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End-to-end encryption

I E2EE Only the two communicating parties should decrypt the message

I Problem How to transfer the encryption key?

I Diffie–Hellman (DH) Addresses this problem

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)

The public data is a monoid S , and two sets A,B ⊂ S of commuting elements and g ∈ S

Party A chooses privately a, a′ ∈ A and party B chooses privately b, b′ ∈ A

Party A communicates aga′, B sends bgb′ and the common secret is abgb′a′ = baga′b′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Example (Stickel’s (St) key exchange protocol)

The public data is a monoid S , and two noncommuting elements g , h ∈ S , gh 6= hg

Party A chooses privately a, a′ ∈ N and party B chooses privately b, b′ ∈ N

Party A communicates g aha′ , B sends gbhb′ and the common secret is g agbhb′ha′ = gbg aha′hb′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Linear attack (Myasnikov–Roman’kov ∼2015)

“All” protocol involving monoids can be attacked
if the monoid admits a small non-trivial representation

Enter representation theory

No algebras, please (Myasnikov–Roman’kov ∼2015)

Stay set-theoretical: algebras are easier to attack linearly

Computers and fields

The important ground fields in this business are Q or Fq

(A computer doesn’t know what R or C are)

Our idea

Systematically study and construct monoids with no small non-trivial representations

The abstract theory is governed by Green’s theory of cells (Green’s relations)

The good finite examples come from quantum topology and monoidal categories

Monoidal categories provide families of examples Sn = EndC (X⊗n)

Other examples we know come from 2-representation theory and fusion categories

A measure

A measure of whether a monoid resists linear attacks is the representation gap gapK(S):

The minimal m such that M 6∼= 1
⊕k
bt with dimM = m exists

Up to extensions, the gap is min{dim L|L simple, non-trivial}

The point

Make a list of families of monoids Sn

with large gapK(Sn) compared to |Sn|

Whether these are really useful for cryptography
is a question for later ;-)
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Examples and non-examples

I Classical examples Cyclic groups have a big representation gap over Q

I Non-examples Groups of Lie type have quite small representations

I Non-examples Sporadic groups are too sporadic to be useful

Example (Sn = Z/nZ)

gapQ(Sn) = min{r − 1 | r prime, r | n}
since e.g. X p − 1 = (X − 1)(X p−1 + ... + X + 1) and (X p−1 + ... + X + 1) is irreducible

gapFq (Sn) is small in general

Currently this is theoretical in nature
and doesn’t imply DH is broken

Example (Sn = symmetric or alternating groups)

gapK(Sn) ≤ n
since the permutation representation is n-dimensional

n is very small compared to |Sn|

Example (Sn, Sq = SLn(Fq) and PSLn(Fq))

gapFq (Sq) ≤ n2 − 1
since they act on Fn

q ⊗ (Fn
q)∗/Fq

n2 − 1 is very small compared to |Sn|, |Sq|

Example (Sn =a sporadic group)

Sporadic groups do not come in families and

are not well-suited for cryptography

And they are too small
(Yes, the monster is too small)

Summary

The finite simple groups (not quite all finite groups)
are not well-suited for cryptography, or are abelian

In the realm of groups, one mostly needs to stay with infinite groups

such as Artin, Thompson, Grigorchuk groups and alike

Example (Sn =braid group in n strands)

gapK(Sn) ≈ n or n(n − 1)/2
the dimensions of the Burau and the LKB representation

Too small

Task

Find good lower bounds and growth rates for the representation gap

Observation

This is mostly open, even for groups:
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Temperley–Lieb works!

I Monoidal category example The Temperley–Lieb monoid TLn (circle= δ =1)

I TLn has one simple Lk per k ∈ {n, n − 2, ..., 1 or 0} (through strands)

I Extensions 1bt → M → 1bt are all trivial

Dimensions of simple TL24-representations

Example (following Spencer ∼2021)

After appropriate truncation
the representation gap of TLn is bounded from below by

4
(n+b2√nc+2)(n+b2√nc+4)

(
n

(n+b2√nc)/2
)
∈ Θ(2nn−5/2)

Logplot of the lower bound
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The “How to” – some theory

I Left order ≤l : a ≤l b ⇔ ∃c : b = ca

I Left cells: (a ∼l b)⇔ (a ≤l b and b ≤l a)

