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2-representation theory in a nutshell

categorical module

iy M(1) F s H(F) a—s M)

2-module category functor nat. trafo
| I
categorifies categorifies categorifies
M s M(3) F s M(F)
1-module vector space linear map
categorifies categorifies
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NY

Examples of 2-categories.
Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

P
2-module category functor nat. trafo
categorifies categorifies categorifies
M M(3) F —M(F)
1-module vector space linear map
categorifies categorifies
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Examples of 2-categories.

NY

Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

: ! ]
Examples of 2-representation of these.
Categorical modules, functorial actions,
(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.
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Examples of 2-categories.

NY

Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

: ! ]
Examples of 2-representation of these.
Categorical modules, functorial actions,
(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.
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2-representation theory in a nutshell

categorical module
DR o ()

2-module categor functor nat trafo

Plan for today.

1{1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Zep(G).

3) Discuss the semigroup-like example &.
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Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.

Frobenius ~1895+, Burnside ~1900-+, Noether ~1928-+.
Representation theory is the study of algebra actions

M: C — End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ~1899, Noether, Schreier ~1928. All modules are built out of
simples (“Jordan—Hdlder” filtration).

‘ Basic question: Find the periodic table of simples.
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2-representation theory is group theory in categories

Let 6 be a finitary 2-category.

Etingof—Ostrik, Chuang—Rouquier, many others ~200044-. 2-representation
theory is the useful? study of actions of 2-categories:

M€ — End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple (“simple transitive").

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples ("
2-Jordan—Hdlder filtration™).

Basic question: Find the periodic table of 2-simples. ‘
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2-representation theory is group theory in categories

Let 6 be a finitary 2-category.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000-+4-. 2-representation
theory is the useful? study of actions of 2-categories:
Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);

| will stick to this case for the rest of the talk,

T

but what | am going to explain works for 2-categories.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples ("
2-Jordan—Halder filtration™).

Basic question: Find the periodic table of 2-simples. ‘

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 3/13



A category V is called finitary if its equivalent to C-pMod. In particular:
» It has finitely many indecomposable objects M; (up to =2).
» It has finite-dimensional hom-spaces.
» Its Grothendieck group [V] = [V]z ®z C is finite-dimensional.

A finitary, monoidal category %6 can thus be seen as a categorification of a
finite-dimensional algebra.
Its indecomposable objects C; give a distinguished basis of [€].

A finitary 2-representation of €

» A choice of a finitary category V.
» (Nice) endofunctors .#(C;) acting on V.
» [#(C;)] give N-matrices acting on [V].

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019

4/13



A category V is called finitary if its equivalent to C-pMod. In particular:

» It has finitely many in acamnacahla ahiacte M. (JP to g)

- : . The atoms (decat).
» It has finite-dimension

» lIts Grothendieck grougA C module is called simple jlimensional.

if it has no C-stable ideals.

A finitary, monoidal category %6 can thus be seen as a categorification of a

finite-dimensional algebr3 The atoms (cat).
Its indecomposable objec
A €6 2-module is called 2-simple

A finitary 2-representatio

if it has no ¢ -stable ®-ideals.

» A choice of a finitary category V-
» (Nice) endofunctors .#(C;) acting on V.
» [/ (C;)] give N-matrices acting on [V].
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A category V is called finitary if its equivalent to C-pMod. In particular:

» It has finitely many indecomposable objects M; (up to =2).

» It has finite-dimensional hom-spaces.

> It Dictionary.
cat H finitary ‘ finitary+monoidal ‘ fiat ‘ functors
A finit{ decat || vector space | algebra | self-injective | matrices
finite-dimensional algebra.

|ts indecomposab o nhiorte (. givue o dictinauichoed hacie nf [£]
Instead of studying C and its action via matrices,

A finitary 2-repre§  study C-pMod and its action via functors.

» A choice of a finitary category V.
» (Nice) endofunctors .#(C;) acting on V.
» [/ (C;)] give N-matrices acting on [V].
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A category V is called finitary if its equivalent to C-pMod. In particular:

~

» It has finitely many indecomposable objects M; (up to =2).

» It has finite-dimensional ham-enaceg
. Example (decat).
» lIts Grothendie nal.

C = C =1 acts on any vector space via A - _

A f|n|ta_ry, m9n0|da It has only one simple V = C. fication of a
finite-dimensional drgeora-

Its indecomposable objects C; give a distinguished basis of [€].

A finitary 2- Example (cat).

» A choiq6¢ = ¥ec = Zep(1) acts on any finitary category via C ®c _

> (Nice) .
It has only one 2-simple V = Vec.
> [-%(C,)J gIVE IN-TITatrices dactimg OTIT |_I/J
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An algebra A = (&, u,¢) in

A AN AT

Its (right) modules (M, §):
== 3

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) and their modules
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An algebra A = (A, i, ¢) in 6:

4 | The category of (right) A-modules Mod« (A.x)

A is a left € 2-representation.
u= , L= @ =
S [ * * ] [

Its (right) modules (M, §):

N R i

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) and their modules
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An algebra A = (A, i, ¢) in 6:

4 | The category of (right) A-modules Mod« (A.x)

is a left 6 2-representation.
/I’:A',L:‘v( Y = Y  Y=1=
Theorem (spread over several papers).

