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Question. What can we say about finite-dimensional modules of SL;...

e ...in the context of representations of classical groups? ~~» The modules and
their structure.

e ...in the context of representations of Hopf algebras? ~~ Object fusion rules i.e.
tensor products rules.
e _..in the context of categories? ~~ Morphisms of representations and their
structure.
If the characteristic of the underlying field K = K of SL, = SL,(K) is finite we will

see |inverse fractals , e.g.

Mod 3
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Question. What can we say about finite-dimensional modules of SL;...

Tha madulac 5nd

in tha cantavt nf ranracantatianc nf claccical arannc?

[}
Spoiler. What will be the take away?
) In some sense modular (char p < c0) representation theory bS /.e.
is much harder than the classical one (char co a.k.a. char 0 a.k.a. generically)
R because secretly we are doing fractal geometry. ;
In my toy example SL; everything is explicit.

If the cmaracterstic or the Underying Teld I = Ik of 5Ly = oL (I 15 Tmite we will

see |inverse fractals , e.g.

Mod 3
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Weyl ~1923. The SL; Weyl modules A(v—1).

A(1-1) x0y0

A@2—1) x1y0 x0y1

A(3B—1) x2y0 xlyl x0y2

A(4—1) x3y0 X2yl x1y2 x0y3

AGG—1) x4y0 x3yl x2y?2 x1y3 x0y4

A(6—1) x5y0 x4yl x3v2 x2y3 x1y4 x0y5
A(T—1) x6y0 x5yl x4v2 x3vy3 x2y4 x1y® x0y®

(25) ~— matrix who's rows are expansions of (aX + cY)"~/(bX + dY) 1.
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Weyl ~1923. The SL; simples L(v—1) in A(v—1) for p = 5.

A(1-1) x0y0 L(1—1
AR—1) x1y0 x0y1

=
>
|

=

A(B—1) ’ x2y0 ‘ ’ xlyl ‘ ’ x0y2 ‘ L(3—1)
A(4—1) ’X3V0 ‘ ’Xz\/l ‘ ’xlv2 ‘ ’X0Y3 ‘
A(5—1) ’ x4y0 ‘ ’ x3y1 ‘ ’ x2y? ‘ ’ x1y3 ‘ ’ x0y4 ‘ L(5—1)

)
|
-

A(7-1) has L(7—1) and L(3—1) as factors.
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Weyl ~1923. The SL; simples L(v—1) in A(v—1) for p = 5.

A(
A(d
A(d

A4

A

A(7-1) h

Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.

1)
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Weyl ~1923. The SL; Weyl modules A(v—1).

A(1-1) x0y0
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Weyl ~1923. The SL; Weyl modules A(v—1).
Example A(7-1) = KX°Y° @ - .- @ KX°Y°.

2% 6a°c 15a* c* 202° & 1522 c* 6ac® el

b sa‘bc.a’d 10a’bc? s5atcd 10a’bc’i10a’cd sabcti10a’ G d bc®.sactd  cfd
ab a*b? aa’b’c.2a*bd 6a’b?c’isa’bcdsa’ d? aap’cd.12a’bc?daaa’cd? b’ c*isabc®d+6a’ ?d?  zbctd.aacid cfd?
@ acts as

a’b’ 3a’b’ci32’b?d 3ab’c?i9a’bPcd3a’bd? b’ 9ab’ Pd.9albed?ia’d’ 3b?Pdivabd d?s3atcd® 3bPdi3acl A

E

S d
a?b* 2abic.4a?b’d b*clisab’cd.6alb?d? abictd.i12ab? cd? aalbd? 6b?c2d?.gabcd®~a?d®  abctd.i2acdt c2at
ab® b c.sabtd sb*cd.10ab’ d? 100 cd? »10 ab? o 10b2cd® 5abd sbcd*iad®  cd®
b° 6b° d 15b* d? 20b° d® 15p2 ot 6bd® d°

The rows are expansions of (aX + cY)"~'(bX + dY)'=*. Binomials!

A(4—1) x3v0 x2yl x1y2 x0y3

A(G—1) x4vy0 x3vyl x2y?2 x1y3 x0y4

A(6—1) x5y0 x4yl x3v2 x2y3 x1y4 x0y5
A(7T—1) x6y0 x5yl Xx4y2 x3y3 X2v4 xly5 x0yo

(25) ~— matrix who's rows are expansions of (aX + cY)"~/(bX + dY) 1.
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Weyl ~1923. The SL; Weyl modules A(v—1).
Example A(7-1) = KX°Y° @ - .- @ KX°Y°.