I Right and two-sided are defined similar

I Green cells structure monoids

Example (transformation monoid Tn = End({1, ..., n}))

Example (C3,2 = 〈a|a3+2 = a3〉)

Example (transformation monoid Tn = End({1, ..., n}))

One simple of apex Jbottom

two of apex Jmiddle (unless char(K) = 2)
and one of apex Jtop

Example (C3,2 = 〈a|a3+2 = a3〉)

One simple of apex Jbottom

two of apex Jtop (unless char(K) = 2)

Example (back to Temperley–Lieb)

One simple of apex Jk

where k =number of through strands)

Remark

Using Gram/pairing matrices (works in general)
one can compute the simple dimensions
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End-to-end encryption

I E2EE Only the two communicating parties should decrypt the message

I Problem How to transfer the encryption key?

I Diffie–Hellman (DH) Addresses this problem

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)

The public data is a monoid S , and two sets A,B ⊂ S of commuting elements and g ∈ S

Party A chooses privately a, a′ ∈ A and party B chooses privately b, b′ ∈ A

Party A communicates aga′, B sends bgb′ and the common secret is abgb′a′ = baga′b′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Example (Stickel’s (St) key exchange protocol)

The public data is a monoid S , and two noncommuting elements g , h ∈ S , gh 6= hg

Party A chooses privately a, a′ ∈ N and party B chooses privately b, b′ ∈ N

Party A communicates g aha′ , B sends gbhb′ and the common secret is g agbhb′ha′ = gbg aha′hb′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Linear attack (Myasnikov–Roman’kov ∼2015)

“All” protocol involving monoids can be attacked
if the monoid admits a small non-trivial representation

Enter representation theory

No algebras, please (Myasnikov–Roman’kov ∼2015)

Stay set-theoretical: algebras are easier to attack linearly

Computers and fields

The important ground fields in this business are Q or Fq

(A computer doesn’t know what R or C are)

Our idea

Systematically study and construct monoids with no small non-trivial representations

The abstract theory is governed by Green’s theory of cells (Green’s relations)

The good finite examples come from quantum topology and monoidal categories

Monoidal categories provide families of examples Sn = EndC (X⊗n)

Other examples we know come from 2-representation theory and fusion categories

A measure

A measure of whether a monoid resists linear attacks is the representation gap gapK(S):

The minimal m such that M 6∼= 1
⊕k
bt with dimM = m exists

Up to extensions, the gap is min{dim L|L simple, non-trivial}

The point

Make a list of families of monoids Sn

with large gapK(Sn) compared to |Sn|

Whether these are really useful for cryptography
is a question for later ;-)
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End-to-end encryption

I Symmetric Both parties us the same secret key

I Problem (still) How to transfer the encryption key?

I Asymmetric Both parties have a public and a private key, no sharing needed

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)

The public data is a monoid S , and two sets A,B ⊂ S of commuting elements and g ∈ S

Party A chooses privately a, a′ ∈ A and party B chooses privately b, b′ ∈ A

Party A communicates aga′, B sends bgb′ and the common secret is abgb′a′ = baga′b′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Example (Stickel’s (St) key exchange protocol)

The public data is a monoid S , and two noncommuting elements g , h ∈ S , gh 6= hg

Party A chooses privately a, a′ ∈ N and party B chooses privately b, b′ ∈ N

Party A communicates g aha′ , B sends gbhb′ and the common secret is g agbhb′ha′ = gbg aha′hb′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Linear attack (Myasnikov–Roman’kov ∼2015)

“All” protocol involving monoids can be attacked
if the monoid admits a small non-trivial representation

Enter representation theory

No algebras, please (Myasnikov–Roman’kov ∼2015)

Stay set-theoretical: algebras are easier to attack linearly

Computers and fields

The important ground fields in this business are Q or Fq

(A computer doesn’t know what R or C are)

Our idea

Systematically study and construct monoids with no small non-trivial representations

The abstract theory is governed by Green’s theory of cells (Green’s relations)

The good finite examples come from quantum topology and monoidal categories

Monoidal categories provide families of examples Sn = EndC (X⊗n)

Other examples we know come from 2-representation theory and fusion categories

A measure

A measure of whether a monoid resists linear attacks is the representation gap gapK(S):