A

Completeness. For every 2-simple .4 there exists
a simple algebra object A 4 in 6 (fiat)
such that A = Mod¢(A.x).

Its (right) mod

Non-redundancy. .# = .4 if and only if
A 4 and A 4 are Morita—Takeuchi equivalent.

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) and their modules
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An algebra A = (A, p,¢) in 6:

4 | The category of (right) A-modules Mod« (A.x)

is a left 6 2-representation.
/L:A=L:‘1(\:(\«(\::
Theorem (spread over several papers).

A

Completeness. For every 2-simple .4 there exists
a simple algebra object A 4 in 6 (fiat)
such that A = Mod¢(A.x).

Its (right) mod

Non-redundancy. .# = .4 if and only if
A 4 and A 4 are Morita—Takeuchi equivalent.

Example.
Exa P

Simple algebra objects in ¥ec are simple algebras.
ExalUp to Morita—Takeuchi equivalence these are just C; and Mody.c(C) = Vec.

The above theorem is a vast generalization of this.
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Example (Zep(G)).

v

Let € = Zep(G) (G a finite group).
% is monoidal and finitary (and fiat). For any M\,N € 6, we have MQ N € 6

v

g(m®n) = gm® gn

for all g € G,m € M,n € N. There is a trivial representation 1.
The regular 2-representation .4 : € — &nd(6):

v

M———M®_

l E

N— N® _

» The decategorification is a N-representation, the regular representation.

v

The associated algebra objectisA 4, =1€ 6.
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Example (Zep(G)).
» Let K C G be a subgroup.
> Rep(K) is a 2-representation of Zep(G), with action
Resg @ _: Rep(G) — &nd(Rep(K))

which is indeed a 2-action because Res% is a ®-functor.
» The decategorifications are N-representations.
» The associated algebra object is Ay = Znd(1x) € 6.
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Example (Zep(G)).

» Let i) € H?>(K,C*). Let V(K1) be the category of projective K-modules
with Schur multiplier v, i.e. vector spaces V with p: K — End(V) such that

p(&)p(h) = ¥(g, h)p(gh), for all g, h € K.
» Note that V(K, 1) = Rep(K) and
®: V(K,0) RV(K, ) = V(K, ¢b).
> V(K, ) is also a 2-representation of 6 = Zep(G):

RescXId
—_—

Rep(G) K V(K, 1)) Rep(K) B V(K, 1) 2 V(K, ).

» The decategorifications are N-representations.

» The associated algebra object is A 4 = Znd(1x) € 6, but with -twisted
multiplication.
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Example (Zep(G)).

Theorem (folklore?).
- Completeness. All 2-simples of Zep(G) are of the form V(K 1). tehsat
Non-redundancy. We have V(K, ) = V(K', ')
the subgroups are conjugate or v’ :i:/;’, where Y8 (k, I) = (gkg ™', glg ™).
> Rote T T —rcrpU T
®: V(K, ) KV(K, ) = V(K, ¢1).
> V(K,1) is also a 2-representation of 6 = Zep(G):

esSX ,
Rep(G) B V(K,v) 22 Rep(K) R V(K. 9) S V(K, ).
» The decategorifications are N-representations.

The associated algebra object is A 4y = Znd%(1k) € 6, but with -twisted
multiplication.

v
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Example (Zep(G)).

Theorem (folklore?).
- Completeness. All 2-simples of Zep(G) are of the form V(K 1). tehsat
Non-redundancy. We have V(K, ) = V(K', ')
the subgroups are conjugate or v’ :z}g, where Y8 (k, I) = (gkg™!, glg ™).
> Note et T —TcepU AT
Note that Zep(G) has only finitely many 2-simples.
b V(K, 1) is broeee—repreatiis is N0 coincidence,

Rep(G) B V(K, ) 22 Ren(K) ® V(K,¥) S V(K, ).

» The decategorifications are N-representations.

» The associated algebra object is A 4 = Znd(1x) € €, but with 9-twisted
multiplication.
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Example (Zep(G)).

Theorem (folklore?).
= Completeness. All 2-simples of Zep(G) are of the form V(K 1). tehs .
a
Non-redundancy. We have V(K, ) = V(K', ')
=
the subgroups are conjugate or ¢’ = 1€, where 1€ (k, ) = ¥ (gkg ™", glg™").
> NOUTT TITdat V\I\,J.}f /\A,l)\f\) dTiTa
Note that Zep(G) has only finitely many 2-simples.
> V(K1) is This is no coincidence.
)y ¥ EEEESS A=
Theorem (Etingof—Nikshych—Ostrik ~2004); the group-like case. )
If € is fusion (fiat and semisimple),
> The then it has only finitely many 2-simples.
» The twisted
mul This is false if one drops the semisimplicity.
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Clifford, Munn, Ponizovskii, Green ~194244.