2% 6a°c 15a* c* 202° & 1522 c* 6ac® el

b sa‘bc.a’d 10a’bc? s5atcd 10a’bc’i10a’cd sabcti10a’ G d bc®.sactd  cfd

ab a*b? aa’b’c.2a*bd 6a’b?c’isa’bcdsa’ d? aap’cd.12a’bc?daaa’cd? b’ c*isabc®d+6a’ ?d?  zbctd.aacid cfd?
(c d) ACLS @S |y 302 p7c 20702 d 3207 2 oaP b ad e bd® b7 2 9abicPd sabedl ol d® 3b2 T d.9ab 3t ed 3b d racd & @
a?b* 2abic.4a?b’d b*clisab’cd.6alb?d? abictd.i12ab? cd? aalbd? 6b?c2d?.gabcd®~a?d®  abctd.i2acdt c2at

ab® b c.sabtd sb*cd.10ab’ d? 100 cd? »10 ab? o 10b2cd® 5abd sbcd*iad®  cd®

b° 6b° d 15b* d? 20b° d® 15p2 ot 6bd® d°

The rows are expansions of (aX + cY)"~'(bX + dY)'=*. Binomials!

A(4—1) x3y0 X2yl x1y2 x0y3

Example A(7—1), characteristic 0.

No common eigensystem = A(7—1) simple.

Example A(7—1), characteristic 2.

a® ] atc? ] a?ct ] c®

a®b  a'bc.a’d atcd o abct bciactd Fd

a* o’ ] a* ¢’ o b? ¢t ] ot d?

(5 b) acts as |2°b® a?bPc.a’b?d ab® 2 alblcdia’bd? bPcPiab? Pdialbed?ia’d® b Pdiabctdlial cd® bt diacld G dl
cd 2,4 0 bt 2 o a2 gt @ O
ab® bciabtd b*cd o abd* bed*iad®  cd®

L b® ] bt d? ] b? ¢* ] d®

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule.
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Weyl ~1923. The SL,

When is A(v—1) simple?
A(v—1) is simple
-
(.,ij) #0forall w<v

< (Lucas’ theorem)

Weyl modules A(v—1).

x0y0

Xx1y0 X0yl

X2y

Lucas ~1878.
“Binomials mod p are the product of
binomials of the p-adic digits":

(Z) =1l (ZL) mod p,

where a = [a,, ..., a0, = >/, aip’ etc.

v = [ar,0, ..., 0]p. X3yl x2y2  x1y3  xOy4
General.
Weyl A(X) and dual Weyl V()
A(
are easy a.k.a. standard;
are parameterized by dominant integral weights;
are highest weight modules;
are defined over Z;
A( have the classical Weyl characters; y6
form a basis of the Grothendieck group unitriangular w.r.t. simples;
i satisfy (a version of) Schur's lemma dimy Ext/(A(X), A(1)) = B 0B ;i .
( g 3 ) — matri are simple generically; * H dY)' 1
€ have a root-binomial-criterion to determine whether they are simple (Jantzen's thesis ~1973).
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by
N. They are a bit tricky to define, but:
e They have A- and V filtrations, which look the same if you tilt your head:

General.
Define them using Weyl
and dual Weyl filtrations.

I— . “tilting symmetry"

e Play the role of projective modules.
o T(v—1) =L(v—1) = A(v—1) = V(v—1) generically.
e They are a bit better behaved than simples.
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by
N. They are a bit tricky to define, but:
e They have A- and V filtrations, which look the same if you tilt your head:

AN
Example. T(4—1) in characteristic 3.
A4 —1)

~.

P
32 1(27)(1)}2
/XY 2 .‘\\

ing symmetry”

X! % X1y?

o Play the 1 V({d-1)
o T(v—1) =L(v—1) = A(v—1) = V(v—1) generically.
e They are a bit better behaved than simples.
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by
N. They are a bit tricky to define, but:

A X7 Lilepnd: Lhiclh | lo 4l if

o IS

e They hpuab

How many Weyl factors does T(v—1) have?

