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Tutorial 11 — Solutions
Weekly summary and definitions and results for this tutorial

a) If 𝐺 = (𝑉 ,𝐸) is a connected graph embedded in 𝔻2 then |𝑉 | − |𝐸| + |𝐹 | = 2, where 𝐹 is the
set of disconnected regions, or faces, in 𝔻2 ⧵ 𝐺.

b) The complete graphs 𝐾𝑛, for 𝑛 ⩾ 5, are not planar.
c) Face-degree equation: Let 𝑆 be a polygonal surface without boundary, with 𝑒 edges, vertex

set 𝑉 and 𝐹 the set of faces. Then ∑

𝑥∈𝑉 deg 𝑥 = 2𝑒 =
∑

𝑦∈𝐹 deg 𝑦.
d) A platonic solid is a solid made by gluing together regular 𝑛-gons of the same size with 𝑝 edges

meeting at every vertex. If the regular solid has vertex set 𝑉 , edge set 𝐸 and face set 𝐹 then
1
𝑝
+ 1

𝑛
= 1

2
+ 1

|𝐸|

> 1
2
.

As a consequence, we saw that there are exactly five platonic solids:
Solid 𝑛 𝑝 𝑣 = 2𝑒

𝑝
𝑒 𝑓 = 2𝑒

𝑝

Tetrahedron 3 3 4 6 4
Octahedron 3 4 6 12 8
Icosahedron 3 5 12 30 20
Cube 4 3 8 12 6
Dodecahedron 5 3 20 30 12

e) A map on a closed polygonal surface 𝑆 is polygonal decomposition such that all vertices have
degree at least 3, no region (or face), borders itself, no region contains a hole or another region
and no internal region has only two borders.

f) A colouring of a map on a surface 𝑆 is a colouring of the faces of the map so that polygons
sharing a common edge (a.k.a countries that share a border) have different colours.

g) The chromatic number 𝐶𝑀 (𝑆) of the map 𝑀 is the minimum number of colours needed to
colour 𝑀 . The chromatic number of the surface 𝑆 is

𝐶(𝑆) = max{𝐶𝑀 (𝑆) |𝑀 a map on 𝑆}.
h) Heawood’s estimate says that

𝐶(𝑆) ⩽

{

6, if 𝑆 = 𝑆2 or 𝑆 = ℙ2,
7+

√

49−24𝜒(𝑆)
2

, otherwise
The key to proving this when 𝜒(𝑆) ⩽ 0 is that 𝜕𝐹 ⩽ 5, where 𝜕𝐹 = 2|𝐸|

|𝐹 |

is the average degree
of a face.
Heawood’s estimate is sharp (i.e. exactly right), except when 𝑆 = 𝑆2 or 𝑆 = 𝕂. We proved
that every map on 𝑆2 or, equivalently (by stereographic projection), a map on 𝔻2, requires at
most 5 colours. In fact, every map on 𝑆2 is 4-colourable.

i) A knot is a closed path in ℝ3 with no self-intersections.
j) A knot projection is a drawing of a knot in ℝ2 with over and under crossings being used to

indicate the relative positions of the strings and with no more than two strands meeting at any
crossing.

k) A polygonal decomposition of a knot is a sequence of line segments with consecutive endpoints
identified. Any knot is equivalent to a polygonal knot. Two polygonal knots are equivalent if
there exists a polygonal knot that is a subdivision of both knots.

l) Two knot projections correspond to equivalent knots if and only if one can be transformed into
the other using the three Reidemeister moves: twisting, looping and sliding.

m) The segments of a knot projection are the connected components of the knot projection.
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Questions to complete during the tutorial
1. Recall that the complete graph 𝐾5 on 5 vertices is not planar. That is, 𝐾5 cannot be drawn on the plane

or on the sphere without edge crossings.
a) Is it possible to draw 𝐾5 without edge crossings on the Möbius band 𝕄?
b) Is it possible to draw 𝐾5 without edge crossings on the annulus 𝔸?

