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Let A = A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ.
Let Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28

Fact. If Γ is allowed to have loops,
then there is one extra family called tadpoles:

• • • · · · • • •

They usually do not play a role.

Fact. Ue+1(A) has negative entries for some e
if and only if A is of type ADE.

This is a much stronger statement and the only
proof I know uses categorification.
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1 The zigzag algebras
Definition
Some first properties

2 Algebraic properties of zigzag algebras
The statements
The proofs; well, kind of...

3 The trihedral zigzag algebras
Definition
Some first properties
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Zigzag algebras

Take the double graph Γ� of Γ and add two loops αs = (αs)i and αt = (αt)i per
vertex. Take its path algebra R(Γ�).

Let Z� = Z�(Γ) be the quotient of R(Γ�) by:

(a) Boundedness. Any path involving three distinct vertices is zero.

(b) The relations of the cohomology ring H∗(SL(2)/B). αs ◦ αt = αt ◦ αs,
αs + αt = 0 and αs ◦ αt = 0.

(c) Zigzag. i j i = αs − αt for i j.

Z� is the zigzag algebra associated to Γ. It can be graded using the path length.

Example

Not important for today: This definition only works for more than three vertices.

k[x]/(x2) is isomorphic to k[αs, αt]/(αs + αt, αsαt) by x 7→ αs − αt.

We prefer this formulation, with loops in degree 2. Why? You will see later.

One can define a kind of quasi-hereditary cover ZC
�

by killing xi at a fixed set of vertices C.
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Zigzag algebras in mathematics

Zigzag algebras are around for many years. Here are some examples:

I Wakamatsu & others ∼1980++. Study of Artin algebras.

I Huerfano–Khovanov ∼2000, Khovanov–Seidel ∼2000 & others.
Categorical braid group actions.

I Implicit in the literature <2000, Huerfano–Khovanov ∼2000,
Evseev–Kleshchev ∼2016 & others. Finite groups in prime characteristic.

I Implicit in the literature <2000, Stroppel ∼2003 & others. Versions of
category O.

I Implicit in the literature <2000, Qi–Sussan ∼2013, Andersen ∼2014 &
others. Representation theory of reductive groups in prime characteristic,
quantum groups at roots of unity.

I Too many people to fit on this slide. In various places in categorification.

Thus, it makes sense to ask for a
generalization of zigzag algebras.

That is what we are up for.

But first, let us understand the zigzag algebras combinatorially.
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The Cartan matrix

qdim(HomZ�(i, j)) =





2q, if i = j, {i, xi} is a basis,
q, if i j, {i j} is a basis,
0, else, ∅ is a basis,

where qdim( ) denotes the graded dimension, and 2q = 1 + q2.

The (left) projectives and simples:

Pi = {i, j i, xi | i j} & Li = {i}

The Loewy picture:

Pi =

i

j i

xi

(for i j)

Example.

3

1 2

4

type D4

A(D4) =

(
0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

)

P1 =

1

2 1

x1

P3 =

3

2 3

x3

P4 =

4

2 4

x4

P2 =

2

1 2 & 3 2 & 4 2

x2

P1 =

L1

L2

L1

P3 =

L3

L2

L3

P4 =

L4

L2

L4

P2 =

L2

L1 & L3 & L4

L2

Thus, the Cartan matrix is

C(D4) =




2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2


 =




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 +




0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0




Fact. (Not hard to show.)
The Cartan matrix C = C(Z�) is

C = 2I + A.

Fact. (Not hard to show.)
The graded Cartan matrix C = C(Z�) is

C = 2qI + qA.
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Algebraic properties of zigzag algebras

Theorem. ZC
� is cellular if and only if Γ is a finite type A graph and X = ∅ or

X =leaf. ZC
� is relative cellular if and only if Γ is a finite type A graph and X = ∅

or X =leaf; or Γ is an affine type A graph and X = ∅.

Theorem. ZC
� is quasi-hereditary if and only if Γ is a finite type A graph and X =leaf.

Theorem. ZC
� is Koszul if and only if Γ is not a type ADE graph and X = ∅.
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Proof idea: Cellularity and quasi-hereditary

Main problem. It is not easy to show that an algebra is not cellular, since there
are several choices involved which one could make.

Main idea. Use the numerical conditions to rule out most cases; treat the
remaining cases by hand.

The cases of relative cellularity, quasi-hereditary and with vertex condition work
basically in the same way - I omit details.