Write X <; Y if Y is a direct summand of ZX for Z€ 6, i.e. Y Cq ZX. X~ Y if
X< Yand Y <) X. ~y partitions 6 into left cells £. Similarly for right R,
two-sided cells 7 or 2-modules.

An apex is a maximal two-sided cell not annihilating a 2-module.
Fact (Chan—Mazorchuk ~2016). Any 2-simple has a unique apex.

Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For any fiat 2-category ¢
(semigroup-like) there exists a fiat 2-subcategory .f3; (almost group-like) such that

2-simples of 6 | one-to-one | 2-simples of .efy
: — .
with apex J with apex H C J

In general .o/ is not fusion.
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Cliffor Example (é:ouB—like).

Write X LY if
X < Y |Fusion categories, e.g. Zep(G), have only one cell. .of3; is everything.
two-sided cells ./ or 2-modules.

T

An apex is a maximal two-sided cell not annihilating a 2-module.
Fact (Chan—Mazorchuk ~2016). Any 2-simple has a unique apex.

Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For any fiat 2-category 6

(semigroup-like) there exists a fiat 2-subcategory .f3; (almost group-like) such that

2-simples of 6 | one-to-one | 2-simples of .efy,
. A — .
with apex J with apex H C J

In general .o/3; is not fusion.
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Cliffor Example (é:ouB—like).

Write X LY if
X < Y |Fusion categories, e.g. Zep(G), have only one cell. .of3; is everything.
two-sided cells ./ or 2-modules.

T

Example (semigroup-like).
An apex is
Fact (Cha Let Zep(G,K) for K being of prime characteristic.

The projectives form a two-sided cell. .¢/3; can be complicated.

Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For any fiat 2-category 6
(semigroup-like) there exists a fiat 2-subcategory .f3; (almost group-like) such that

2-simples of 6 | one-to-one | 2-simples of .efy,
. A — .
with apex J with apex H C J

In general .¢/3; is not fusion.
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Cliffor Example (group-like). )
Write X L Y if
X < Y |Fusion categories, e.g. Zep(G), have only one cell. .of3; is everything.
two-sided cells ./ or 2-modules.

T

Example (semigroup-like).
An apex is
Fact (Cha Let Zep(G,K) for K being of prime characteristic.

The projectives form a two-sided cell. .¢/3; can be complicated.

Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For anv fiat 2-category €
Example (Kazhdan-Lusztig ~1979, Soergel ~1990). ) such that

(semigroug

Soergel bimodules #(S,) for the symmetric group
have cells coming from the Robinson—Schensted correspondence.

.ef3; has one indecomposable object, but is not fusion.

In general .¢/3; is not fusion.
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Cliffor
Write X

X < Y |Fusion categories, e.g. Zep(G), have only one cell. .of3; is everything.

Example (group-like).

L Y if

T

two-sided cells ./ or 2-modules.

An apex is
Fact (Cha

Example (semigroup-like).

Let Zep(G,K) for K being of prime characteristic.
The projectives form a two-sided cell. .¢/3; can be complicated.

Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For anv fiat 2-cate

gory 6

(semigroug

Example (Kazhdan-Lusztig ~1979, Soergel ~1990).

Soergel bimodules #(S,) for the symmetric group
have cells coming from the Robinson—Schensted correspondence.

.ef3; has one indecomposable object, but is not fusion.

) such that

Catch | In seneral ¢fs, is nat fusion
Example (Taft algebra T5).

T-Mod has two cells — the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Let I' be a Coxeter graph.

Artin ~1925, Tits ~1961-+. The Artin—Tits group and its Coxeter group
quotient are given by generators-relations:

AT = (b; | --- bibjb; = - - - bjb;b;)
——— N——
J mj; factors mj; factors
W ={(s;|s?=1, - s;sjs; = ---5;s;s;)
—_— Y=
mj; factors mj; factors
classical braid groups, or polyhedron groups, respectively.

H is the quotient of Z[v, v_!]AT by the quadratic relations, e.g.

KR T

Fact (Kazhdan—Lusztig ~1979, Soergel-Elias—Williamson ~1990,2012). H
has a distinguished basis, called the , which is a decategorification of
indecomposable objects of <.
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Let I' be a Coxeter graph.

Artin ~1925, Tits ~1961-+. The Artin—Tits group and its Coxeter group
quotient are given by generators-relations:

|Question. What can one say about simples of H using KL cells?|

— S——
J mj; factors mj; factors

W ={(s;|s?=1, - s;sjs; = ---5;s;s;)
—_—— —
mj; factors mj; factors

classical braid groups, or polyhedron groups, respectively.

H is the quotient of Z[v, v_!]AT by the quadratic relations, e.g.

KR T

Fact (Kazhdan—Lusztig ~1979, Soergel-Elias—Williamson ~1990,2012). H
has a distinguished basis, called the , which is a decategorification of
indecomposable objects of <.
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Example (type B).

W = (s, t | s = t? = 1, tsts = stst). Number of elements: 8. Number of cells:

named 0 (lowest) to 2 (biggest).

