Generalizing zigzag algebras

Or: It's all about polynomials
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Let A = A(I') be the adjacency matrix of a finite, connected, loopless graph .
Let Uet1(X) be the

Classification problem (CP). Classify all I such that Ue;1(A) = 0.
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g fore=2

Us(X) = (;( —2cos(g))(X — 2cos(%‘))X(X - 2cos(%’))(X —2cos(% )

0 0 0 1
1 0 0 0 1 Ty 02 5m
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3 1110 v fore=4

Daniel Tubbenhauer Generalizing zigzag algebras November 2018 2/15



Let A = Smith ~1969. The graphs solutions to (CP) are precisely aph T
Let Ueyr ADE graphs for e + 2 being the Coxeter number.
c:ITypeAm: . - —— . . —e o o  fore=m-1 0.
Type Dm: o——e—- .. v~ fore=2m-—4
Az = 1 3
3T %1 TypeEs: I v~ fore=10 cos(Z)}
i
Type E7: v~ fore=16
D4 = 1 - - - - i - Zcos(%)}
Type Es: { v~ fore=28
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Let A =
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Smith ~1969. The graphs solutions to (CP) are precisely

ADE graphs for e + 2 being the Coxeter number.
Type A: o . o o  fore=m-1
Type Dppi o——eo—. *o—/ W fore=2m—4
Fact. If I" is allowed to have loops,
then there is one extra family called tadpoles:

Type E . . . . . O e=10
Tpa They usuallyldo not play a role.v e—16
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Let A = A(I') be the adjacency matrix of a finite, connected, loopless graph .
Let Uet1(X) be the

Classification problem (CP). Classify all I such that Ue;1(A) = 0.

Us(X) = (X — 2 cos(T))X(X — 2 cos(3F))

A — 1 3 7 Fact. Uei1(A) has negative entries for some e | i
3T if and only if A is of type ADE. Fos(), 0,2 cos(57)}
Us(X) = (X This is a much stronger statement and the only 305(5%))

proof | know uses categorification.

1
D4 = 4 —~> A(Dy) = Lg 8 8 1) —~— {2cos(%),0% 2cos(3F)}
1 1 1 0
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0 The zigzag algebras
@ Definition
@ Some first properties

e Algebraic properties of zigzag algebras
@ The statements
@ The proofs; well, kind of...

e The trihedral zigzag algebras
@ Definition
@ Some first properties
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Zigzag algebras

Take the double graph I'= of I' and add two loops a5 = (as); and ay = ()i per
vertex. Take its path algebra R(I'=).

Let Ze= = Z=(I') be the quotient of R(I'=) by:
(a) Boundedness. Any path involving three distinct vertices is zero.

(b) The relations of the cohomology ring H*(SL(2)/B). a5 o0 oy = oy 0 a,
ag +ar =0 and ag 0oy = 0.

(c) Zigzag. i+j=+i = as — ay for i—j.

Z= is the zigzag algebra associated to I'. It can be graded using the path length.

Not important for today: This definition only works for more than three vertices.
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Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

» Wakamatsu & others ~1980-+. Study of Artin algebras.

» Huerfano—Khovanov ~2000, Khovanov—Seidel ~2000 & others.
Categorical braid group actions.

» Implicit in the literature <2000, Huerfano—Khovanov ~2000,
Evseev—Kleshchev ~2016 & others. Finite groups in prime characteristic.

» Implicit in the literature <2000, Stroppel ~2003 & others. Versions of
category O.

» Implicit in the literature <2000, Qi—Sussan ~2013, Andersen ~2014 &
others. Representation theory of reductive groups in prime characteristic,
quantum groups at roots of unity.

» Too many people to fit on this slide. In various places in categorification.
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The Cartan matrix

2y, ifi=j, {i,x%i} is a basis,
qdim(Homgz_ (i,j)) =< q, ifi—j, {i»j} is a basis,
0, else, () is a basis,

where qdim(_) denotes the graded dimension, and 2, =1 + q>.
The (left) projectives and simples:
The Loewy picture:

P; = j=»i (for i—j)

Xj
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The Cartan matrix

1
Pi=2>1

X1

2(17 if i = Js
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0, else,

where qdim(_) denotes the grade{ Example. |nd 2, =P; = 152 & 342 & 42
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The Cartan matrix

(24, ifi=j, {i,x;} is a basis,

q Thus, the Cartan matrix is
2 1 0 0 2 0 0 O 0 1 0 0
e fe@d =15 1 2 o[ =lo 0 2 o |01 0 o
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The Cartan matrix

(24, ifi=j, {i,x;} is a basis,

where qdji C(D.)