Step 1. Kill the majority of cases.

Numerical condition. The Cartan matrix C of a cellular algebra is positive definite.

Smith’s (CP): The (bipartite) graphs with positive definite 2I + A are the ADE graphs.

Thus, for non-type-ADE cases, Z� is not cellular.

Step 2. Kill the remaining infinite families.

Numerical condition. The Cartan matrix C of a cellular algebra satisfies C = DTD.

Easy check: This does not work for type DE graphs.

Thus, for those cases, Z� is not cellular.

Step 3. Treat the remaining case by hand.

1

0

2

is the only remaining case, for which Z� is a 12-dimensional algebra.

Done.
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Proof idea: koszulity

Main problem. Computing projective resolutions is hard.

Main idea 1. Get a numerical way to handle the projectives in some minimal
projective resolution.

Main idea 2. Use a numerical condition to rule out the cases which are not
Koszul.

Again, with vertex condition works similarly - I omit details.

Step 1. Writing down candidates of projective resolutions.

Numerical condition. The projectives turning up in the eth

step of a minimal projective resolution can be
read off from the columns of Ue(A). Example

Observe that each map in this process is of degree 1.

Smith’s (CP)+some extra work: The non-type-ADE graphs give Koszul algebras.

Step 2. Kill the type ADE graphs.

Numerical condition. The matrix det−1 A∗ has column sums∑
i (−1)iaiq

i with ai ∈ Z>0. Example

Easy calculation: The graded Cartan determinants for type ADE graphs.

It turns out that they can not satisfy the numerical condition.

Done.

Neat consequence. A characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.
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Admissible graphs

An unoriented, connected, simple graph Γ is called sl3-admissible if it is tricolored
and each edge is contained in a 2-simplex.

Example. The generalized type gAe graphs, where e ∈ Z≥0:

•
e = 0

,
� �

•
e = 1

,

� • �

� �

•
e = 2

,

• � � •

� • �

� �

•
e = 3

, . . .

We color our vertices green g = {b, y}, orange o = {r, y} and purple p = {b, r}.
It might be possible to relax these conditions, but we do not know for sure.

In particular, the explicit coloring can be avoided for zigzag algebras.

Generalizing zigzag algebras.
The notion of being “contained in a 1-simplex”

is invisible for the zigzag algebra since
a 1-simplex is just an edge.
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Trihedral zigzag algebras

Take the double graph Γ� of Γ and add three loops αb = (αb)i, αr = (αr)i and
αy = (αy)i per vertex; choose on of them per vertex.

Let T� = T�(Γ) be the quotient of R(Γ�) by:

(a) Boundedness. Paths involving vertices from two different 2-simplices are
zero.

(b) The relations of the cohomology ring H∗(SL(3)/B). αaαb = αbαa for
a, b ∈ {b, r, y}, αb +αr +αy = 0, αbαr +αbαy +αrαy = 0 and αbαrαy = 0.

(c) Sliding loops. i jαi = −αji j, i jαj = −αii j and
i jαk = αki j = 0.

(d) Zigzag. i j i = αiαj.

(e) Zigzig equals zag times loop. i j k = i kαi = −αki k.

T� is the trihedral zigzag algebra associated to Γ. Its graded by path length.

Example

Same as for the zigzag algebra: This definition only works for more than two 2-simplices.

One can also define a kind of quasi-hereditary cover TC
�.

Generalizing zigzag algebras.

“Boundedness” is a direct generalization, where 1-simplex‘=’edge.

“Flag” is a direct generalization.

“Sliding loops” is a new relation.

i j i = αiαj generalizes i j i = αs − αt.

“Zigzig equals zag times loop” is a new relation.
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Trihedral zigzag algebras in mathematics

Generalizing zigzag algebras does not work in all directions:

I Study of Artin algebras.

I Categorical braid group actions.

I Finite groups in prime characteristic.

I Versions of category O.

I Representation theory of reductive groups in prime characteristic, quantum
groups at roots of unity.

I In various places in categorification.

?
?
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The Cartan matrix

qdim(HomZ�(i, j)) =





3q!, if i = j, the usual cohomology basis,
q2 + q4, if i j, {i j, i jαa} is a basis,

0, else, ∅ is a basis.

The volume elements are xi = α2
bαr = −α2

rαb =etc.