Cell order:

Size of the cells:

Cell structure:

s, sts st number of elements | 2
1
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Example (type B,).

. 2 12 . AL 1 (o
W=(st|s"=t"=1, ?sts ~ |Example (SAGE).
named 0 (lowest) to 2 (biggest

Cell order:

Size of the cells:

Cell structure: D
1

I

s, sts st ‘ number of elements_ | 2
1

ts | t,tst |

[1]
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Example (type B>).

W= (s t|s®>=t>=1,tsts =
named 0 (lowest) to 2 (biggest

Cell order:

Example (SAGE).

1-1=1.

D] = ?

Size of the celld

Cell structure: |css - csts = (1+bigger powers)cs+higher cell elements.
Csts - Cest = (bigger powers)cs: + higher cell elements.

Example (SAGE).

¢s - ¢s = (1+bigger powers)cs.
Csts - €s = (1-+bigger powers)csss.

Daniel Tubbenhauer

S, sts

st

number of elements

2|1

ts

t, tst

[0 ]

2-representation theory of Soergel bimodules

1]2

[1]
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Example (type B>).

— 2 12 . Nl I c . .
W= (s,t|s*=1t*=1,tsts = Example (SAGE). elements: 8. Number of cells: 3,

named 0 (lowest) to 2 (biggest

1-1=1.

Cell order:
0 o ] e D
Example (SAGE).

Size of the cellg
s - ¢s = (1+bigger powers)cs.

Csts - €s = (1-+bigger powers)csss.

Cell structure: |css - csts = (1+bigger powers)cs+higher cell elements.

Csts - Cest = (bigger powers)cs: + higher cell elements.

‘ s, sts ‘ st ‘ number of elements ‘ 2 ‘

i Example (SAGE).

N

—

Cuwg * Cwy = (1+bigger powers)cy,.
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Example (type B>).

W=(st]s®>=1t>=1
named 0 (lowest) to 2

Cell order:

Size of the cells:

Fact (Lusztig ~1984++).

For any Coxeter group W

there is a well-defined function

a: W—N

which is constant on two-sided cells.

Cell structure:

= ‘

S, sts

= ‘

: 8. Number of cells: 3,

st ‘ number of elements

ts

tst |

Daniel Tubbenhauer

4]

=N
N | =
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Example (type B,).

Fact (Lusztig ~1984++).

W=(st]s®>=1t>=1 : 8. Number of cells: 3,
named 0 (lowest) to 2 For any Coxeter group W

there is a well-defined function
Cell order:

Size of the cells:

Cell structure:

a: W—N

which is constant on two-sided cells.

Idea (Lusztig ~1984).

Ignore everything except the leading coefficient

of the classical KL basis shifted by a(two-sided cell).

Those shifted versions are what | denote by ¢, .

Daniel Tubbenhauer 2-representation theory of Soergel bimodules
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The asymptotic limit Ag(W) of H,(W) is defined as follows.

As a free Z-module:

Ao(W) =@, Z{ay |we T} vs. H (W) =Z[v,v {cn | we W}

Multiplication.
axdy = ) ,cq Vaydz VS &Gy =D g va(z)hj’ycZ + bigger friends.

where 72 € N is the leading coefficient of hZ , € N[v,v™1].
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Example (type B>).

The multiplication tables (empty entries are 0 and [2] = 1 + v?) in 1

| 2 | s |

ast ‘ at ‘ dtst dts
as as asts ast
asts Asts as ast
ais || as | as | @+ asse
ar ar | ast ars
arst At | ar ats
Zh ast | ast | as+ ass
‘ ‘ Cs Csts ‘ Cst Ct ‘ Ctst Cts
Cs [2]cs [2]csts [2]cse Cot Cst + Cug s + Cots
(&5 [2)csts [2]cs + [2]P cwe 2lest + [2lewy | €5+ csts ¢ + [2Pcwe Cs + Csts + [2] Cup
Cts [2]cts [2)ces + [2]ew, [2]ce + [2] cest Ce+ Crst | Gt + Cest + [2]Cug 2¢s + cwy
c Cis Cts + Cug Ct + Crst [2]ce [2]cese [2]ces
st || cetas | at[ow | et t[2ew | [Rlese  [2le+ [2]Pew [2]ets + [2]cw
Gt || G+ Cots | Cs + Cots + [2]cwg 265t + Cug [2]cs ‘ [2]cst + [2] cwo [2]cs + [2] csts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Daniel Tubbenhauer
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Fact (Lusztig ~1984++).
The asyn
Ao(W) = @, Af (W) with the a,, basis
and all its summands Ay (W) = Z{aw | w € J}
are multifusion algebras. (Group-like.)
As a free
Multifusion algebras = decategorifications of multifusion categories.

A(WT=D,; Zlaw TWE T} vs. I (W) =Z[V,v [{cw W E W}
Multiplication.

axdy = ) ,cq Vaydz V5. GGy =D g v"’(z)hj,ycZ + bigger friends.

where 77 , € N is the leading coefficient of h7 , € NJv, vl
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Fact (Lusztig ~1984++).
The asyn
Ao(W) = @, Af (W) with the a,, basis
and all its summands Ay (W) = Z{aw | w € J}
are multifusion algebras. (Group-like.)
As a free
Multifusion algebras = decategorifications of multifusion categories.

