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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representation of these.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S .
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Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.

Frobenius ∼1895++, Burnside ∼1900++, Noether ∼1928++.
Representation theory is the useful? study of algebra actions

M : C −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ∼1899, Noether, Schreier ∼1928. All modules are built out of
simples (“Jordan–Hölder” filtration).

Basic question: Find the periodic table of simples.

Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);

I will stick to this case for the rest of the talk,

but what I am going to explain works for 2-categories.
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2-representation theory is group theory in categories

Let C be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others ∼2000++. 2-representation
theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple (“simple transitive”).
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A category V is called finitary if its equivalent to C-pMod. In particular:

I It has finitely many indecomposable objects Mj (up to ∼=).

I It has finite-dimensional hom-spaces.

I Its Grothendieck group [V] = [V]Z ⊗Z C is finite-dimensional.

A finitary, monoidal category C can thus be seen as a categorification of a
finite-dimensional algebra.
Its indecomposable objects Ci give a distinguished basis of [C ].

A finitary 2-representation of C :

I A choice of a finitary category V.

I (Nice) endofunctorsM (Ci ) acting on V.

I [M (Ci )] give N-matrices acting on [V].

The atoms (decat).

A C module is called simple

if it has no C-stable ideals.

The atoms (cat).

A C 2-module is called 2-simple

if it has no C -stable ⊗-ideals.

Dictionary.

cat finitary finitary+monoidal fiat functors

decat vector space algebra self-injective matrices

Instead of studying C and its action via matrices,

study C-pMod and its action via functors.

Example (decat).

C = C = 1 acts on any vector space via λ · .

It has only one simple V = C.

Example (cat).

C = V ec = Rep(1) acts on any finitary category via C⊗C

It has only one 2-simple V = Vec.
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =
M

M

A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) and their modules Click .

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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Example (Rep(G )).

I Let C = Rep(G ) (G a finite group).

I C is monoidal and finitary (and fiat). For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial representation 1.

I The regular 2-representationM : C → End(C ):

M //

f

��

M⊗
f⊗
��

N // N⊗

.

I The decategorification is a N-representation, the regular representation.

I The associated algebra object is AM = 1 ∈ C .

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example
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Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is AM = IndG
K (1K ) ∈ C , but with ψ-twisted

multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 6 / 13



Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is AM = IndG
K (1K ) ∈ C , but with ψ-twisted

multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 6 / 13



Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is AM = IndG
K (1K ) ∈ C , but with ψ-twisted

multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Daniel Tubbenhauer 2-representation theory of Soergel bimodules June 2019 6 / 13



Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is AM = IndG
K (1K ) ∈ C , but with ψ-twisted

multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate or ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Semigroups

Write X ≤L Y if Y is a direct summand of ZX for Z ∈ C , i.e. Y ⊂⊕ ZX. X ∼L Y if
X ≤L Y and Y ≤L X. ∼L partitions C into left cells L. Similarly for right R,
two-sided cells J or 2-modules.

An apex is a maximal two-sided cell not annihilating a 2-module.

Fact (Chan–Mazorchuk ∼2016). Any 2-simple has a unique apex.

Mackaay–Mazorchuk–Miemietz–Zhang ∼2018. For any fiat 2-category C
(semigroup-like) there exists a fiat 2-subcategory AH (almost group-like) such that

{
2-simples of C

with apex J

}
one-to-one←−−−−→

{
2-simples of AH
with apex H ⊂ J

}

Catch. In general AH is not fusion.

Example (group-like).

Fusion categories, e.g. Rep(G), have only one cell. AH is everything.

Example (semigroup-like).

Let Rep(G ,K) for K being of prime characteristic.
The projectives form a two-sided cell. AH can be complicated.

Example (Kazhdan–Lusztig ∼1979, Soergel ∼1990).

Soergel bimodules S (Sn) for the symmetric group
have cells coming from the Robinson–Schensted correspondence.

AH has one indecomposable object, but is not fusion.

Example (Taft algebra T2).

T2-Mod has two cells – the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Let Γ be a Coxeter graph.

Artin ∼1925, Tits ∼1961++. The Artin–Tits group and its Coxeter group
quotient are given by generators-relations:

AT = 〈bi | · · · bibjbi︸ ︷︷ ︸
mij factors

= · · · bjbibj︸ ︷︷ ︸
mij factors

〉

W = 〈si | s2 = 1, · · · si sjsi︸ ︷︷ ︸
mij factors

= · · · sjsi sj︸ ︷︷ ︸
mij factors

〉

.