The (left) projectives and simples:

Pi =
{
i, αa, αb, α

2
a, α

2
b, xi, j i, j iαa, xi | i j

}
& Li = {i}

The Loewy picture:

Pi =

i

αa, αb, j i

α2
a, α

2
b, j iαa

xi

(for i j)

Example.

3 2

1

type gA1

A(gA1) =

(
0 1 1
1 0 1
1 1 0

)

P3 =

3

αb & αr & 1 3 & 2 3

α2
b & α2

r & 1 3αb & 2 3αr

x3

P3 =

L3

L3 & L3 & L1 & L2

L3 & L3 & L1 & L2

L3

Thus, the Cartan matrix is

C(gA1) =




3! 2 2
2 3! 2
2 2 3!


 = 2 ·






3 0 0
0 3 0
0 0 3


 +




0 1 1
1 0 1
1 1 0






Fact. (Not hard to show.)
The Cartan matrix C = C(T�) is

C = 2(3I + A).

Fact. (Not hard to show.)
The graded Cartan matrix C = C(T�) is

C = 2q(3qI + q2A).
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xi

(for i j)

Example.

3 2

1

type gA1

A(gA1) =

(
0 1 1
1 0 1
1 1 0

)

P3 =

3

αb & αr & 1 3 & 2 3

α2
b & α2

r & 1 3αb & 2 3αr

x3

P3 =

L3

L3 & L3 & L1 & L2

L3 & L3 & L1 & L2

L3

Thus, the Cartan matrix is

C(gA1) =




3! 2 2
2 3! 2
2 2 3!


 = 2 ·






3 0 0
0 3 0
0 0 3


 +




0 1 1
1 0 1
1 1 0






Fact. (Not hard to show.)
The Cartan matrix C = C(T�) is

C = 2(3I + A).

Fact. (Not hard to show.)
The graded Cartan matrix C = C(T�) is

C = 2q(3qI + q2A).

Daniel Tubbenhauer Generalizing zigzag algebras November 2018 13 / 15



The Cartan matrix

qdim(HomZ�(i, j)) =





3q!, if i = j, the usual cohomology basis,
q2 + q4, if i j, {i j, i jαa} is a basis,

0, else, ∅ is a basis.

The volume elements are xi = α2
bαr = −α2

rαb =etc.

The (left) projectives and simples:

Pi =
{
i, αa, αb, α

2
a, α

2
b, xi, j i, j iαa, xi | i j

}
& Li = {i}

The Loewy picture:

Pi =

i

αa, αb, j i

α2
a, α

2
b, j iαa

xi

(for i j)

Example.

3 2

1

type gA1

A(gA1) =

(
0 1 1
1 0 1
1 1 0

)

P3 =

3

αb & αr & 1 3 & 2 3

α2
b & α2

r & 1 3αb & 2 3αr

x3

P3 =

L3

L3 & L3 & L1 & L2

L3 & L3 & L1 & L2

L3

Thus, the Cartan matrix is

C(gA1) =




3! 2 2
2 3! 2
2 2 3!


 = 2 ·






3 0 0
0 3 0
0 0 3


 +




0 1 1
1 0 1
1 1 0






Fact. (Not hard to show.)
The Cartan matrix C = C(T�) is

C = 2(3I + A).

Fact. (Not hard to show.)
The graded Cartan matrix C = C(T�) is

C = 2q(3qI + q2A).

Daniel Tubbenhauer Generalizing zigzag algebras November 2018 13 / 15



Generalized Chebyshev polynomials

Observation. Let Leω be the e+1-dimensional irreducible representation of
SL(2). We have the correspondence

L1 ! X & L⊗k1 ! Xk & Leω! Ue(X).

Define a Chebyshev polynomial Ue(Xω) associated to any semisimple algebraic
group G by the correspondence

Lωi ! Xi & L⊗kωi
! Xk

i & Le1ω1+···+erωr ! Ue(Xω).

where Lω1 , . . . , Lωr are the fundamental representations of G , e = e1 + · · ·+ er
and Xω = X1, . . . ,Xr .

Fact. The so-called multivariate Chebyshev polynomial Ue(Xω) comes up in the
theory of orthogonal polynomials, and has roots and recurrence relations coming
from the root datum of G only.

Example G = SL(2).
The usual Chebyshev polynomial – you have seen this before.

Example G = SL(3).
SL(3) has two fundamental representations L1,0 = X and L0,1 = Y;

the vector representation and its dual.

Moreover, we have irreducibles Lm,n for all m, n ∈ Z≥0.

