AJ
where AJ is the asymptotic category (semisimple!).

I Morita equivalence. We have

SJ -stmod 'AJ -stmod.

Back

Sorry, this example is not self-contained.
But just to explain all the ingredients carefully is another talk.

This looks weaker than the abelian DCT, but this is what we can prove right now.
Anyway, let explain why it is weaker, which finally explains all words in the additive DCT.

To make CJ faithful,
quotient S by “bigger stuff”

and get SJ .

add(J ): Since “lower stuff” still acts pretty much in an uncontrolable way,
restrict to only things in J .

inj means injective endofunctors.
In this case you could also consider projective endofunctors.

AJ is the “degree zero part” of SJ .
“AJ is the crystal associated to SJ .”

stmod are simple transitive modules.
The analogs of categories of simple modules downstairs.

There is still much to do...

Thanks for your attention!
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Morita ∼1958.

The DCT goes hand-in-hand with classical Morita-theory.
Schur ∼1901+1927.
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Green ∼1980.

The DCT applies for Schur–Weyl in the non-semisimple case.

Soergel ∼1990.

The DCT applies in category O.
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A knows B, and B knows A, right?

If A ⊂ EndK(M), B = EndA(M) and A is semisimple, then:

I A = EndB(M);

I B is semisimple;

I As a A⊗ Bop-module we have

M ∼=
⊕

simples of A,B

AL
i ⊗ LiB.
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If M = Ae for e2 = e, M faithful and B = EndA(Ae), then:

I B ∼= eAe and A ∼= EndeAe(Ae);

I The B-simples are in bijection with A-simples N such that Ne 6= 0;

I A is encoded in the (usually) much smaller algebra B.
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Example. (Looks silly, but is prototypical.)

I A = K, and fix M = Kn, which is faithful.

I B = EndK(Kn) ∼= Matn×n(K) and EndMatn×n(K)(Kn) ∼= K.

I M ∼= K⊗Kn, perfect matching of isotypic components.

Non-example. (Faithfulness missing.)

I A = K[X ]/(X 3), and fix M = K2, X 7→ ( 0 1
0 0 ), which is not-faithful.

I B = EndK[X ]/(X 3)(K2) ∼= K[X ]/(X 2) and EndK[X ]/(X 2)(K2) ∼= K[X ]/(X 2).

I M ∼= K2 ⊗K as a K[X ]/(X 3)-module, M ∼= K⊗K2 as a K[X ]/(X 2)-module.

Non-example. (Self-injectivity missing.)

I A =
( K K

0 K
)
, and fix M = K2, which is faithful.

I B = End( K K
0 K
)(K2) ∼= K and EndK(K2) ∼= Mat2×2(K).

I M ∼= K2 ⊗K as a
( K K

0 K
)
-module, M ∼= K⊗K2 as a Mat2×2(K)-module.

Back More sophisticated



Example (Schur ∼1901+1927, Green ∼1980).

I A = K[Sd ], and fix M = (Kn)⊗d for n ≥ d , which is faithful.

I B = EndK[Sd ]

(
(Kn)⊗d

) ∼= S(n, d) (Schur algebra) and

EndS(n,d)

(
(Kn)⊗d

) ∼= K[Sd ].

I K[Sd ] ∼= eS(n, d)e and the K[Sd ]-simples are in bijection with S(n, d)-simples
N such that Ne 6= 0.

Example (Soergel’s Struktursatz ∼1990).

I A a finite-dimensional algebra for O0(gC). Fix M = Ae, which is faithful for
the right choice of idempotent ew0 (the big projective).

I B = EndA(Aew0 ) ∼= ew0Aew0 (Soergel’s Endomorphismensatz ∼1990:
B=coinvariant algebra) and Endew0

Aew0
(Aew0 ) ∼= A.

I A can be recovered from ew0Aew0 , although A is much more complicated.
Explicitly, for gC = sl2 one gets e.g.

A = 1 s
a

b
/(a|b = 0), B ∼= C{s, b|a}, As = s

a

b

Back



Example G = Z/2Z×Z/2Z (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us
have a look at characteristic 2, where we have KG ∼= K[X ,Y ]/(X 2,Y 2)

First, abelian:

I X and Y have to act as zero on each simple, so KG has just K as a simple.

I KG -Mod has just one element.

Then additive:

I Only X 2 and Y 2 have to act as zero on each indecomposable, and one can
cook-up infinitely many, e.g.

• • • • • ... • •YX YX X Y X

I KG -Mod has infinitely many elements.

Back

Theorem (Higman ∼1953).

For char(K) = p, KG -Mod is...

...always a finite, pivotal multitensor category.

... monoidal fiat if and only if (p - |G | or the p-Sylow subgroup of G is cyclic).
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I For any M, N ∈A , we have M⊗ N ∈A :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial module C.

I The regular A -module M: A → EndC(A ):

M //

f

��

M⊗
f⊗
��

N // N⊗

.

I The decategorification is the regular K0(A )-module.

Back



Example (G -Mod, ground field C).

I Let K ⊂ G be a subgroup.

I K -Mod is a A -module, with action

ResGK ⊗ : G -Mod→ EndC
(
K -Mod

)
,

M //

f

��

ResGK (M)⊗

ResGK (f )⊗
��

N // ResGK (N)⊗

.

which is indeed an action because ResGK is a ⊗-functor.