# Weyl factors of T(v—1) is 2% where

k =max{v,((*7})),w < v}. (Order of vanishing of (!~

determined by (Lucas's theorem)

non-zero digits of v = [ar, ar—1, ..., a0]p-

1))

e Play the rd
o T(v—1)
e They are a

Example. T(220540—1) for p = 11?

v = 220540 = [1,4,0,7,7, 1]11;

Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;

(421) = (HUGE) = ..., #0,0,0,0,0Ju1.

w—1

= T(220540—1) has 2* Weyl factors.
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by

N. They are a bit tricky to define, but:
e They have A- and V filtrations, which look the same if you tilt your head:

Alv — 1)

Which Weyl factors does T(v—1) have a.k.a. the negative digits game?

Weyl factors of T(v—1) are

A([ar, £ar—1, ..., a0]p,—1) where v = [a,, ..., a0],»
Yy —1) V(z—1) 4
Example. T(220540—1) for p = 117

v = 220540 = [1,4,0,7,7, 1]u1;

has Weyl factors [1,+4,0, £7, 7, +1]11;
e Play the ro

e.g. A(218690 = [1,4,0,—7,—7,—1]11—1) appears.

o T(v—1) & br———=r— ==y serrerreuy:

e They are a bit better behaved than simples.
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by
N. They are a bit tricky to define, but:

e They hav{The tilting-Cartan matrix a.k.a. (T(v—1) : A(w—1)). [t your head:

1 100 200 302
1 T T T4

100 T -100
T( \ ng symmetry”

200

e Play the 1

302

e T(v—1) ;

e They are This is charactelristic 3.

I
302
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Ringel, Donkin ~1991. There is a class of indecomposables T(v—1) indexed by
N. They are a bit tricky to define, but:

(T(v—1) : A(w—1)) vs. [A(v—1):L(w—1)] — flawed reciprocity.

1 100 200 302 1 100 200 302
I ! ! D4 J[E " T 4
100 -100 100>§>>>;>>>);§>>§>>\ <100

EN >

PPN P

200 200 200 ~200
A

302, ‘ Kf{‘éz {302 302}, i AP 302

1 100 200 302 1 100 200 302
This is characteristic 3.
TTCy OTT O DT T TTe T T O VTS T ST e
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Tilting modules form a braided monoidal category 7ilt.
Simple®simple#£simple, Weyl@Weyl#Weyl, but [tilting®tilting=tilting .
The Grothendieck algebra [T1ilt] of Tilt is a commutative algebra with basis
[T(v — 1)]. So what | would like to answer on the object level, i.e. for [Tilt]:

e What are the fusion rules? |l start here — fusion for T(1)

e Find the Ny, € Ng in T(v - 1) @ T(w — 1) =, N, T(x —1).

> For [T1ilt] this means finding the structure constants.
This appears to be tricky and | do not have an answer
e What are the thick ®-ideals?

> For [T1ilt] this means finding the ideals. This is discussed second

General.
These facts hold in general, and
tilting modules form the “nicest possible” monoidal subcategory.
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Fusion graphs.

The fusion graph I', = 'y, 1) of T(v — 1) is:
o Vertices of I', are w € N, and identified with T(w — 1).
o k edges w 5 xif T(x — 1) appears k times in T(v — 1) @ T(w — 1).
e T(v — 1) is a ®-generator if I', is strongly connected.

e This works for any reasonable monoidal category, with vertices being
indecomposable objects and edges count multiplicities in ®-products.

Baby example. Assume that we have two indecomposable objects 1 and X, with
X®2 =1@X. Then:

mh=ci1 XD Ny= 13X

not a ®-generator a ®-generator
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Fusion graphs for T(1): char 3 vs. generic.
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T(1)’s fusion graph

via a Bratteli-type diagram

Daniel Tubbenhauer

N

Na

WAy YAVAVAVAVAY

L ININFANINTIR N,

/ /M/\/ ININL L

INS TN INF A AN

L ININFRINS ININ

ININT TN INF A NN,

NAYATAVAV SV AYAVAVAVA
.,./

/ / /\\/\A/\/ ININL L

T ESSE S G

Fusion rules for SLy
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Formulas, for friends of formulas

Let v = [a), ..., ag],. We have

0 ifaj=0o0ri=j and a; =1,

T(v — 1) ® T(1) @@T V=92 ifa=1,
1 ifa; >1.

tl=tail length=length of [....#p—1,p—1,p—1,...,p— 1],
Proof strategy.
e Feed the problem into a machine;

e let it do a lot of calculations;

e guess the formula;

e prove the formula using character computations. | Easy
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Tilting modules form a braided monoidal category 7ilt.
Simple®simple#£simple, Weyl@Weyl#Weyl, but [tilting®tilting=tilting .
The Grothendieck algebra [T1ilt] of Tilt is a commutative algebra with basis
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Thick ®-ideal = generated by identities on objects.