The (left)

Thus, the Cartan matrix is

O O N
== N
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N O~ O
OO oON
oo N o
oON OO
N O O O
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== O

o O+~ o

o O~ O

The Loewy picture:
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Fact. (Not hard to show.) )
Pi|The Cartan matrix C = C(Z=) is {i}

C =2+ A

Fact. (Not hard to show.)
The graded Cartan matrix C = C(Z=) is

C =241 + qA.
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Algebraic properties of zigzag algebras

Theorem. ZC:, is cellular if and only if [ is a finite type A graph and X =0 or

X =leaf. ZS, is relative cellular if and only if T is a finite type A graph and X = ()
or X =leaf; or I is an affine type A graph and X = (.

Theorem. 7S, is if and only if T is a finite type A graph and X =leaf.

Theorem. ZS, is if and only if I is not a type ADE graph and X = 0.
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Proof idea: Cellularity and quasi-hereditary

Main problem. It is not easy to show that an algebra is not cellular, since there
are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the
remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work
basically in the same way - | omit details.
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Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal
projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not
Koszul.

Again, with vertex condition works similarly - | omit details.
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Main idea
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. 1 12a
Proof IdlStep 1. Writin

g down candidates of projective resolutions. |

Main probl¢Numerical condition. The projectives turning up in the e*®

Main idea 1

step of a minimal projective resolution can be
read off from the columns of U.(A).

minimal

projective resol|Observe that each map in this process is of degree 1. |

MmISmith’s (CP)

: The non-type-ADE graphs give Koszul algebras.

Koszul.

|Step 2. Kill the type ADE graphs. |

Again, with

Numerical condltlon The matr|x det

>(—1)aiq’ with a; € Zo.

A* has column sums
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Main idea 1

step of a minimal projective resolution can be
read off from the columns of U.(A).
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projective resol|Observe that each map in this process is of degree 1. |
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|Step 2. Kill the type ADE graphs. |

Again, with

Numerical condltlon The matr|x det

>(—1)aiq’ with a; € Zo.

A* has column sums

|Easy calculation: The graded Cartan determinants for type ADE graphs. |

|It turns out that they can not satisfy the numerical condition. |
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g down candidates of projective resolutions. |

Main probl¢Numerical condition. The projectives turning up in the e*®

Main idea 1

step of a minimal projective resolution can be
read off from the columns of U.(A).

minimal

projective resol|Observe that each map in this process is of degree 1. |

MmISmith’s (CP)

: The non-type-ADE graphs give Koszul algebras.

Koszul.

|Step 2. Kill the type ADE graphs. |

Again, with

Numerical condltlon The matr|x det

>(—1)aiq’ with a; € Zo.

A* has column sums

|Easy calculation: The graded Cartan determinants for type ADE graphs. |

|It turns out that they can not satisfy the numerical condition. |
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Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea
projective re

Main idea
Koszul.

Again, with

Neat consequence. A characterization of Dynkin diagrams. minimal

I" is a finite type ADE graph
if and only if
entries of U.(A) do not grow when e — co.

I" is an affine type ADE graph
if and only if
entries of U.(A) grow linearly when e — co.

[" is neither finite nor affine type ADE graph
if and only if

entries of U.(A) grow exponentially when e — co.

are not
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Admissible graphs

An unoriented, connected, simple graph I is called sl3-admissible if it is tricolored
and each edge is contained in a 2-simplex.

Example. The generalized type gA, graphs, where e € Z>:

AV AVAYZ

N/ - \N/\/ .
/ N

/

w.\

We color our vertices green g = {b, v}, orange o = {r, v} and purple p = {b,r}.

It might be possible to relax these conditions, but we do not know for sure.
In particular, the explicit coloring can be avoided for zigzag algebras.
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Admissible graphs

An unoriented, connected, simple graph I is called sl3-admissible if it is tricolored
and each edge is contained in a 2-simplex.