[Hint: Argue by contradiction thinking about the relationship between 𝔸 and 𝑆2.]
Solution

a) Using the standard polygonal decomposition of 𝕄 it is not hard to draw 𝐾5 on 𝕄:
𝑎

𝑏 𝑏

𝑐

𝑥

𝑦 𝑥

𝑦

where the red edges are all distinct, The key point is that the left and right-hand edges of the
Möbius band have opposite orientations. Therefore, the top edge leaving the Möbius band on the
left-hand side at the vertex 𝑥 is connected to the bottom edge on the right-hand side. Similarly, the
bottom left-hand edge that leaves 𝕄 at 𝑦 is connects to top right-hand edge.

b) It is not possible to draw 𝐾5 on the annulus without edge crossings. As 𝜒(𝔸) = 0 = 𝜒(𝕄) we
cannot argue as we did in lectures to show that this is impossible. Instead, as suggested by the hint,
we argue by contradiction and assume that we can draw 𝐾5 on the annulus without edge crossings.
Now, the annuls 𝔸, or cylinder, is a twice punctured sphere. Therefore, as we are assuming that
we can draw 𝐾5 on 𝔸 without edge crossings, by filling in the two punctures in 𝔸 we can draw 𝐾5on the sphere without edge crossings. We saw in lectures, however, that this is impossible, so this
is a contradiction. Hence, we cannot draw 𝐾5 on 𝔸 without edge crossings either.
More generally, by the same argument, we cannot draw 𝐾5 on 𝑆2 ##𝑑𝔻2, the sphere with 𝑑-
punctures where 𝑑 ⩾ 0, without edge crossings. Indeed, it is not hard to show that a graph is
planar if and only if it can be drawn on 𝑆2 ##𝑑𝔻2 without edge crossings.

2. Show that the complete bipartite graph 𝐾3,3

1 2 3

1′ 2′ 3′

is not planar.
[Hint: Argue by contradiction and first show that each face has four or six edges.]
Solution Suppose by way of contradiction that 𝐾3,3 is planar. Then there is a polygonal decomposition of the
sphere with 6 vertices and 9 edges. Let the number of faces in this decomposition be 𝐹 . Then 2 = 𝜒(𝑆2) =
6 − 9 + 𝐹 , so that 𝐹 = 5. Now, observe that because 𝐾3,3 is bipartite it can only have cycles of even length.
Therefore, as it has no cycles of length 2, all of the cycles in 𝐾3,3 have length 4 or 6 since there can be no cycles
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of length greater than 6 since 𝐾3,3 has only 6 vertices. Hence, in the polygonal decomposition of 𝑆2 coming
from 𝐾3,3, each face of has either 4 or 6 edges. Let 𝐹4 be the number of faces with 4 edges and 𝐹6 be the number
of faces with 6 edges. Then 𝐹4 + 𝐹6 = 5 and, since each edge must meet two faces, 4𝐹4 + 6𝐹6 = 2#edges = 18,
so that 2𝐹4 + 3𝐹6 = 9. Hence,

9 = 2𝐹4 + 3𝐹6 ⩾ 2(𝐹4 + 𝐹6) = 2 × 5 = 10. !!

This is a contradiction, so we conclude that 𝐾3,3 is not planar.

3. A ball is constructed from squares and regular hexagons sewn along edges such that at each vertex 3 edges meet.
Each square is surrounded by hexagons, and each hexagon by 3 squares and 3 hexagons. How many squares and
hexagons are used in the construction?
Solution Let the number of squares be 𝐹4 and the number of hexagons be 𝐹6 and let 𝑉 , 𝐸 and 𝐹 be the number
of vertices, edges and faces of the decomposition, respectively. Then 𝐹 = 𝐹4 + 𝐹6 and 3𝑉 = 2𝐸. Counting the
edges of the faces counts each edge twice so

4𝐹4 + 6𝐹6 = 2𝐸.

Each square meets 4 hexagons and each hexagon meets 3 squares, so 4𝐹4 = 3𝐹6. Hence 9𝐹6 = 2𝐸 = 3𝑉 .
Therefore,

𝐸 = 9
2
𝐹6, 𝑉 = 3𝐹6, 𝐹 = 𝐹6 +

3
4
𝐹6 =

7
4
𝐹6.