We have the following Chebyshev-like recursion relations

Um,n(X,Y) = Un,m(Y,X),
XUm,n(X,Y) = Um+1,n(X,Y) + Um−1,n+1(X,Y) + Um,n−1(X,Y),
YUm,n(X,Y) = Um,n+1(X,Y) + Um+1,n−1(X,Y) + Um−1,n(X,Y),

together with starting conditions for e = 0, 1. Example .

The roots of these polynomial are very cute .

The SL(3) Chebyshev polynomial plays the same role for the trihedral zigzag algebras
as the Chebyshev polynomials do for the zigzag algebras.

To wrap-up: What lies behind the horizon?
Zigzag algebras associated to root system;

generalizing the connection to modular representation theory of reductive groups.
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back

Let A = A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ.
Let Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 {2 cos(π

4
), 0, 2 cos( 3π

4
)}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 {2 cos(π

6
), 02, 2 cos( 5π

6
)}

U3(X) = (X− 2 cos(π
4

))X(X− 2 cos( 3π
4

))

U5(X) = (X− 2 cos(π
6

))(X− 2 cos( 2π
6

))X(X− 2 cos( 4π
6

))(X− 2 cos( 5π
6

))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28

Fact. If Γ is allowed to have loops,
then there is one extra family called tadpoles:

• • • · · · • • •

They usually do not play a role.

Fact. Ue+1(A) has negative entries for some e
if and only if A is of type ADE.

This is a much stronger statement and the only
proof I know uses categorification.
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The case Γ = An & C = ∅.

Z�(An) =
1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

g

f

αs

αt

f = ( n−1 n ), g = ( n n−1 )

living on the type An graph

The case Γ = An & C = {1}.

ZC
�(An) =

1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

C = {1}

living on the type An graph

Back

The Cartan matrix

qdim(HomZ�(i, j)) =





2q, if i = j, {i, xi} is a basis,
q, if i j, {i j} is a basis,
0, else, ∅ is a basis,

where qdim( ) denotes the graded dimension, and 2q = 1 + q2.

The (left) projectives and simples:

Pi = {i, j i, xi | i j} & Li = {i}

The Loewy picture:

Pi =

i

j i

xi

(for i j)

Example.

3

1 2

4

type D4

A(D4) =

(
0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

)

P1 =

1

2 1

x1

P3 =

3

2 3

x3

P4 =

4

2 4

x4

P2 =

2

1 2 & 3 2 & 4 2

x2

P1 =

L1

L2

L1

P3 =

L3

L2

L3

P4 =

L4

L2

L4

P2 =

L2

L1 & L3 & L4

L2

Thus, the Cartan matrix is

C(D4) =




2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2


 =




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 +




0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0




Fact. (Not hard to show.)
The Cartan matrix C = C(Z�) is

C = 2I + A.

Fact. (Not hard to show.)
The graded Cartan matrix C = C(Z�) is

C = 2qI + qA.
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Example.

ZC
�(A3) =

1 2 3

αs

αt

αs

αt

C = {1}

J1 = k{1, 2 1, 1 2, x2}, J2 = k{2, 3 2, 2 3, x3} ⊕ J1, J3 = k{3} ⊕ J1 ⊕ J2.

3

ZC
�/J2

C = ( 1 ); det = 1

& 2 3

αs

αt

ZC
�/J1

C =
(

1 1
1 2

)
; det = 1

& 1 2 3

αs

αt

αs

αt

ZC
�/J0

C =

(
1 1 0
1 2 1
0 1 2

)
; det = 1

Back

P1 =
1

2 1

P2 =

2

1 2 & 3 2

x2

P3 =

3

2 3

x3

∆1 =
1

2 1

∆2 =
2

3 2

∆3 = 3

P1 =
L1

L2

P2 =

L2

L1 & L3

L2

P3 =

L3

L2

L3

∆1 =
L1

L2

∆2 =
L2

L3

∆3 = L3

P1 = ∆1

P2 =
∆2

∆1

P3 =
∆3

∆2

Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

The reciprocity:

C =




1 1 0
1 2 1
0 1 2


 = DTD =




1 0 0
1 1 0
0 1 1







1 1 0
0 1 1
0 0 1




D matrix encodes simples in standards.

Cellularity, roughly speaking, works very similarly, but D does not need to be a square matrix
while in the relative case D does not even need to be a upper triangular matrix.