Example. The generalized type gA, graphs, where e € Z>:

Generalizing zigzag algebras.
The notion of being “contained in a 1-simplex”
is invisible for the zigzag algebra since
° \ / a 1l-simplex is just an edge.
e=0 ° ) \ / ¢
\/

N
7
N

7
N

We color our vertices green g = {b, v}, orange o = {r, v} and purple p = {b,r}.
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Trihedral zigzag algebras

Take the double graph = of I' and add three loops ap, = ()i, @ = (a); and
a, = (a,); per vertex; choose on of them per vertex.

Let T = T=(I") be the quotient of R(I'=) by:

(a) Boundedness. Paths involving vertices from two different 2-simplices are
zero.

(b) The relations of the cohomology ring H*(SL(3)/B). caacm = apa, for
a,be{b,r,v}, ap+ar+a, =0, ey +apa, + aya, =0 and apa,a, = 0.

c) Sliding loops. i+ja; = —a;i~j, i»ja; = —a;i+j and
J i17] Jag J
isjoyx = oxi»j = 0.

) Zigzag. i+j+i = oz,
(e) Zigzig equals zag times loop. i+j-k = i-vka; = —ayi-k.
T= is the trihedral zigzag algebra associated to I'. Its graded by path length.

Same as for the zigzag algebra: This definition only works for more than two 2-simplices.
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Trihedral zigzag algebras

Take the double graph = of I' and add three loops ap, = ()i, @ = (a); and
a, = (a,); per vertex; choose on of them per vertex.

Let T = T=(I") be the quotient of R(I'=) by:
(a) Boundedness. Paths involving vertices from two different 2-simplices are

zero.
(b) The rel £ 2l L 1 H ITE/QT (2) /D) 7 Qp Qg fOI’
abe {;]One can ilso dlefme a kind ofuqulaS| heuredltary cover Tz Eabara 0.
(c) Sliding loops. i+ja; = —aji+j, i+jay = —a;i+j and

isjoyx = oxi»j = 0.

) Zigzag. i+j+i = oz,

(e) Zigzig equals zag times loop. i+j-k = i-vka; = —ayi-k.

T is the trihedral zigzag algebra associated to I'. Its graded by path length.
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Trihedral zigzag algebras

Take the double graph = of I' and add three loops ap, = ()i, @ = (a); and
a, = (a,); per vertex; choose on of them per vertex.

|Generalizing zigzag algebras. |
Let T = T=(I") be the quotient of R(I'=) by:
(a) Boul

ZEro.

“Boundedness” is a direct generalization, where 1-simplex‘="edge. les are

[l . ILk/(OT (D) _
is a direct generalization. ) Qay = apar, for
a,be{b,r,v}, o+ F@T =0, O F G, Fara, =0 and apa,a, = 0.

() S"‘?'"g IOORS' .iij’] “Sliding Io.ops." is a new relation. r and
12]Jox = axl>] = U.

(b) The relations of tl “Flag.”

(d

) Zigzag. iﬁjﬁ]i-)j—)i = a;a; generalizes i2j>i = a5 — ax. |
(e) Zigzig equals zag times loop. i+j-k = i-vka; = —ayi-k.
T= is the trihedl]

‘:Ziézig equlalsl zag times IoorS” is a new relation. [ path length.
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Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

» Study of Artin algebras.
Categorical braid group actions.
Finite groups in prime characteristic.

Versions of category O.

vV v. vy

Representation theory of reductive groups in prime characteristic, quantum
groups at roots of unity.

» In various places in categorification.
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Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

» Study of Artin algebras. X
Categorical braid group actions. X
?

Finite groups in prime characteristic. ¢

Versions of category O.
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groups at roots of unity.
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Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

» Study of Artin algebras. X

» Categorical braid group actions. X
» Finite groups in prime characteristic. ?
» Versions of category O. 7 v’
| 4

Representation theory of reductive groups in prime characteristic, quantum
groups at roots of unity.

» In various places in categorification. v~
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homgz_ (i,3)) = { ¢> +q*, if i—j, {i+j,i+ja,} is a basis,
0, else, () is a basis.

The volume elements are x; = a2a, = —aay, =etc.