Ao( V) == T3 Twe 75 ve H IV —71v v_=1Ir }WEW}.
Surprising fact 1 (Lusztig ~1984-+).

It seems one throws almost away everything, but:

There is an explicit embedding
Multiplication.
H, (W) < Ag(W) ®z Z[v, v ]

aa, =1 _ . _ r friends.
which is an isomorphism after scalar extension to C(v).

where 77 , € N is the leading coefficient of h7 , € NJv, vl
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Fact (Lusztig ~1984++).

The asyn
Ao(W) = @, Af (W) with the a,, basis
and all its summands Ay (W) = Z{aw | w € J}
are multifusion algebras. (Group-like.)
As a free
Multifusion algebras = decategorifications of multifusion categories.
Ao( V) == Ta _ Twe 7% ve HIWY—7Iv v - }WEW}.
Surprising fact 1 (Lusztig ~1984-++).
It seems one throws almost away everything, but:
There is an explicit embedding
Multiplication.
H, (W) < Ag(W) ®z Z[v, v ]
aca, = r friends.
which is an isomorphism after scalar extension to C(v).
where 7% Surprising fact 2 — 7{-cell-theorem (Lusztig ~1984-++).

There is an explicit one-to-one correspondence

{simples of H, (W) with apex J} <% fsimples of AZ(W)}.

Daniel Tubbenhauer 2-representation theory of Soergel bimodules

June 2019
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Categorified picture — Part 1.

Theorem (Soergel-Elias—Williamson ~1990,2012).
There exists a monoidal category & such that:

» (1) For every w € W, there exists an indecomposable object C,,.

» (2) The Cy, for w € W, form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

» (3) The identity object is C1, where 1 is the unit in W.
> (4) €6 categorifies H with [C,] = cw.

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019
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Examples in type A;; polynomial ring.

Categori Let R = C[x] with W = S; action given by s.x = —x; R = C[x?].
The indecomposable Soergel bimodules over R are

Theorem €1 = C[x] and C; = C[x] ®¢pez) Clx].

There exiStsa monoraar category -7 Such tnat:

» (1) For every w € W, there exists an indecomposable object C,,.

» (2) The Cy, for w € W, form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

> (3) The identity object is C;, where 1 is the unit in W.
> (4) € categorifies H with [C,,] = ¢y .
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Categori

Theorem

Examples in type A;; polynomial ring.

Let R = C[x] with W = S; action given by s.x = —x; R = C[x?].

The indecomposable Soergel bimodules over R are
C1 = Cl[x] and Cs = C[x] ®¢fx2) C[x].

There exiStsa monoraar category -7 Such tnat:

> (1) For eve
> (2) The C,

indecompoy
> (3) The idg

Examples in type A;; coinvariant algebra.
The coinvariant algebra is R = C[x]/x°.

The indecomposable Soergel bimodules over Ry are
Ci = (C[X]/X2 and Cs = (C[x]/x2 ® (C[x]/x2.

> (4) € cate

SOUTTITCO I VIt [Yw] — Sw-
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Categori
The indecomposable Soergel bimodules over R are
Theorem C1 = C[x] and C; = C[x] ®cpe; Clx].
There exiStsa monoraar category -7 Such tnat:
> (1) For eve Examples in type A;; coinvariant algebra. C.,
> (2) The Cy The coinvariant algebra is R = C[x]/x°. -isomorphic

indecompoy
» (3) The idg The indecomposable Soergel bimodules over Ry are

> (4) € categormes—rrrroronT—w~

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019

Examples in type A;; polynomial ring.

Let R = C[x] with W = S; action given by s.x = —x; R = C[x?].

Ci = (C[X]/X2 and Cs = (C[x]/x2 ® (C[x]/x2.

Examples in type A;; coinvariant algebra.

Cs ®ry, Cs = ((C[X]/X2 ® (C[X]/X2) ®cix/x2 ((C[x]/x2 ® (C[X]/X2).

Which gives CsCs & Cs @ Cs(2) = (1 + v?)Cs.

11/13



Categorified picture — Part 2.

Theorem (Lusztig, Elias—Williamson ~2012).
Let H be an H-cell of W. There exists a fusion category .3, such that:

» (1) For every w € H, there exists a simple object A,,.

» (2) The A, for w € H, form a complete set of pairwise non-isomorphic simple
objects.

» (3) The identity object is A4, where d is the Duflo involution.
> (4) .ofy categorifies Ay, with [A,] = a, and

AAy =@D,cr Vi bz vs. CC =D, va(@) h% ,C. + bigger friends.
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Categorified picture — Part 2.

Theorem (Lusztig, Elias—Williamson ~2012).
Let H be an H-cell of W. There exists a fusion category .3, such that:

» (1) For every w € H, there exists a simple object A,,.

» (2) The A, for w € H, form a complete set of pairwise non-isomorphic simple
objects.