Example.

Ã2 =

1

0

2

 A =




0 1 1
1 0 1
1 1 0




0

2

1 1

. . . 0 0

2 2

1

0

-

-

e=3 e=2 e=1 e=0

U1(A) =
(

0 1 1
1 0 1
1 1 0

)

U2(A) =
(

1 1 1
1 1 1
1 1 1

)

U3(A) =
(

2 1 1
1 2 1
1 1 2

)

Another one

Back

The growth is linear.

The case Γ = A1 & C = ∅.

T�(A1) =
� �

•

αb

αr

αy

αb

αr

αy

αb

αr

αy

living on the type gA1 graph

The case Γ = A3 & C = ∅, omitting loops.

T�(A3) =

• � � •

� • �

� �

•
living on the type gA3 graph

Back

Um,n(X,Y) = Un,m(Y,X), XUm,n(X,Y) = Um+1,n(X,Y) + Um−1,n+1(X,Y) +
Um,n−1(X,Y), YUm,n(X,Y) = Um,n+1(X,Y) + Um+1,n−1(X,Y) + Um−1,n(X,Y),

Koornwinder ∼1973. For fixed level m + n = e + 1, the common roots of the
Chebyshev polynomials are all in the discoid.

−3 3
x

−3

3

y

C

•

•

•

••

•

•

•

•
• •

•

•

•

•

•

•

•

•

inner is e = 1

middle is e = 2

outer is e = 3

Figure: The roots of the SL(3) Chebyshev polynomials.

Back

How does this generalize the interval ]− 2, 2[ for the Chebyshev roots?

Via rolling circles!

etc.

I stole the pictures from http://www.math.ucr.edu/home/baez/rolling/rolling_3.html.

Um,n(X,Y) = Un,m(Y,X), XUm,n(X,Y) = Um+1,n(X,Y) + Um−1,n+1(X,Y) +
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Koornwinder ∼1973. For fixed level m + n = e + 1, the common roots of the
Chebyshev polynomials are all in the discoid.
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•

•

•
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inner is e = 1
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Figure: The roots of the SL(3) Chebyshev polynomials.

Back

How does this generalize the interval ]− 2, 2[ for the Chebyshev roots?

Via rolling circles!

etc.

I stole the pictures from http://www.math.ucr.edu/home/baez/rolling/rolling_3.html.

There is still much to do...

Thanks for your attention!
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Fact. (Not hard to show.)
The Cartan matrix C = C(Z�) is

C = 2I + A.

Fact. (Not hard to show.)
The graded Cartan matrix C = C(Z�) is

C = 2qI + qA.
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Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

The reciprocity:

C =




1 1 0
1 2 1
0 1 2


 = DTD =




1 0 0
1 1 0
0 1 1







1 1 0
0 1 1
0 0 1
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

D matrix encodes simples in standards.

Cellularity, roughly speaking, works very similarly, but D does not need to be a square matrix
while in the relative case D does not even need to be a upper triangular matrix.

Example.

Ã2 =

1

0

2

 A =




0 1 1
1 0 1
1 1 0




0

2

1 1

. . . 0 0

2 2

1

0

-

-

e=3 e=2 e=1 e=0

U1(A) =
(

0 1 1
1 0 1
1 1 0

)

U2(A) =
(

1 1 1
1 1 1
1 1 1

)

U3(A) =
(

2 1 1
1 2 1
1 1 2

)

Another one

Back

The growth is linear.

The case Γ = A1 & C = ∅.

T�(A1) =
� �

•

αb

αr

αy

αb

αr

αy

αb

αr

αy

living on the type gA1 graph

The case Γ = A3 & C = ∅, omitting loops.

T�(A3) =

• � � •

� • �

� �

•
living on the type gA3 graph

Back

Um,n(X,Y) = Un,m(Y,X), XUm,n(X,Y) = Um+1,n(X,Y) + Um−1,n+1(X,Y) +
Um,n−1(X,Y), YUm,n(X,Y) = Um,n+1(X,Y) + Um+1,n−1(X,Y) + Um−1,n(X,Y),

Koornwinder ∼1973. For fixed level m + n = e + 1, the common roots of the
Chebyshev polynomials are all in the discoid.

−3 3
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y

C

•

•

•

••

•

•

•

•
• •

•

•

•

•

•

•

•

•

inner is e = 1

middle is e = 2

outer is e = 3

Figure: The roots of the SL(3) Chebyshev polynomials.