Generalize classical braid groups, or generalize polyhedron groups, respectively.

H is the quotient of Z[v , v−1]AT by the quadratic relations, e.g.

− = (v − v−1) .

Fact (Kazhdan–Lusztig ∼1979, Soergel–Elias–Williamson ∼1990,2012). H
has a distinguished basis, called the KL basis , which is a decategorification of
indecomposable objects of S .

Question. What can one say about simples of H using KL cells?
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Example (type B2).

W = 〈s, t | s2 = t2 = 1, tsts = stst〉. Number of elements: 8. Number of cells: 3,
named 0 (lowest) to 2 (biggest).

Cell order:
0 1 2

Size of the cells:
cell 0 1 2

size 1 6 1

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

Example (SAGE).

1 · 1 = 1.

Example (SAGE).

cs · cs = (1+bigger powers)cs .
csts · cs = (1+bigger powers)csts .

csts · csts = (1+bigger powers)cs+higher cell elements.
csts · ctst = (bigger powers)cst + higher cell elements.

Example (SAGE).

cw0 · cw0 = (1+bigger powers)cw0 .

Fact (Lusztig ∼1984++).

For any Coxeter group W
there is a well-defined function

a : W → N

which is constant on two-sided cells.

Big example

Idea (Lusztig ∼1984).

Ignore everything except the leading coefficient
of the classical KL basis shifted by a(two-sided cell).

Those shifted versions are what I denote by cw .
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The asymptotic limit A0(W ) of Hv (W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv (W ) = Z[v , v−1]{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J v a(z)hzx,ycz + bigger friends.

where γzx,y ∈ N is the leading coefficient of hzx,y ∈ N[v , v−1].

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v 2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J AJ0 (W ) with the aw basis

and all its summands AJ0 (W ) = Z{aw | w ∈ J }
are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv (W ) ↪→ A0(W )⊗Z Z[v , v−1]

which is an isomorphism after scalar extension to C(v).

Surprising fact 2 – H-cell-theorem (Lusztig ∼1984++).

There is an explicit one-to-one correspondence

{simples of Hv (W ) with apex J } one-to-one←−−−−→ {simples of AH0 (W )}.

Example
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The asymptotic limit A0(W ) of Hv (W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv (W ) = Z[v , v−1]{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J v a(z)hzx,ycz + bigger friends.

where γzx,y ∈ N is the leading coefficient of hzx,y ∈ N[v , v−1].

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v 2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J AJ0 (W ) with the aw basis

and all its summands AJ0 (W ) = Z{aw | w ∈ J }
are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv (W ) ↪→ A0(W )⊗Z Z[v , v−1]

which is an isomorphism after scalar extension to C(v).

Surprising fact 2 – H-cell-theorem (Lusztig ∼1984++).

There is an explicit one-to-one correspondence

{simples of Hv (W ) with apex J } one-to-one←−−−−→ {simples of AH0 (W )}.

Example
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Categorified picture – Part 1.

Theorem (Soergel–Elias–Williamson ∼1990,2012).
There exists a monoidal category S such that:

I (1) For every w ∈W , there exists an indecomposable object Cw .

I (2) The Cw , for w ∈W , form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

I (3) The identity object is C1, where 1 is the unit in W .

I (4) C categorifies H with [Cw ] = cw .

Examples in type A1; polynomial ring.

Let R = C[x ] with W = S2 action given by s.x = −x ; Rs = C[x2].

The indecomposable Soergel bimodules over R are
C1 = C[x ] and Cs = C[x ]⊗C[x2] C[x ].

Examples in type A1; coinvariant algebra.

The coinvariant algebra is RW = C[x ]/x2.

The indecomposable Soergel bimodules over RW are
C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2.

Examples in type A1; coinvariant algebra.

Cs ⊗RW Cs =
(
C[x ]/x2 ⊗ C[x ]/x2

)
⊗C[x]/x2

(
C[x ]/x2 ⊗ C[x ]/x2

)
.

Which gives CsCs ∼= Cs ⊕ Cs〈2〉 = (1 + v 2)Cs .
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Categorified picture – Part 2.

Theorem (Lusztig, Elias–Williamson ∼2012).
Let H be an H-cell of W . There exists a fusion category AH such that:

I (1) For every w ∈ H, there exists a simple object Aw .