» (3) The identity object is A4, where d is the Duflo involution.
> (4) .ofy categorifies Ay, with [A,] = a, and

AAy =@D,cr Vi bz vs. CC =D, va(@) h% ,C. + bigger friends.

Examples in type A;; coinvariant algebra.

€1 = C[x]/x? and Cs = C[x]/x*> ® C[x]/x*. (Positively graded, but non-semisimple.)

Ay =C and A, = C® C. (Degree zero part.)

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 12/13



Categorified picture — Part 2.

Theorem (June 2019 on arXiv).
For any finite Coxeter group W and any H C J of W, there is an injection

©: ({2-simples of .af} / =) — ({graded 2-simples of . with apex J}/ =)

» We conjecture © to be a bijection.

» We have proved the conjecture for all 7 which contain the longest element of
a parabolic subgroup of W.

» If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of <.

» For almost all W, we would get a complete classification of the 2-simples.

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 12/13
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou
of linear transformations.

ERY considerable advances in the theory of groups of
finite order have been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that

|Nowadays representation theory is pervasive across mathematics, and beyond.|

‘7ERY considerable advances in the theory of groups of

[But this wasn't clear at all when Frobenius started it.]

of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it in now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



Simple objects in Zep(Z/2Z) are 1 (trivial) and —1 (sign).

Algebra object 1. A; = 1:
pll 11l
1 1 '

Two modules M; = 1 and My = —1, so Modgepz/2z)(1) = Rep(Z/2Z).

Algebra object 2. A, =16 —1:

p |19l |19-1|-191 | -1)-1
1 1 1
-1 1 1

One module M3 = 1 @ —1, so Modgepz/2z)(1 © —1) = Rep(1).

Both are 2-representation of Zep(Z/2Z) since e.g.

“1e(1e-1)2-161216¢ 1.



G = 53, 54 and Ss, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K H 1 ‘ Z/2L ‘ Z/3L ‘ S K H 1 ‘ Z/2L ‘ Z/3L ‘ Z/AL | (Z/2Z)? ‘ S ‘ Dy ‘ Ay ‘ Ss
# |1 1 1 1 # || 1 2 1 1 2 1 1 1 1
H? | 1 1 1 1 H2 | 1 1 1 1 Z/27 | 1 | Z/2Z | Z/2Z | Z/2Z
k|| 1 2 3 3 k|| 1 2 3 4 4,1 3152|4353

K | 1 [ zpez | zse | wen | @pozp | zse | s | 2se| oo | 05 | A | b |eans) | s | A | s

#1] 2 1 1 2 12| 1 1 1 1 1 1 1 1 1
Hl 1| 1 1 1 z/22 1 (1| 1 |zjez|z/ez| 222 | 222 1 7)27 | 222 | 7./2Z
k|l 1| 2 3 4 4,1 5 | 3| 6 52 | 42 | 43 | 63 5 53 | 54 | 7.5

This is completely different from their classical representation theory.



L C C A C thhal N\ _Col P

Example (G= 53,K S3); the N-matrices.

|=| & |

H
EEDE\:DEPH
P | B |omg| B
HI B & |oo

Resi(CTD) =rm~ (319), Resk () =

—
K | 1 [ zpez | zse | wen | @pozp | zse | s | 2se| oo | 05 | A | b |eans) | s | A | s

#1] 2 1 1 2 12| 1 1 1 1 1 1 1 1 1
Hl 1| 1 1 1 z/22 1 (1| 1 |zjez|z/ez| 222 | 222 1 7)27 | 222 | 7./2Z
k|l 1] 2 3 4 4,1 5 | 3| 6 52 | 42 | 43 | 63 5 53 | 54 | 7.5

This is completely different from their classical representation theory.
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N\ _Col PP H

Example (G= 53,K S3); the N-matrices.

e || B | §
oo || oo H E
H | B | ool | B
HI B & |oo

R =om- (318). #=6@) =P (1) 24 (5)

KH 1‘ZZZ‘Z3Z‘Z4Z‘(Z2Z)2‘ZSZ‘S ‘ZGZ‘ Dy ‘ Ds ‘ A

oo leans |

Ress (Dj:l)

Example (G = S3, K = Z/27Z = S,); the N-matrices.

@ || m| H
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The Taft Hopf algebra:
T, = Clg,x)/(g? =1, x* =0, gx = —xg) = C[Z/2Z)&C[x]/(x?).
Ty-pMod is a non-semisimple fiat category.

g.m==+m,

simples : {Sp, S_1} { indecomposables : {Py, P_1}.

x.m =0,

Tensoring with the projectives Py or P_; gives a 2-representation of T-pMod
which however can be twisted by a scalar A € C. The algebra objects are

C[Z/27) ® C[x]/(x>* = A) and C[1]® C[x]/(x* = )).

This gives a one-parameter family of non-equivalent 2-simples of T-pMod.



The Taft Hopf algebra:

T, = Clg,x) /(g2 =1, x> =0, gx = —xg) = C[Z/2Z]&C[x]/(x?).