The (left) projectives and simples:
Pi = {iaaaaabaagvagvxiaj$i7jﬁiaanxi | 17.]} & Li = {1}
The Loewy picture:
i
Uy, Oy, jﬁi

Pi_

22 .
Qg, Oy, J71Q,

(for i—3)

Xj
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homgz_ (i,3)) = { ¢> +q*, if i—j, {i+j,i+ja,} is a basis,
0, else, () is a basis.
The volume elements are x; = a2a, = —aay, =etc.
Example.
The (left) projectives and simples:
- (1)
Pi = {iaaaaabaagvagvxia i | 17.]} & Li = {1}

The Loewy picture:

<7

af type gA;

(ror i—j)
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homyz_ (i,3)) = { q*> +q*, if i—j, {i+j,i>jaa} is a basis,
0, else, () is a basis.
The volume elements are x; = a2a, = —aay, =etc.
Example.
3 es:
o o & a, & 153 & 243 aga) - (101)
T 2 & o & 1530 & 253, ¥4 i3} & Lj={i}
3 —
1

The Loewy picture:

af type gA;

(ror i—j)
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homyz_ (i,3)) = { q*> +q*, if i—j, {i+j,i>jaa} is a basis,
0, else, () is a basis.
The volume elements are x; = a2a, = —aay, =etc.
Example.
3 es: Ls
. o & o & 133 & 23 aga) - (101) Ly &Ls & s &
*T a2 & o & 193ap & 243, | Xi (i T L& L&l &
o —
X3 \ / L3
1

The Loewy picture:

af type gA;

(ror i—j)
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The Cartan matrix

qdim(Homgz_, (i, j)) = {

34!, ifi=j, the usual cohomology basis,

q2 + q47 if iija
Q. else

{i+j,i+jaa} is a basis,
() is a basis.

The volum
3!
The (left)|C(8A) = (;

Thus, the Cartan matrix is

2 2 3 0 0 01 1
3 2| =2. 0 3 0fJ+1|1 0 1
2 3 0 0 3 1 1 0

Pi = {iaaaaabaagvagvxiaj$i7jﬁiaanxi | 17.]} & Li = {1}

The Loewy picture:

Daniel Tubbenhauer

i
Oéa,Oéb,jﬁi
Pi= o, 5 ..
g, 0, jric,

Xj
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homgz_ (i,3)) = { ¢> +q*, if i—j, {i+j,i+ja,} is a basis,
0. _else @ is a basis.

Thus, the Cartan matrix is

The volum
3 2 2 300 001 1
CeA)=[2 3 2|=2-[[0o 3 o]+ [1 0 1
The (left 2 2 3l 00 3 11 0

P, = {i,a,, a2 02 v 0 odndn v 15 & L;=1{i
* { T T Fact. (Not hard to show.) =13
The Cartan matrix C = C(T=) is

~—

The Loewy picture:

C =2(31 + A).

Uy, Oy, j»i

P; = (for i—3)

22 .
Qg, Oy, J71Q,

Xj

November 2018 13 /15
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The Cartan matrix

34!, ifi=j, the usual cohomology basis,
qdim(Homyz_ (i,3)) = { q*> +q*, if i—j, {i+j,i>jaa} is a basis,
0. _else @ is a basis.

Thus, the Cartan matrix is

The volum
3 2 2 300 001 1
CeA)=[2 3 2|=2-[[0o 3 o]+ [1 0 1
The (left 2 2 3l 00 3 11 0

P, = {i,a,, a2 02 v 0 odndn v 15 & L;=1{i
* { T T Fact. (Not hard to show.) =13
The Cartan matrix C = C(T=) is

~—

The Loewy picture:

C =2(31 + A).

aaaabvjﬁi /C Y
Fact. (Not hard to show.)
The graded Cartan matrix C = C(T=) is

D

C = 2,(34/ + G*A).
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Generalized Chebyshev polynomials

Observation. Let L., be the e+1-dimensional irreducible representation of
SL(2). We have the correspondence

Ly o X & L2% s XK & Lgy, v Ue(X).

Define a Chebyshev polynomial U.(X,,) associated to any semisimple algebraic
group G by the correspondence

L e Xi & LEF am XE & Lejuntotew o Ue(Xa).
where L, ..., L, are the fundamental representations of G, e=e; + -+ ¢,

and X, = Xq,..., X,.