®-ideals of Tilt are indexed by prime powers. @-ideal = generated by any sets of morphism.

e Every ®-ideal is thick, and any non-zero thick ®-ideal is of the form
Toe ={T(v —1) | v > p*}.

e There is a chain of ®-ideals Tilt = J1 D J, D J2 D .... The cells, i.e.

Jpk | Tpes1, are the strongly connected components of I';.

Example (p = 3).

2
1
}ﬂz/}:\—-#

]
1>
1 > 13
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M P= . P

Prlme power Verlinde categories.

®-ide

The ideal J« C Tilt/ Tk is the cell of projectives.
The abelianizations Ver« of Tilt/J«+1 are called Verlinde categories.
The Cartan matrix of Ver, is a p*X — p“~l-square matrix
with entries given by the common Weyl factors of T(v - 1) and T(w —1).
Tpk [ Tprr1, are th

°
—

[N

Example (Cartan matrix of Ver34)

Example (p = 3).

2 =e< 1
1 15 13
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Rumer-Teller-Weyl ~1932, Temperley—Lieb ~1971, Kauffman ~1987.

The category T L is the monoidal Z-linear category monoidally generated by

object generators : o, morphism generators : /\: 1 — %2 \_J: 2 — 1,

relations : O = -2, m = ‘ = N

(o] /O _
X=_+1
Y l

.®5 .®1

) 7

®1 ®3



Rumer-Teller-Weyl ~1932, Temperley—Lieb ~1971, Kauffman ~1987.

The category T L is the monoidal Z-linear category monoidally generated by

Theorem (folklore).
object ( ) 2 5 1,

TL is an integral model of Tilt, i.e. fixing K,
TL — Tilt, e+ T(1)
induces an equivalence upon additive, idempotent completion.

X 2
o o o——o0
X -4 ]
S o o——o0
Y l
Py o1
o®1 - #®3



Rumer-Teller-Weyl ~1932, Temperley—Lieb ~1971, Kauffman ~1987.

The category T L is the monoidal Z-linear category monoidally generated by

Theorem (folklore).
object ( ) ¥ 5 1,

T L is an integral model of Tilt, i.e. fixing K,
TL— Tilt, e~ T(1)
induces an equivalence upon additive, idempotent completion.

Burrull-Libedinsky—Sentinelli (~2019).

Under this equivalence
— T(v—1)
where the purple box is an explicitly given idempotent in EndTg(
called p-Jones—Wenzl projector.

.®v71 )

.®5 .®1

.81 / .®3

O



Rumer-Teller-Weyl ~1932, Temperley—Lieb ~1971, Kauffman ~1987.

The category T L is the monoidal Z-linear category monoidally generated by

object

Theorem (folklore).

T L is an integral model of Tilt, i.e. fixing K,
TL— Tilt, e~ T(1)

induces an equivalence upon additive, idempotent completion.

2 1,

Burrull-Libedinsky—Sentinelli (~2019).

Under this equivalence

r—>T(vfl)

where the purple box is an explicitly given idempotent in End7.( e®" 1)

called p-Jones—Wenzl projector.
I

I I I VA T

N

e —eo

®1

Question.

Can we “categorify” the fusion rules for _ ® T(1)?

=




Generically, using classical Jones—Wenz| projector (white boxes):

Alv-1)0 A1) = A(v)d A(v —2)
—

v—1

L= -
v

In characteristic p using purple boxes, e.g.:

T(v — 1) ® T(1) = T(v) & T(v — 2)
<

-|:-+ —V;l -Eexplicit scalar - ‘

nilpotent correction term




Yes we can!

Let v = [a), ..., ag],. We have

0 ifaj=0o0ri=j and a; =1,
T(v — 1) ® T(1) @@Tv—zp )89 X =142 ifa =1,
1 ifa;>1
=

0 ifa,-:0,

-I = -+ Zflzo P! where P! = { explicit diagrams if a;, =1,

other explicit diagrams if a; > 1.

Proof strategy.
e Feed the problem into a machine;
e let it do a lot of calculations;

e guess the formula;

e prove the formula using a huge inductive argument. 'Not so easy



Yes we can!