The minimal m such that M 6∼= 1
⊕k
bt with dimM = m exists

Up to extensions, the gap is min{dim L|L simple, non-trivial}

The point

Make a list of families of monoids Sn

with large gapK(Sn) compared to |Sn|

Whether these are really useful for cryptography
is a question for later ;-)
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Examples and non-examples

I Classical examples Cyclic groups have a big representation gap over Q

I Non-examples Groups of Lie type have quite small representations

I Non-examples Sporadic groups are too sporadic to be useful

Example (Sn = Z/nZ)

gapQ(Sn) = min{r − 1 | r prime, r | n}
since e.g. X p − 1 = (X − 1)(X p−1 + ... + X + 1) and (X p−1 + ... + X + 1) is irreducible

gapFq (Sn) is small in general

Currently this is theoretical in nature
and doesn’t imply DH is broken

Example (Sn = symmetric or alternating groups)

gapK(Sn) ≤ n
since the permutation representation is n-dimensional

n is very small compared to |Sn|

Example (Sn,Sq = SLn(Fq) and PSLn(Fq))

gapFq (Sq) ≤ n2 − 1
since they act on Fn

q ⊗ (Fn
q)∗/Fq

n2 − 1 is very small compared to |Sn|, |Sq|

Example (Sn =a sporadic group)

Sporadic groups do not come in families and

are not well-suited for cryptography

And they are too small
(Yes, the monster is too small)

Summary

The finite simple groups (not quite all finite groups)
are not well-suited for cryptography, or are abelian

In the realm of groups, one mostly needs to stay with infinite groups

such as Artin, Thompson, Grigorchuk groups and alike

Example (Sn =braid group in n strands)

gapK(Sn) ≈ n or n(n − 1)/2
the dimensions of the Burau and the LKB representation

Too small

Task

Find good lower bounds and growth rates for the representation gap

Observation

This is mostly open, even for groups:
in representation theory researchers prefer(?) precise numbers

and bounds are not very common

I will zoom in on Temperley–Lieb now
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Examples and non-examples

I New examples Finite monoids coming from quantum topology

I More specific Submonoids of the partition monoid above
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Temperley–Lieb works!

I Monoidal category example The Temperley–Lieb monoid TLn (circle= δ =1)

I TLn has one simple Lk per k ∈ {n, n − 2, ..., 1 or 0} (through strands)

I Extensions 1bt → M → 1bt are all trivial

Dimensions of simple TL24-representations

Example (following Spencer ∼2021)

After appropriate truncation
the representation gap of TLn is bounded from below by

4
(n+b2√nc+2)(n+b2√nc+4)

(
n

(n+b2√nc)/2
)
∈ Θ(2nn−5/2)

Logplot of the lower bound
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The “How to” – some theory

I Left order ≤l : a ≤l b ⇔ ∃c : b = ca

I Left cells: (a ∼l b)⇔ (a ≤l b and b ≤l a)

I Right and two-sided are defined similar

I Green cells structure monoids

Example (transformation monoid Tn = End({1, ..., n}))

Example (C3,2 = 〈a|a3+2 = a3〉)

Example (transformation monoid Tn = End({1, ..., n}))

One simple of apex Jbottom

two of apex Jmiddle (unless char(K) = 2)
and one of apex Jtop

Example (C3,2 = 〈a|a3+2 = a3〉)

One simple of apex Jbottom

two of apex Jtop (unless char(K) = 2)

Example (back to Temperley–Lieb)

One simple of apex Jk

where k =number of through strands)

Remark

Using Gram/pairing matrices (works in general)
one can compute the simple dimensions
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There is still much to do...

Thanks for your attention!
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End-to-end encryption

I E2EE Only the two communicating parties should decrypt the message

I Problem How to transfer the encryption key?

I Diffie–Hellman (DH) Addresses this problem

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)

The public data is a monoid S , and two sets A,B ⊂ S of commuting elements and g ∈ S

Party A chooses privately a, a′ ∈ A and party B chooses privately b, b′ ∈ A

Party A communicates aga′, B sends bgb′ and the common secret is abgb′a′ = baga′b′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Example (Stickel’s (St) key exchange protocol)

The public data is a monoid S , and two noncommuting elements g , h ∈ S , gh 6= hg

Party A chooses privately a, a′ ∈ N and party B chooses privately b, b′ ∈ N

Party A communicates g aha′ , B sends gbhb′ and the common secret is g agbhb′ha′ = gbg aha′hb′

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it
is to find the common secret from the public data