Fact. The so-called multivariate Chebyshev polynomial U.(X,,) comes up in the
theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.
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Generalized Chebyshev polynomials

Observation. Let L., be the e+1-dimensional irreducible representation of
SL(2). We have the correspondence
Lion X & [ZK s XK & [ e U(X)
Example G = SL(2).
The usual Chebyshev polynomial — you have seen this before.
Define a Chebyshev polynomial U.(X,,) associated to any semisimple algebraic
group G by the correspondence

L e Xi & LEF am XE & Lejuntotew o Ue(Xa).

where L, ..., L, are the fundamental representations of G, e=e; + -+ ¢,
and X, = Xq,..., X,.

Fact. The so-called multivariate Chebyshev polynomial U.(X,,) comes up in the
theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.
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Generalized Chebyshev polynomials

Observais

SL(2). W

Define a
group G

where L,

and X,

Example G = SL(3).

L(3) has two fundamental representations L1 o = X and Lo; =Y;

the vector representation and its dual.
Moreover, we have irreducibles L, for all m,n € Z>o.
We have the following Chebyshev-like recursion relations
Un.n(X,Y) = Un,m(Y,X),
XUm n(x ) Um+1 n(x Y) a4 Um 1 n+1(x Y) = Um n— l(x Y)
YUm,n( ) m n+1(x Y) aF Um+1,n I(X Y) + Um l,n(x Y)

together with starting conditions for e = 0, 1.

h of

rebraic

.+er

Th ts of th | ial ] .
Fact. The so-calleL1e,[00%s of these polynomial are very S0y 0y

theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.
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Generalized Chebyshev polynomials

Observation. Let L., be the e+1-dimensional irreducible representation of
SL(2). We have the correspondence

Ly o X & L2% s XK & Lgy, v Ue(X).

[ The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras
g as the Chebyshev polynomials do for the zigzag algebras.

L e Xi & LEF am XE & Lejuntotew o Ue(Xa).

where L, ..., L, are the fundamental representations of G, e=e; + -+ ¢,
and X, = Xq,..., X,.

Fact. The so-called multivariate Chebyshev polynomial U.(X,,) comes up in the
theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.
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Generalized Chebyshev polynomials

Observation. Let L., be the e+1-dimensional irreducible representation of
SL(2). We have the correspondence

Ly o X & L2% s XK & Lgy, v Ue(X).

[ The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras

g as the Chebyshev polynomials do for the zigzag algebras.
/ Y 9, Rk vk 9o 4 JTAYAR
To wrap-up: What lies behind the horizon?
wh Zigzag algebras associated to root system;
an{generalizing the connection to modular representation theory of reductive groups.

Fact. The so-called multivariate Chebyshev polynomial U.(X,,) comes up in the
theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.
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600 =3, U0 =X, XUers0) = UerslX) + 0400

Kronecker ~
vttt Attt

a

The Cartan matrix

where ] denore e rade] B

( )

he Lo

The case T~ &, & C 0.

Tl

The case I = Ay & C = 0, omiting loops.
W iw

G

To() =

There is still much to do...

Daniel Tubbenhauer

7. Any compet st of convgate slebeic ntgers n | 2,2 s

Ao an: o remm-i|®
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1= k{1201 1920,

Ung1 X9 + U 11 (KY) 5
D U O G X0
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W)

Kronecker ~

e

Ay complte s of conjugate lgebeac integers i

X XU (%)

vttt Attt

i)

a

The Cartan matrix

The

he Lo

The case T~ &, & C 0.

Tl

The case I = Ay & C = 0, omiting loops.

[Py Y

X 2

G

To() =

Daniel Tubbenhauer

U0

Let S, ST The s F=A, & C=b.
Let Unef  ADE grphsfor e+ 2 b e Contr e R
22k hripe

o om0 B, B0

o *< D o_b_

PR L
- §T Y

Tope e

o re=10

o re=e

fescn

The cate A, & C— 1],

'—I—‘ s - Y,
o o ween - SIS

Example.