Let v = [a), ..., a0],. We have

¢ [0 ifaj=0ori=janda =1,
Vi N INAD v
(v This is also fractal.
P! is usually of the form

w 0,
[ P! = (explicit scalar)’ - — explicit scalar - S , o w=p.| 1,
>1

w

Roughly each strand “is blown up by p”

Proot strategy.

Feed the problem into a machine;

let it do a lot of calculations;

guess the formula;

e prove the formula using a huge inductive argument. 'Not so easy



o .in the context of epesentationsof casical groups? ~— The modeles and

in the context ofrepeesantations of Hap lgbras? - Ojsc i s e
o producs ok
in the contes ofctegories? ~ Morpis o representations nd thir
16 2he Charactisic of the undarin fid K

5L = SLa(K) i it we will

ingel, Donkin ~1991, There i  cass of indecompassbies T(v-1)indeed by
. They are bt ticky o dfin, ot
« They have & 3nd ¥ fitrations, which ook the same i ou i

o hesd

« Playthe rle ofprojctive modules.
o Tv-1) 3 Ly-1)  Aly-1) % T(y-1) geneialy
« They e 3 it bt bahaved than siples

S— f— PR

Fusion graphs or T(1): char 3 v. generic.

Daniel Tubbenhauer

Weyl ~1923. The Sl (41 Weyl modises A(v-1)

(24) +» ot who's rows s cxpansions of (3X + €¥)* (X + 4Y) 1

Fingl. Donkin 199, T
o Toe v & 7 M i ook e s o o e

¢ chos of nicomposies 1) e

Weyt ~1923. The Sl simples Lv—1) in A(v1) for p =5

(S e e e e

1}

A1) Prscas gl modulo p = 5 pcks out the simpe.

Fingl. Donkin ~1991. T s of dcamposisSv3) e o

e T

==

(v-1) 3 L) A1) S S0 1) gemercaly

 They are 3 bit bttar bahaved than simpls

— fe— ———

e of 7ill e indexe by prime powers

v el s ik ad s s ik s e o
o = (10—

« There 3 chi of -l Tl = 5 5.7, 7 3. The el e
e, 31 the strongly connectd components of [+

Example (5~ 3).

There is still much to do...

Fusion rules for SLy

i They e s fne, b
e 1) B3 . Bl ]~ e
)
— fe— -

Genrcly, using clsscal Jones-Wena! pojctr (it boves):

Al -Boam a0 eat-2
E
i

W-DeT) =TT -2)

In charscerstic  wsing purple b, 5
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Quetion. What can we sy sbout it dimansons modulesof ..

. .in he content of presnaions ofclsical v~ The mslsand

. inth ot ofeesnstions ofHop g
e probcs i

+ . intheconts of categrie?

1 the ot o theundrio i K =

Objec i s e

Morphismsof rprsenttion and theie

St = SLa(K) s fite e wil

el Donkin ~ 1091, Ther s 3 clss o indecompossbies (-1 indesed by
. They are bt ticky o dfin, ot
« They have & 3nd ¥ fitratons, which ok the same i

« Playthe rle ofprojctive modules.

o Tv-1) 3 Ly-1)  Aly-1) % T(y-1) geneialy

« They e 3 it bt bahaved than siples
S— f—

Fusion graphs or T(1): char 3 v. generic.
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Weyl ~1923. The Sl (41 Weyl modises A(v-1)

£5) - matix wha's rows are exparsions of (3X + €¥)" (5K + d¥) L

Ringel, Donkin ~1091. Ther s 3 clss of indecompossbies T(v—1) indesad by
1. They are a i ricky o deine, bt
nd ¥ itration, which ook the same i you it your hesd

Weyl <1923, The Sl

s Le—1) in A(v-1) for p =5

Pascls viange modlo p = 5 icks ot the simples,

(5 B e

Ringel. Donkin
i They are 2 i

1991, There i acas of indacomposabes T(v1) ndexad by

1)

"B - (B T ~ o vy

e T

==

& vy -dea i ik, and any non-zeo ik c-ideal s o the orm
v o

)

S The el e
i

@ There 3 chainof -idsls Till 5 > 7, > T
. e the stongly connectad components o

Thanks for

Fusion rules for SLy

Genercly, ing

g

casical Jons-Wene rector (it boss)

Alv- 10 80)= AW 24 -2)

n chasceristic

your attention!

W-DeT) =TT -2)
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