Linear attack (Myasnikov–Roman’kov ∼2015)

“All” protocol involving monoids can be attacked
if the monoid admits a small non-trivial representation

Enter representation theory

No algebras, please (Myasnikov–Roman’kov ∼2015)

Stay set-theoretical: algebras are easier to attack linearly

Computers and fields

The important ground fields in this business are Q or Fq

(A computer doesn’t know what R or C are)

Our idea

Systematically study and construct monoids with no small non-trivial representations

The abstract theory is governed by Green’s theory of cells (Green’s relations)

The good finite examples come from quantum topology and monoidal categories

Monoidal categories provide families of examples Sn = EndC (X⊗n)

Other examples we know come from 2-representation theory and fusion categories

A measure

A measure of whether a monoid resists linear attacks is the representation gap gapK(S):

The minimal m such that M 6∼= 1
⊕k
bt with dimM = m exists

Up to extensions, the gap is min{dim L|L simple, non-trivial}

The point

Make a list of families of monoids Sn

with large gapK(Sn) compared to |Sn|

Whether these are really useful for cryptography
is a question for later ;-)
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Examples and non-examples

I Classical examples Cyclic groups have a big representation gap over Q

I Non-examples Groups of Lie type have quite small representations

I Non-examples Sporadic groups are too sporadic to be useful

Example (Sn = Z/nZ)

gapQ(Sn) = min{r − 1 | r prime, r | n}
since e.g. X p − 1 = (X − 1)(X p−1 + ... + X + 1) and (X p−1 + ... + X + 1) is irreducible

gapFq (Sn) is small in general

Currently this is theoretical in nature
and doesn’t imply DH is broken

Example (Sn = symmetric or alternating groups)

gapK(Sn) ≤ n
since the permutation representation is n-dimensional

n is very small compared to |Sn|

Example (Sn,Sq = SLn(Fq) and PSLn(Fq))

gapFq (Sq) ≤ n2 − 1
since they act on Fn

q ⊗ (Fn
q)∗/Fq

n2 − 1 is very small compared to |Sn|, |Sq|

Example (Sn =a sporadic group)

Sporadic groups do not come in families and

are not well-suited for cryptography

And they are too small
(Yes, the monster is too small)

Summary

The finite simple groups (not quite all finite groups)
are not well-suited for cryptography, or are abelian

In the realm of groups, one mostly needs to stay with infinite groups

such as Artin, Thompson, Grigorchuk groups and alike

Example (Sn =braid group in n strands)

gapK(Sn) ≈ n or n(n − 1)/2
the dimensions of the Burau and the LKB representation

Too small

Task

Find good lower bounds and growth rates for the representation gap

Observation

This is mostly open, even for groups:
in representation theory researchers prefer(?) precise numbers

and bounds are not very common

I will zoom in on Temperley–Lieb now
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Temperley–Lieb works!

I Monoidal category example The Temperley–Lieb monoid TLn (circle= δ =1)

I TLn has one simple Lk per k ∈ {n, n − 2, ..., 1 or 0} (through strands)

I Extensions 1bt → M → 1bt are all trivial

Dimensions of simple TL24-representations

Example (following Spencer ∼2021)

After appropriate truncation
the representation gap of TLn is bounded from below by

4
(n+b2√nc+2)(n+b2√nc+4)

(
n

(n+b2√nc)/2
)
∈ Θ(2nn−5/2)

Logplot of the lower bound
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The “How to” – some theory

I Left order ≤l : a ≤l b ⇔ ∃c : b = ca

I Left cells: (a ∼l b)⇔ (a ≤l b and b ≤l a)

I Right and two-sided are defined similar

I Green cells structure monoids

Example (transformation monoid Tn = End({1, ..., n}))

Example (C3,2 = 〈a|a3+2 = a3〉)

Example (transformation monoid Tn = End({1, ..., n}))

One simple of apex Jbottom

two of apex Jmiddle (unless char(K) = 2)
and one of apex Jtop

Example (C3,2 = 〈a|a3+2 = a3〉)

One simple of apex Jbottom

two of apex Jtop (unless char(K) = 2)

Example (back to Temperley–Lieb)

One simple of apex Jk

where k =number of through strands)

Remark

Using Gram/pairing matrices (works in general)
one can compute the simple dimensions
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There is still much to do...

Thanks for your attention!
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