. . Classical result (decat).
Tr-pMod is a non-semig ( )

C has only finitely many simples.

simples o {50, 571} i f:: : (:)Em7

Wrong result (cat).

Tensoring with the projd € has only finitely many 2-simples.

indecomposables : {Py, P_1}.

ntation of Tr-pMod

which however can be twisted by a scalar A € C. The algebra objects are

C[Z/27Z) ® C[x]/(x>* = A) and C[1]® C[x]/(x* = )).

This gives a one-parameter family of non-equivalent 2-simples of T»-pMod.



The Taft Hopf algebra:

T, =Clg,x) /(g% =1, x* =0, gx = —xg) = C[Z/27Z)&C[x]/(x?).

Classical result (decat).

Tr-pMod is a non-semig

C has only finitely many simples.
. T = =17,
simples : {So,S_1} if - '
Wrong result (cat).

indecomposables : {Py, P_1}.

Tensoring with the projd € has only finitely many 2-simples. intation of T5-pMod
which however can be twisted by a scalar A € C. The algebra objects are

(C[Z/ﬁ'W'I L /2 A Nl Lk Vil 80 W74 27)\)
One crucial problem. ’

- There can be infinitely many categorifications.
This gives a one-pi The decategorifications [.#;"] are all the same. pf T2-pMod.




Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example. N, Aut({1,2,3}) = S3 C T3 = End({1,2,3}), groups, groupoids,
categories, any - closed subsets of matrices, “anything you will ever meet”, etc.

The cell orders and equivalences:

x<pyedzizx=y, xory e (x<py) Ay <o x),
x<pyeIZ:x2'=y, x~rye (x<ry)A(y <gx),
x<irye Iz,7:2x2 =y, x~pry e (x<itry)A(y <ir X).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell —e.g. 1 <; y

because we can take z = y. Invertible elements g are always in the lowest cell — e.g.

g <, y because we can take z = yg 1.



Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left £ (columns), right R
(rows), two-sided J (big rectangles), H = L NR (small rectangles).

Tiowest (123), (213), (132) H~S,
(231), (312), (321)

(122), (221) | (133),(331) | (233), (322)
Tmiddle (121), e12) | (313),(231) | (323), (232) H=S,
(221), (112) | (113),311) | (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H = 51
Cute facts.

» Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each H(e) is a maximal subgroup. (Group-like.)
» Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)



Clifford, Theorem. (Mind you;' .groups') eIk
Example There is a one-to-one correspondence s), right R
(rows), tw
simples with | onetoone | Simples of (any) . 5
Jo apex J(e) H(e) C J(e) =455
Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C). |
Imiddre (LZIJ,(212) BI3);, 13T) (9297,(237) =5,
(221), (112) | (113), 311) | (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H = 51
Cute facts.

» Each # contains precisely one idempotent e or none idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7 (e) is a maximal subgroup. (Group-like.)
» Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)



Clifford, I Theorem. (Mind you;' .groups|) monoids.
Example There is a one-to-one correspondence s), right R
(rows), tw
simples with | onetoone | Simples of (any) . 5
Jio apex J(e) H(e) C T (e) ~ 53
Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C). |
Imiddre W2 GE), (B 9295252 =5,
o1 12y [ (113) @i | (223) (332)
Example. (T3.)
jbiggest H = 51
H(e) = S3,52, 51 gives 3+ 2+ 1 =7 simples.
Cute facts.

» Each # contains precisely one idempotent e or none idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7 (e) is a maximal subgroup. (Group-like.)

» Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)



n s 1~ o~ 1Anan

Clifford, N*

Example
(rows), tw

Jio

Theorem. (Mind your groups')

There is a one-to-one correspondence

simples with | onetoone | Simples of (any)
S .
apex J(e) H(e) C T(e)

Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

monoids.

s), right R

& S

jmlddle

jbiggest

Cute facts.

WZIL R GE), (B [ (9Z9)5(232)

o). 112y [ (A13). 311 | (223) . (339)
Example. (T3.)

H(e) = S3,52, 51 gives 3+ 2+ 1 =7 simples.

7T

H

» Each #H

contain|Buzz words. Idempotent truncations, Kazhdan—Lusztig cells,

» Each #H

This is a general philosophy in representation theory.

quasi-hereditary algebras, cellular algebras, etc.

:52

251

. Each e is

» Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)
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Figure: The first ever “published” braid diagram. (Page 283 from GauB’ handwritten

notes, volume seven, <1830).

Tits ~1961-+. GauB’ braid group is the type A case of more general groups.



Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group S;.

Type B3 «~ cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.

For Is we have a 4-gon:

|Idea (Coxeter ~1934+|—).|
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

| R | P C
Type Az e tetr Fact. The symmetries are given by exchanging flags.
Type B3 «~ cub -

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Is we have a 4-gon:

[Idea (Coxeter ~1934++).]
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group S;.

Type B3 «~ cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.

For Is we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F. ’\
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group S;.

Type B3 «~ cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.

For Is we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.



https://en.wikipedia.org/wiki/Coxeter_group

Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type A3 «~ tetrahedron «~ symmetric group S;.