Back

How does this generalize the interval ]− 2, 2[ for the Chebyshev roots?

Via rolling circles!

etc.

I stole the pictures from http://www.math.ucr.edu/home/baez/rolling/rolling_3.html.
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How does this generalize the interval ]− 2, 2[ for the Chebyshev roots?

Via rolling circles!

etc.

I stole the pictures from http://www.math.ucr.edu/home/baez/rolling/rolling_3.html.

There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).
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The case Γ = An & C = ∅.

Z�(An) =
1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

g

f

αs

αt

f = ( n−1 n ), g = ( n n−1 )

living on the type An graph

The case Γ = An & C = {1}.

ZC
�(An) =

1 2 · · · n−1 n

αs

αt

αs

αt

αs

αt

C = {1}

living on the type An graph

Back



Definition (e.g. Cline–Parshall–Scott ∼1988). A finite-dimensional algebra R
is called quasi-hereditary if there exists a chain of ideals

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jk−1 ⊂ Jk = R,

for some k ∈ Z≥1, such that the quotient Jl/Jl−1 is an hereditary ideal in R/Jl−1.

The point: Quasi-hereditary algebras have associated highest weight categories,
i.e. they have simple, (co)standard ∆, indecomposable projective and tilting
modules, all indexed by the same ordered set.

Example

Back



Example.
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C = {1}

J1 = k{1, 2 1, 1 2, x2}, J2 = k{2, 3 2, 2 3, x3} ⊕ J1, J3 = k{3} ⊕ J1 ⊕ J2.
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2 3
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∆3 = L3

P1 = ∆1

P2 =
∆2

∆1

P3 =
∆3

∆2

Note how nicely ordered 1 < 2 < 3
the standards in projectives, and the simples in the standards are.
This is one crucial numerical property of quasi-hereditary algebras.

The reciprocity:

C =




1 1 0
1 2 1
0 1 2


 = DTD =




1 0 0
1 1 0
0 1 1







1 1 0
0 1 1
0 0 1




D matrix encodes simples in standards.

Cellularity, roughly speaking, works very similarly, but D does not need to be a square matrix
while in the relative case D does not even need to be a upper triangular matrix.
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A linear projective resolution of a graded module M of a positively graded algebra
R is an exact sequence

· · · q2Q2 qQ1 Q0 M,

with graded projective R-modules qeQe generated in degree e.

Definition (e.g. Priddy ∼1970). A finite-dimensional, positively graded algebra
R is called Koszul if its degree 0 part is semisimple and each simple R-module
admits a linear projective resolution.

The point: Koszul algebras have projective resolutions of simples which are as
easy as possible.

Example

Back



Example.

ZC=∅
� (Ã2) =

1

0

2

P0

P2

P1 P1

P0 P0 L0

P2 P2

P1

P0

·0→2

·2→1

·-1→0

·1→2

·1→0

·-0→2

·0→1

·2→1

·2→0 ·2→0

·1→2

·0→1

P0 =

0

1 0 & 2 0

x0

P1 =

1

0 1 & 2 1

x1

P2 =

2

0 2 & 1 2

x2

,

Back

From now I just draw the graphs.

Kernel in the first step: k{1 0, 2 0, x0}

Kernel in the second step: k{2 1, x1, 1 2, x2} and k{0 1− 0 2}.

Kernel in the third step: k{0 2, x2, 0 1, x1} and k{1 2− 1 0} and k{2 0 + 2 1}.

Etc.

C =




1 + q2 q q
q 1 + q2 q
q q 1 + q2




gives the cofactor matrix C∗ =




1 + q2 + q4 −q + q2 − q3 −q + q2 − q3

−q + q2 − q3 1 + q2 + q4 q
−q + q2 − q3 −q + q2 − q3 1 + q2 + q4




and the determinant det = 1 + 2q3 + q6.

Then 1 + q2 + q4 + 2(−q + q2 − q3)/(1 + 2q3 + q6) ‘taylored’ gives

1− 2q + 3q2 − 4q3 + 5q4 − 6q5 ± . . . .

The numerical criterion for koszulness:

det−1 C∗ has q-linear column sums.