I (2) The Aw , for w ∈ H, form a complete set of pairwise non-isomorphic simple
objects.

I (3) The identity object is Ad , where d is the Duflo involution.

I (4) AH categorifies AH with [Aw ] = aw and

AxAy =
⊕

z∈J γ
z
x,yAz . vs. CxCy =

⊕
z∈J v a(z)hzx,yCz + bigger friends.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)
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Categorified picture – Part 2.

Theorem (June 2019 on arXiv).
For any finite Coxeter group W and any H ⊂ J of W , there is an injection

Θ:
(
{2-simples of AH} / ∼=

)
↪→
(
{graded 2-simples of S with apex J } / ∼=

)

I We conjecture Θ to be a bijection.

I We have proved the conjecture for all H which contain the longest element of
a parabolic subgroup of W .

I If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of S .

I For almost all W , we would get a complete classification of the 2-simples.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/x2 and Cs = C[x ]/x2 ⊗ C[x ]/x2. (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representation of these.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S .
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =
M

M

A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) and their modules Click .

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back

G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.
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∼=  ( 0 1
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Back

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Back

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 7 simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)
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Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1
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I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)
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Back

Theorem. (Mind your groups!)
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.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I8 we have a 4-gon:

• • •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

The asymptotic limit A0(W ) of Hv (W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv (W ) = Z[v , v−1]{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J v a(z)hzx,ycz + bigger friends.

where γzx,y ∈ N is the leading coefficient of hzx,y ∈ N[v , v−1].

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v 2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J AJ0 (W ) with the aw basis

and all its summands AJ0 (W ) = Z{aw | w ∈ J }
are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv (W ) ↪→ A0(W )⊗Z Z[v , v−1]

which is an isomorphism after scalar extension to C(v).

Surprising fact 2 – H-cell-theorem (Lusztig ∼1984++).

There is an explicit one-to-one correspondence

{simples of Hv (W ) with apex J } one-to-one←−−−−→ {simples of AH0 (W )}.

Example
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Example: Hecke algebras as non-semisimple fusion rings (Lusztig ∼1984).

type A B = C D E6

worst case AH0 ! Rep(1) AH0 ! Rep(Z/2Zd) AH0 ! Rep(Z/2Zd) AH0 ! Rep(S3)

type E7 E8 F4 G2

worst case AH0 ! Rep(S3) AH0 ! Rep(S5) AH0 ! Rep(S4) AH0 ! S O (3)6

This gives a complete classification of simples for finite Weyl type Hecke algebras.

Back

There is still much to do...

Thanks for your attention!
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representation of these.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S .
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =
M

M

A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) and their modules Click .

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back

G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Back

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 7 simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Back

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 7 simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I8 we have a 4-gon:

• • •

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

The asymptotic limit A0(W ) of Hv (W ) is defined as follows.

As a free Z-module:

A0(W ) =
⊕
J Z{aw | w ∈ J }. vs. Hv (W ) = Z[v , v−1]{cw | w ∈W }.

Multiplication.

axay =
∑

z∈J γ
z
x,yaz . vs. cxcy =

∑
z∈J v a(z)hzx,ycz + bigger friends.

where γzx,y ∈ N is the leading coefficient of hzx,y ∈ N[v , v−1].

Example (type B2).

The multiplication tables (empty entries are 0 and [2] = 1 + v 2) in 1:
as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

A0(W ) =
⊕
J AJ0 (W ) with the aw basis

and all its summands AJ0 (W ) = Z{aw | w ∈ J }
are multifusion algebras. (Group-like.)

Multifusion algebras = decategorifications of multifusion categories.

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv (W ) ↪→ A0(W )⊗Z Z[v , v−1]

which is an isomorphism after scalar extension to C(v).

Surprising fact 2 – H-cell-theorem (Lusztig ∼1984++).

There is an explicit one-to-one correspondence

{simples of Hv (W ) with apex J } one-to-one←−−−−→ {simples of AH0 (W )}.

Example
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Example: Hecke algebras as non-semisimple fusion rings (Lusztig ∼1984).

type A B = C D E6

worst case AH0 ! Rep(1) AH0 ! Rep(Z/2Zd) AH0 ! Rep(Z/2Zd) AH0 ! Rep(S3)

type E7 E8 F4 G2

worst case AH0 ! Rep(S3) AH0 ! Rep(S5) AH0 ! Rep(S4) AH0 ! S O (3)6

This gives a complete classification of simples for finite Weyl type Hecke algebras.