[P s o cucl et reprty of s e s

1= k{1201 1920,

Ung1 X9 + U 11 (KY) 5
D U O G X0

v+

Koormuinder ~1973. For

o el m-+ 1 &+ 1, th common rts of the

G polpomats e o e e

v
s e o e £ T )

Fiur: The ot ofthe SL3) Chbyshs plromias

@

Thanks for your attention!
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Us(X) =1, Ur(X) =X, X Ues1(X) = Uesa(X) + Ue(X)

Kronecker ~1857. Any complete set of conjugate algebraic integers in | —2,2[ is
a subset of roots(Ue+1(X)) for some e.

The roots of the Chebyshev polynomials
The roots of the Chebyshev polynomials The case of - being even
The case of ¢ being odd

Figure: The roots of the Chebyshev polynomials



Thecase T =A, & C=0.

Qg Qg Qs
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Ze(A,) =
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The case = A, & C={1}.

living on the type A, graph

C={1}
Qg Qg
o)
2 n—1
9 9
t Qg

living on the type Ap graph
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Definition (e.g. Cline—Parshall-Scott ~1988). A finite-dimensional algebra R
is called quasi-hereditary if there exists a chain of ideals

OZJQCJ1C'”CJk71CJk:R,
for some k € Z>1, such that the quotient J;/J;_1 is an hereditary ideal in R/J_1.
The point: Quasi-hereditary algebras have associated highest weight categories,

i.e. they have simple, (co)standard A, indecomposable projective and tilting
modules, all indexed by the same ordered set.



Example.

J1 :]k{l,Qﬁl,l%ZXQ}, Jo :k{2,392,293,X3}@J1, J3 :Ik{-?)}EBJl@JQ.

C=(1)idet=1 C:(}%);det:l c:(%%g);da:1
Qg Qg Qs
PR PR

C C c
28, /3p 28, /3 z&, /39



Example.

J=k{1,251,152, %}, Jo =k{2,3+2,253,x3} ® J1, Js=k{3}®J1 @ Ja.

S T
(e t
—V 1, 78, /0 z<, /30



Example.

f 1L —.A Ly |
! 1 =
= L
Pi= )

= -1, 1 = +2, 2~ = Jo.
J ]k{l 21,12 xz} Ja ]1{{2,3 2,2 3,X3}€9J1, Js ]1{{3}@JlEB 2
1 ) ) ’ )

Lo N L
P2:L1&L3 .. 2_L3
1 L2 1 =

Qs Qs Qs
CUNPpRC S}
— ZC;./JO
<—/J2 =




Example.

Ji = k{1,2+1,1+2, x5},

Ly
2

Jo =k{2,3+2,253,x3} & J1, J3=k{3}®J1 @ Ja.

L, R I
P,=Li &Ls | |Po= : Ap = ?
1 A Fo L3

Lo

O O Qg
() DR
& L3 3 2 A‘ _)2 3
g
° z<, /3o




Example.
Cc={1}

Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

o g

1 L1

YT o T, N T,

J1 :]k{l,Qﬁl,l%ZXQ}, Jo :k{2,3$2,293,X3}@J1, J3 :Ik{-?)}EBJl@JQ.

2 L
: A, 2 Lo
P2=1-)2&3-)2 PQILl&L3 PQI A2= AQZ
1 1 A1 = 3_>2 L3
X2 LZ
2 OO0
3 & Ls |3 2 A‘ 23
3
Ps = 233 Py =L, [) Po= As=3 ) (A5 =1 |
X3 L3 c
=/ J2 — Z=/Jo




Example.

Cc={1}

Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

o a
The reciprocity:
1 1 0 1 0 O 1 1 0
n=kgaf€= (s 2 1) =ome= {3 o) (o 2 2
D matrix encodes simples in standards.

C=(1)idet=1 C:(}%);det:l

110
C= <121);det:1
012

Qg Qg Qs
) O 0
3 & 23 & 1&=2—=3
Q Qi Q

28, /3, 28, /1 2C. /10

3tp T e Js.



Example.
Cc={1}

Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

ag at
The reciprocity:
1 1 0 1 0 O 1 1 0
C=|1 2 1]=D"D=(1 1 0)J|0 1 1
J1=1k{1, 2+ 01 2 01 1/ \o o0 1 3} ©J1®J2
D matrix encodes simples in standards.
C=(1)idet=1 C:(}%);det:l c:(%%g);da:1
Qg Qg Qs
[ ()

Cellularity, roughly speaking, works very similarly, but D does not need to be a square matrix
while in the relative case D does not even need to be a upper triangular matrix.