This is almost an if and only if: C encodes how projectives are filtered by simples.
So, det−1 C∗ encodes how simples are resolved by projectives.
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� (Ã2) =

1

0

2

P0

P2

P1 P1

P0 P0 L0

P2 P2

P1

P0

·0→2

·2→1

·-1→0

·1→2

·1→0

·-0→2

·0→1

·2→1

·2→0 ·2→0

·1→2

·0→1

P0 =

0

1 0 & 2 0

x0

P1 =

1

0 1 & 2 1

x1

P2 =

2

0 2 & 1 2

x2

,

Back

From now I just draw the graphs.

Kernel in the first step: k{1 0, 2 0, x0}

Kernel in the second step: k{2 1, x1, 1 2, x2} and k{0 1− 0 2}.

Kernel in the third step: k{0 2, x2, 0 1, x1} and k{1 2− 1 0} and k{2 0 + 2 1}.

Etc.

C =




1 + q2 q q
q 1 + q2 q
q q 1 + q2




gives the cofactor matrix C∗ =




1 + q2 + q4 −q + q2 − q3 −q + q2 − q3

−q + q2 − q3 1 + q2 + q4 q
−q + q2 − q3 −q + q2 − q3 1 + q2 + q4




and the determinant det = 1 + 2q3 + q6.

Then 1 + q2 + q4 + 2(−q + q2 − q3)/(1 + 2q3 + q6) ‘taylored’ gives

1− 2q + 3q2 − 4q3 + 5q4 − 6q5 ± . . . .

The numerical criterion for koszulness:

det−1 C∗ has q-linear column sums.

This is almost an if and only if: C encodes how projectives are filtered by simples.
So, det−1 C∗ encodes how simples are resolved by projectives.



Example.

ZC=∅
� (Ã2) =
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Ã2 =

1

0

2

 A =




0 1 1
1 0 1
1 1 0




0

2

1 1

. . . 0 0

2 2

1

0

-

-

e=3 e=2 e=1 e=0

U1(A) =
(

0 1 1
1 0 1
1 1 0

)

U2(A) =
(

1 1 1
1 1 1
1 1 1

)

U3(A) =
(

2 1 1
1 2 1
1 1 2

)

Another one

Back

The growth is linear.



Example.

A3 = 1 2 3  A =




0 1 0
1 0 1
0 1 0




?? 3 2 1

1

?? 2 2

3
-

?? 1 2 3

e=3 e=2 e=1 e=0

U1(A) =
(

0 1 0
1 0 1
0 1 0

)

U2(A) =
(

0 0 1
0 1 0
1 0 0

)

U3(A) =
(

0 0 0
0 0 0
0 0 0

)

Back

No growth at all: we are stuck in the 3th step.



Example.

A3 = 1 2 3  A =




0 1 0
1 0 1
0 1 0




?? 3 2 1

1

?? 2 2

3
-

?? 1 2 3

e=3 e=2 e=1 e=0

U1(A) =
(

0 1 0
1 0 1
0 1 0

)

U2(A) =
(

0 0 1
0 1 0
1 0 0

)

U3(A) =
(

0 0 0
0 0 0
0 0 0

)

Back

No growth at all: we are stuck in the 3th step.



The inverses of the graded Cartan determinants.

An : (1− q2)
∑∞

s=0 q(2n+2)s , gap = 2n − 1,

Dn, n even: (1− q2 ± · · ·+ q2n−4)
∑∞

s=0 (−1)s(s + 1)q(2n−2)s , gap = 1,

Dn, n odd: (1− q2 ± · · · − q2n−4)
∑∞

s=0q(4n−4)s , gap = 2n − 1,

E6 : (1− q2 + q4 − q8 + q10 − q12)
∑∞

s=0 q24s , gap = 11,

E7 : (1− q2 + q4)
∑∞

s=0 (−1)sq18s , gap = 13,

E8 : (1− q2 + q4 + q10 − q12 + q14)
∑∞

s=0 (−1)sq30s , gap = 15.

Observing now that the cofactor matrix has entries which are polynomials of
degree ≤ 2n − 2, one is done. Type D2n needs an extra argument along the same
lines.

Back

Explicitly, for type A3 we get

(1− q2)(1 + q8 + q16 + q24 + . . . ) = 1− q2 + q8 − q10 + q16 − q18 + q24 − q26 + . . . .

A∗ =




1 + q2 + q4 −q− q3 q
−q− q3 1 + q2 + q4 −q− q3

q −q− q3 1 + q2 + q4




Numerical resolutions are

1− q + q2 − 0q3 + q4 − q5 + q6 − 0q7 ± . . .