I The decategorifications are K0(A )-modules.

Back



Left partial preorder ≥L on indecomposable objects by

F ≥L G⇔ there exists H such that F is isomorphic to a direct summand of HG.

Left cells L are the equivalence classes with respect to ≥L, on which ≥L induces a
partial order. Similarly, right and two-sided, denoted by R and J respectively.
Cell A -modules associated to L are:

add
(
{F | F ≥L L}

)
/“kill ≥L-bigger stuff”.

Examples.

I Cells in A give ⊗-ideals.

I If A is semisimple, then FF? and F?F both contain the identity, so cell theory
is trivial. The cell A -module is the regular A -module.

I For Soergel bimodules cells are Kazhdan–Lusztig cells and cell modules
categorify Kazhdan–Lusztig cell modules.

I For categorified quantum groups you can push everything to cyclotomic KLR
algebras, and cell modules categorify simple modules.

Back



A finite, pivotal multitensor category A :
I Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is abelian

(this implies idempotent complete).
I Involution. A is pivotal, e.g. F?? ∼= F.

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.
I Categorification. The abelian Grothendieck ring gives a finite-dimensional

algebra with involution.

A monoidal fiat category A :
I Basics. A is K-linear and monoidal, ⊗ is K-bilinear. Moreover, A is additive

and idempotent complete.
I Involution. A is pivotal, e.g. F?? ∼= F.
I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.

Back Further

The crucial difference...

...is what we like to consider as “elements” of our theory:

Abelian prefers simples,
additive prefers indecomposables.

This is a huge difference – for example in the fiat case there is simply no Schur’s lemma.

Abelian examples.

H-Mod for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite Serre quotients of G -Mod for G being a reductive group.

Abelian and additive examples.

H-Mod for H a finite-dimensional, semisimple Hopf algebra. (Think: CG , G finite.)
V ectG for G graded K-vector spaces, e.g. V ect = V ect1.

Additive examples.

H-P roj for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite quotients of G -T ilt for G being a reductive group.

Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, categorified quantum group
and their Schur quotients, Soergel bimodules,

tilting module categories etc.

And these only fit into the fiat and not the tensor framework.
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Abelian. An A -module M:

I Basics. M is K-linear and abelian. The action is a monoidal functor
M: A → EndK,lex(M) (K-linear, left exactness).

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.

I Categorification. The abelian Grothendieck group gives a finite-dimensional
G0(A )-module.

Additive. An A -module M:

I Basics. M is K-linear, additive and idempotent complete. The action is a
monoidal functor M: A → EndK(M) (K-linear).

I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck group gives a finite-dimensional
K0(A )-module.

Back Further

Faithful⇔ only 0 (the object) acts as zero (functor).
This already clarifies the abelian DCT.

Example.

Everything is constructed such that
the regular A -module A exists.

Smarter version of the regular A -module are cell A -modules. What?

But of course there are many more examples.
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Semisimple example.

I A = V ect, and fix M = Vect⊕n, which is faithful.

I B = EndV ect(Vect⊕n) ∼=Matn×n(V ect) and
EndMatn×n(V ect)(Vect⊕n) ∼= V ect.

Another semisimple example.

I A = V ectG , and fix M = Vect, which is faithful.

I B = EndV ectG (Vect) ∼= G -Mod and EndG -Mod(Vect) ∼= V ectG .

An abelian example.

I A = H-Mod, and fix M = Vect, which is faithful.

I B = EndH-Mod(Vect) ∼= H?-Mod and EndH?-Mod(Vect) ∼= H-Mod.

Back Upshot



A knows B , and B knows A , right?

Morita equivalence (Etingof–Ostrik ∼2003).
Let B = EndA (M) for M a faithful, exact A -module. Then

A -mod 'B-mod.

Example.
A = V ectG and B = G -Mod have the “same” module categories, which is a
very non-trivial fact.

Back An additive example

Exact⇔ the unit acts as an exact functor.
If M is semisimple, then exactness is automatic.



A knows B , and B knows A , right?

Additive example (∼2020).
S = S (W ,C) Soergel bimodules for W finite, the coinvariant algebra and over C,
J a two-sided cell and CJ the cell SJ -module.
I Additive DCT. We have

can : SJ → EndEndSJ (CJ )(CJ ),

is an equivalence when restricted to add(J ) and corestricted to

EndinjEndAJ (CJ )(CJ ).

I “Endomorphismensatz”. We have

EndAJ (CJ ) 'AJ
where AJ is the asymptotic category (semisimple!).

I Morita equivalence. We have

SJ -stmod 'AJ -stmod.

Back

Sorry, this example is not self-contained.
But just to explain all the ingredients carefully is another talk.

This looks weaker than the abelian DCT, but this is what we can prove right now.
Anyway, let explain why it is weaker, which finally explains all words in the additive DCT.

To make CJ faithful,
quotient S by “bigger stuff”

and get SJ .

add(J ): Since “lower stuff” still acts pretty much in an uncontrolable way,
restrict to only things in J .

inj means injective endofunctors.
In this case you could also consider projective endofunctors.

AJ is the “degree zero part” of SJ .
“AJ is the crystal associated to SJ .”

stmod are simple transitive modules.
The analogs of categories of simple modules downstairs.
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