Qg (823 Qg

C C C
28, /32 28, /0 z<, /30



A linear projective resolution of a graded module M of a positively graded algebra
R is an exact sequence

= q?Qe —qQ1 — Qo —» M,
with graded projective R-modules q¢Q. generated in degree e.

Definition (e.g. Priddy ~1970). A finite-dimensional, positively graded algebra
R is called Koszul if its degree 0 part is semisimple and each simple R-module
admits a linear projective resolution.

The point: Koszul algebras have projective resolutions of simples which are as
easy as possible.



Example.

1
Z(C:):Q)(;&2) =0 / |From now | just draw the graphs.
2
P, 0
02
N Py = 10 & 250
P
1527 %a1 X0
1 Py 1
N 017 :1-0
=10 4 7
. Po 4)-}L0 P1 =0+1& 291,
20 N
227 03y 25,0
P, 2 xl
'24)1\;1 p %L»Q 2
P, 11 Py, = 052 & 152

Po X2



Example.

4
|Kerne| in the first step: k{1-+0,2-0,x0} |

7" A) = 07
2 \l

Py 0
g2 Po = 10 & 250
P
1527 %a1 X0
Py Py 1
S 017 10
150N L7
. Po 4)-}L0 P1 =0+1& 291,
250 ~y
27T 052N 250 x
2% 2 '
'24)1\;1 p %L»Q 2
a N P, = 052 & 152

P0 X2



Example.

4
|Kerne| in the first step: k{1-+0,2-0,x0} |
C=U — Cd
Z="(A2)= 0 ~ |
Kernel in the second step: k{2-+1,x1,1+2,x2} and k{0-+1 — 0-2}. |

Py 0
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|Kerne| in the first step: k{1-+0,2-0,x0} |
C=U — Cd
2="(A2) = 0 |
|Kerne| in the second step: k{2-+1,x;,1+2,x2} and k{0-+1 — 0-+2}. |
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Example.

1+9° g q
C=| q 1+¢* g
q q 1+q°
1+¢’+q* —qa+9’~q’ —a+q’° ¢’
gives the cofactor matrix C* = | -q+q¢°—q> 1+q¢°+q* q
—q+9°—-a¢* —q+a°—q° 1+q*+¢*

and the determinant det = 1 + 2% + q°.

Then 1 +¢? +q* +2(—q+q*> — q*)/(1 + 29° + q°) ‘taylored’ gives

1—-2q+3q9°— 49> +5q* —6q° £ .. ..

A TPy —» Lo Py = 051 & 251,
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251Ny %4)2 2
Py
. Py = 052 & 132
Po

X2




Example.

1+q q q
C=| q 1+¢* g
q q 1+q°
1+a¢°+q" —qa+9°-q¢* —a+q’°-¢°
gives the cofactor matrix C* = | -q+q¢°—q> 1+q¢°+q*

q
-q+d*-q° —q+d’—q* 1+d°+d"
and the determinant det = 1 + 2% + q°.

Then 1 +¢? +q* +2(—q+q*> — q*)/(1 + 29° + q°) ‘taylored’ gives

1—-2q+3q9°— 49> +5q* —6q° £ .. ..

=I—U X Z

P, T Po—» Lo P, — 051 & 251,

The numerical criterion for koszulness:
det™! C* has g-linear column sums.

This is almost an if and only if: C encodes how projectives are filtered by simples.
So, det™! C* encodes how simples are resolved by projectives.
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Example.
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Example.
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Example.

010
As= 1—2——3 -A=[1 0 1
01 0
010
7 -2 =
e
1
No growth at all: we are stuck in the 3" step. |
T Z Z U2\H}f\UlU)
. 100
3
000
7 12— :( )
3 Us(A) = (900
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The inverses of the graded Cartan determinants.