Type B3 «~ cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Is we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting ° °
the adjacent 1-cells of F, etc.

|Write a vertex i for each H,-.|



https://en.wikipedia.org/wiki/Coxeter_group

Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. This glves a generator-relation presentation.
Type Az <~ tetrahed 7.

Type B3 <A->|And the braid relat|on measures the angle between hyperplanes. |

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Is we have a 4-gon:

Fix a flag F_] [Idea (Coxeter ~1934++).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting T C ®
the adjacent 1-cells of F, etc. cos(m /4)

|Write a vertex i for each H,-.|

Connect i, by an n-edge for
H;, H; having angle cos(w/n).



https://en.wikipedia.org/wiki/Coxeter_group

Example (type B).

W = (s,t|s?=t?> =1, tsts = stst).

W ={1,s,t,st, ts, sts, tst, wp }

H(W) = C(v)(Hs, Hy | HZ2 = (v = V)Hs + 1, H? = (v — v)H; + 1, HeHsHe He = HoHe Ho He)

KL basis:
ca=1¢c=vHs + v2, ¢ = vH; + v2, etc.

c2 = (1 + v?)c,. (Quasi-idempotent, but “positively graded”.)
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Example (SAGE). The Weyl group of type Bs. Number of elements: 46080.
Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

5—7—10—13—15—18—21
7 7\ s 7
0—1—2—4—6—8—9—12—16—17—19—22—23—24—25
N, 7 N

20

Size of the cells and a-value:

cll JoJ1] 2| 3] 4 5 6 7 8 9 [10] 11 12 [13] 14 |15 ] 16 | 17 | 18 |19 | 20 | 21 | 22 [ 23 | 24|25
ize || 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62 | 1
112 ]3]3 4 4 5 5 6 6 6 7 9 | 10 |10 ] 10 [ 15 [ 11 |16 | 17 | 12 [ 15 | 25 [25]36

o




Example (cell 12).

Example (SAGE). The Cell 12 is a bit scary: r of elements: 46080.
Number of cells: 26, nam

455 | Lss | 1520 | 2505 | 2525

55 | 455 | Lso0 | 2525 | 2505

Cell order:
Loos | loos | 42020 | 22025 | 220,25

5 2355 | 2255 | 22500 | 42525 | lasos 1
/ 255 | 2255 | 22520 | las,os | 25,25

/L= N
7 N
14 20

Size of the cells and a-value:

cell 8 9 [10] 11 12 [13] 14 |15 ] 16 | 17 | 18 |19 | 20 | 21 | 22 [ 23 | 24|25
size || 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62 | 1
a JoJ1]2]3]3 4 4 5 5 6 6 6 7 9 | 10 |10 ] 10 [ 15 [ 11 |16 | 17 | 12 [ 15 | 25 [25]36

°
w
s
@
o




Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

CdCq =
(1 +5v2 +12v* 4+ 18v0 + 18v8 + 12010 4 512 4 y1¥)¢y
+(v? +4vt + 7v0 + 7v8 4 4v10 4 v12)c,
—i—(V_4 + 5V_2 + 11+ 14y2 + 11v* + 5V6 + V8)C121232123565

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

ddgad =
(1 +5v2 +12v* 4+ 18v0 + 18v8 + 12010 4 512 4 y1¥)¢y
+(v? +4vt + 7v0 + 7v8 4 4v10 4 v12)c,
—i—(V_4 + 5V_2 + 11+ 14y2 + 11v* + 5V6 + V8)C121232123565

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

ddgad =
(1 +5v2 +12v* 4+ 18v0 + 18v8 + 12010 4 512 4 y1¥)¢y
(v + 4+ TV TVE AV v,
—|—(V_4 =+ 5V_2 + 11 + ].4-V2 =+ 11V4 + 5V6 =+ VS)C121232123565

Bigger friends.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

ddgad =
(1 +5v2 +12v* 4+ 18v0 + 18v8 + 12010 4 512 4 y1¥)¢y
+(v? +4vt + 7v0 + 7v8 4 4v10 4 v12)c,

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

adgad =
(1+5v2 + 12v* + 18v0 + 18v8 + 12v10 + 512 4 1%y
+(v2 +4v* + TV + VB +4v10 + v12)e,

[Killed in the limit v — 0. |

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example (SAGE). Here is a random calculation in the cell 12 for type Bs.

adad =
ad

Looks much simpler.

Graph:
1=2—3—4—5—6

Elements (shorthand s; = i):

d=d! =132123565, u = u"! = 12132123565.



Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~1984).

type ‘ A ‘ B=C ‘ D ‘ Eg
worst case ‘ At e~ Rep(1) ‘ At e~ Rep(Z/227) ‘ At e~ Rep(Z/227) ‘ At e~ Rep(S3)

type ‘ E; ‘ Eg ‘ Fy ‘ Gy
worst case ‘ At e~ Rep(S3) ‘ At e~ Rep(Ss) ‘ At e~ Rep(Ss) ‘ At e S O(3)s
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