Back

There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



Simple objects in Rep(Z/2Z) are 1 (trivial) and −1 (sign).

Algebra object 1. A1 = 1:

µ 1⊗ 1
1 1

.

Two modules M1 = 1 and M2 = −1, so ModRep(Z/2Z)(1) ∼= Rep(Z/2Z).

Algebra object 2. A2 = 1⊕−1:

µ 1⊗ 1 1⊗−1 −1⊗ 1 −1⊗−1
1 1 1
−1 1 1

.

One module M3 = 1⊕−1, so ModRep(Z/2Z)(1⊕−1) ∼= Rep(1).

Both are 2-representation of Rep(Z/2Z) since e.g.

−1⊗ (1⊕−1) ∼= −1⊕ 1 ∼= 1⊕−1.

Back



G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back



G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.
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⊕ ⊕
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G = S3, S4 and S5, their subgroups (up to conjugacy), Schur multipliers and ranks
of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z
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Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5
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H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  
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0 0 1
0 1 0
1 0 0
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.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK
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∼=  ( 0 1

1 0 ).
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The Taft Hopf algebra:

T2 = C〈g , x〉/(g2 = 1, x2 = 0, gx = −xg) = C[Z/2Z]⊗̂C[x ]/(x2).

T2-pMod is a non-semisimple fiat category.

simples : {S0,S−1}
{
g .m = ±m,
x .m = 0,

indecomposables : {P0,P−1}.

Tensoring with the projectives P0 or P−1 gives a 2-representation of T2-pMod
which however can be twisted by a scalar λ ∈ C. The algebra objects are

C[Z/2Z]⊗ C[x ]/(x2 − λ) and C[1]⊗ C[x ]/(x2 − λ).

This gives a one-parameter family of non-equivalent 2-simples of T2-pMod.

Back

Classical result (decat).

C has only finitely many simples.

Wrong result (cat).

C has only finitely many 2-simples.

One crucial problem.

There can be infinitely many categorifications.
The decategorifications [M λ

i ] are all the same.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example. N, Aut({1, 2, 3}) = S3 ⊂ T3 = End({1, 2, 3}), groups, groupoids,
categories, any · closed subsets of matrices, “anything you will ever meet”, etc.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : zx = y , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : xz ′ = y , x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : zxz ′ = y , x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell – e.g. 1 ≤L y
because we can take z = y . Invertible elements g are always in the lowest cell – e.g.
g ≤L y because we can take z = yg−1.

Back

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 7 simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.



Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells - left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.
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Back

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 7 simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.
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Figure: The first ever “published” braid diagram. (Page 283 from Gauß’ handwritten
notes, volume seven, ≤1830).

Tits ∼1961++. Gauß’ braid group is the type A case of more general groups.
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Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.
For I8 we have a 4-gon:

Back

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.

https://en.wikipedia.org/wiki/Coxeter_group
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Example (type B2).

W = 〈s, t | s2 = t2 = 1, tsts = stst〉.

W = {1, s, t, st, ts, sts, tst,w0}

H(W ) = C(v)〈Hs ,Ht | H2
s = (v−1 − v)Hs + 1,H2

t = (v−1 − v)Ht + 1,HtHsHtHs = HsHtHsHt〉

KL basis:
c1 = 1, cs = vHs + v2, ct = vHt + v2, etc.

c2
s = (1 + v2)cs . (Quasi-idempotent, but “positively graded”.)

Back
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Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (lowest) to 25 (biggest).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells and a-value:

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 15 11 16 17 12 15 25 25 36

Back

Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25
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Example (SAGE). Here is a random calculation in the cell 12 for type B6.

Graph:

1 2 3 4 5 64

Elements (shorthand si = i):

d = d−1 = 132123565, u = u−1 = 12132123565.

Back

Bigger friends.Killed in the limit v → 0.Looks much simpler.
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Example: Hecke algebras as non-semisimple fusion rings (Lusztig ∼1984).

type A B = C D E6

worst case AH0 ! Rep(1) AH0 ! Rep(Z/2Zd) AH0 ! Rep(Z/2Zd) AH0 ! Rep(S3)

type E7 E8 F4 G2

worst case AH0 ! Rep(S3) AH0 ! Rep(S5) AH0 ! Rep(S4) AH0 ! S O (3)6

This gives a complete classification of simples for finite Weyl type Hecke algebras.
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