1− 2q + q2 − 0q3 + q4 − 2q5 + q6 − 0q7 ± . . .

1− q + q2 − 0q3 + q4 − q5 + q6 − 0q7 ± . . .



The inverses of the graded Cartan determinants.

An : (1− q2)
∑∞

s=0 q(2n+2)s , gap = 2n − 1,

Dn, n even: (1− q2 ± · · ·+ q2n−4)
∑∞

s=0 (−1)s(s + 1)q(2n−2)s , gap = 1,

Dn, n odd: (1− q2 ± · · · − q2n−4)
∑∞

s=0q(4n−4)s , gap = 2n − 1,

E6 : (1− q2 + q4 − q8 + q10 − q12)
∑∞

s=0 q24s , gap = 11,

E7 : (1− q2 + q4)
∑∞

s=0 (−1)sq18s , gap = 13,

E8 : (1− q2 + q4 + q10 − q12 + q14)
∑∞

s=0 (−1)sq30s , gap = 15.

Observing now that the cofactor matrix has entries which are polynomials of
degree ≤ 2n − 2, one is done. Type D2n needs an extra argument along the same
lines.

Back

Explicitly, for type A3 we get

(1− q2)(1 + q8 + q16 + q24 + . . . ) = 1− q2 + q8 − q10 + q16 − q18 + q24 − q26 + . . . .

A∗ =




1 + q2 + q4 −q− q3 q
−q− q3 1 + q2 + q4 −q− q3

q −q− q3 1 + q2 + q4




Numerical resolutions are

1− q + q2 − 0q3 + q4 − q5 + q6 − 0q7 ± . . .

1− 2q + q2 − 0q3 + q4 − 2q5 + q6 − 0q7 ± . . .

1− q + q2 − 0q3 + q4 − q5 + q6 − 0q7 ± . . .



The case Γ = A1 & C = ∅.
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living on the type gA1 graph

The case Γ = A3 & C = ∅, omitting loops.
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Example. The first few SL(3) Chebyshev polynomials:

e = 0 U1,0(X,Y) = X, U0,1(X,Y) = Y,

e = 1 U2,0(X,Y) = X2 − Y, U1,1(X,Y) = XY − 1, U0,2(X,Y) = Y2 − X,

e = 2
U3,0(X,Y) = X3 − 2XY + 1, U2,1(X,Y) = X2Y − Y2 − X,

U1,2(X,Y) = XY2 − X2 − Y, U0,3(X,Y) = Y3 − 2XY + 1,

e = 3

U4,0(X,Y) = X4 − 3X2Y + Y2 + 2X, U3,1(X,Y) = X3Y − 2XY2 − X2 + 2Y,

U2,2(X,Y) = X2Y2 − X3 − Y3
,

U1,3(X,Y) = XY3 − 2X2Y − Y2 + 2X, U0,4(X,Y) = Y4 − 3XY2 + X2 + 2Y,

e = 4

U5,0(X,Y) = X5 − 4X3Y + 3XY2 + 3X2 − 2Y, U4,1(X,Y) = X4Y − 3X2Y2 − X3 + Y3 + 4XY − 1,

U3,2(X,Y) = X3Y2 − X4 − 2XY3 + X2Y + 2Y2 − X, U2,3(X,Y) = X2Y3 − Y4 − 2X3Y + XY2 + 2X2 − Y,

U1,4(X,Y) = XY4 − 3X2Y2 − Y3 + X3 + 4XY − 1, U0,5(X,Y) = Y5 − 4XY3 + 3X2Y + 3Y2 − 2X.

One usually considers them for one level m + n = e + 1 together.

Back



Um,n(X,Y) = Un,m(Y,X), XUm,n(X,Y) = Um+1,n(X,Y) + Um−1,n+1(X,Y) +
Um,n−1(X,Y), YUm,n(X,Y) = Um,n+1(X,Y) + Um+1,n−1(X,Y) + Um−1,n(X,Y),

Koornwinder ∼1973. For fixed level m + n = e + 1, the common roots of the
Chebyshev polynomials are all in the discoid.
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Figure: The roots of the SL(3) Chebyshev polynomials.
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How does this generalize the interval ]− 2, 2[ for the Chebyshev roots?

Via rolling circles!

etc.

I stole the pictures from http://www.math.ucr.edu/home/baez/rolling/rolling_3.html.

http://www.math.ucr.edu/home/baez/rolling/rolling_3.html
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