Ani (1 —q*)3020qm 2", gap =2n—1,
Dp,neven: (1—q?+---+ g2 (-1)(s + 1)q?n=2s, gap =1,
Dp,nodd: (1—q?>+--- — q2”*4)2ﬁ0q(4"*4)s, gap =2n—1,

Ee: (1 —<12+<14 —a®+q° —q?) X2, 97", gap = 11,

Er: (1-a”+9")X20 (-1)°q™, gap = 13,

Es: (1—a”+a* +9'° —q? +d") X2, (—1)°¢°%, gap = 15.

Observing now that the cofactor matrix has entries which are polynomials of
degree < 2n — 2, one is done.



Explicitly, for type Az we get

1)1+ P+a®+q¥+...)=1-q+q®*—q+q® —q®+q* —gq®+....

1+¢°+q* —q-¢° a
A=| —q-q¢* 1+¢+q" —q-a
q —a-d°  1+q¢’+qg

Numerical resolutions are
1-9+d°—09°+q* —q°+q°—0q" ...
1-294+¢>—09°+q*—29° +q®° —0q" £ ...

1—q+q2—0q3+q4—q5+q6—0q7:|:...




Thecase T =A; & C=0.

ay [)ab
[ G ¢ hE— ] (e
=(A) =  OXN /Y,
abG(j5a

living on the type gA1 graph

T

The case [ = A; & C = (), omitting loops.

living on the type gA3 graph



Example. The first few SL(3) Chebyshev polynomials:

e=0 U o(X,Y) =X, Upi(X,Y) =Y,

e=1 Upo(X,Y) =X2 =Y, Ui(X,Y)=XY =1, Upo(X,Y)=Y2—-X,

Uso(X,Y) =X> —2XY +1, Ua(X,Y) =XY —Y? =X,
Ui p(X,Y) = XY2 = X2 =Y, Ups(X,Y) =Y —2XY +1,

Uso(X,Y) = X* —3X2Y + Y2 £ 2X, Us1(X,Y) = X3Y —2XY2 — X2 42,
e=3 Usp(X,Y) = X2Y2 = X3 — Y3,
Urs(X,Y) = XY = 2X3Y — Y2 4+ 2X, Upa(X,Y) =Y* —3XY? + X 42,

Uso(X,Y) = X® — 4X3Y +3XY? +3X% — 2Y, Us1(X,Y) = X*Y —3X°Y? — X + Y? 44Xy — 1,
e=4 Usa(X,Y) = X3¥Y2 — X' —2XY? + X2V +2Y% — X, Us3(X,Y) = X2Y? — ¥* —2X3Y + XY +2X° — Y,
Ui a(X,Y) = XY* —3X2Y2 — Y3 X3 44XY — 1, Ups(X,Y) = Y® —axXY? 4+ 3X%Y 4+ 3y — 2X.

One usually considers them for one level m + n = e 4+ 1 together.



Um,n(XvY) = Un,m(Yax)v XUm,n(X>Y) = Um+1,n(XaY) + Umfl,n+1(an) +
Um,n—l(XaY)v YUm,n(XaY) = Um,n+1(X7Y) + Um+1,n—1(X7Y) + Um—l,n(ny)v

Koornwinder ~1973. For fixed level m + n = e 4+ 1, the common roots of the
Chebyshev polynomials are all in the discoid.

nner is e 1
middle is e = 2

outeris e = 3

Figure: The roots of the SL(3) Chebyshev polynomials.


http://www.math.ucr.edu/home/baez/rolling/rolling_3.html

Um,r(XvY) = Uy m(Y7 X)v XU n(X>Y) = Um+1 ,,(X,Y) + Un—1 n+1(xa Y) +
Um,n-{How does this generalize the interval | — 2, 2[ for the Chebyshev roots? [X,Y),

Koornwinder ~1973. For fixed level m + n = e 4+ 1, the common roots of the
Chebyshev polynomials are all in the discoid.

nner is e 1
middle is e = 2

outeris e = 3

Figure: The roots of the SL(3) Chebyshev polynomials.


http://www.math.ucr.edu/home/baez/rolling/rolling_3.html

Um,r(X,Y) = Uy m(Ya X)v XU n(X7Y) = Um+1 n(X7Y) + Un—1 n+1(xa Y) +
Um,n-{How does this generalize the interval | — 2, 2[ for the Chebyshev roots? [X,Y),
Koorn HEPS P 1072 £ A 1 1 | L1+l + £ he
Cheb Via rolling circles!
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