Using the Euler characteristic equation 𝑉 − 𝐸 + 𝐹 = 𝜒(𝑆2) = 2 shows that
12𝐹6 − 18𝐹6 + 7𝐹6 = 8

Hence 𝐹4 = 6 and 𝐹6 = 8. Such a surface can realised as a regular truncated octahedron.
See http://en.wikipedia.org/wiki/File:Truncatedoctahedron.gif for an animated rotating image.

4. a) Show that there is no regular polygonal decomposition of the torus by pentagons.
b) For which 𝑛 is there a regular polygonal decomposition of the torus into 𝑛-gons?

Solution

a) Suppose we have a decomposition of the torus with pentagonal faces with 𝑝 pentagons meeting at each
vertex. Let 𝑣, 𝑒 and 𝑓 be the number of vertices, edges and faces in this decomposition. The graph of
vertices and edges of the decomposition has all vertices of degree 𝑝. Hence,

𝑝𝑣 =
∑

vertices 𝑥
deg 𝑥 = 2𝑒.

Each pentagon has 5 edges so counting over all faces 5𝑓 = 2𝑒, since each edge is counted twice. Therefore,
since the torus has Euler characteristic zero,

0 = 𝜒(𝕋 ) = 𝑣 − 𝑒 + 𝑓 = 2𝑒
𝑝

− 𝑒 + 2𝑒
5

= 𝑒
(2
𝑝
− 1 + 2

5

)

= 𝑒
(2
𝑝
− 3

5

)

.

Hence, 2
𝑝
− 3

5 = 0 after dividing by 𝑒 (which is necessarily non-zero), so that 𝑝 = 10
3 . This is nonsense,

however, because 𝑝 is an integer. Therefore, it is not possible to find a decomposition of the torus using
pentagons.
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b) Arguing as in part (a), but now assuming that 𝑝 𝑛-gons meet in each vertex, we obtain

𝑝𝑣 = 2𝑒 = 𝑛𝑓 .

Therefore, 𝑣 = 2𝑒
𝑝

and 𝑓 = 2𝑒
𝑛

so that 0 = 𝜒(𝕋 ) = 2𝑒
𝑝
− 𝑒 + 2𝑒

𝑛
= 2𝑒(1

𝑝
+ 1

𝑛
− 1

2
). We can divide by 𝑒

since it is non-zero so, clearing denominators, we require that 𝑛𝑝 − 2𝑛 − 2𝑝 = 0 or, equivalently, that
(𝑛− 2)(𝑝− 2) = 4. As the only positive integer factorisations of 4 are 4 = 4 × 1 = 2 × 2 = 1 × 4 this means
that the only possible solutions are (𝑛, 𝑝) = (6, 3), (𝑛, 𝑝) = (4, 4) or (𝑛, 𝑝) = (3, 6), respectively. All of these
decompositions can be realised.
The last paragraph gives necessary conditions on 𝑝 and 𝑛 for the existence of a regular decomposition of
the torus, but we have not yet shown that these decompositions exist in any of the three cases (𝑛, 𝑝) = (6, 3),
(𝑛, 𝑝) = (4, 4) or (𝑛, 𝑝) = (3, 6). The only way to prove that such a decomposition exists is to produce one.
In fact, it turns out that in each case there are infinitely many different regular polygonal decompositions
of the torus by triangles, squares and hexagons. The regular decompositions of the torus can be found at
www.weddslist.com/groups/genus/1/
Recall that we have seen one of these, namely the one with seven touching hexagons:

5. The Degenerate Regular Decompositions of the Sphere

a) Show that for each integer 𝑝 ≥ 2 there is regular decomposition of the sphere into 𝑝 two sided polygons.
b) Dually, show that for each integer 𝑛 ≥ 2 there is a regular decomposition of the sphere into 2 polygons with

𝑛 sides.

Solution To get regular decomposition of the standard sphere into 𝑝 two sided polygons, mark a north pole
𝑁 and south pole 𝑆 on the sphere and then draw 𝑝 longitudinal semi-great circles with angle between lines of
longitude each 2𝜋∕𝑝. Then this is a polygonal decomposition of sphere into 2-gons with vertices 𝑁 and 𝑆. This
decomposition into 2-gons is regular the same number 𝑝, of the 2-gons, meets at each vertex. You have all seen
this before:

To get a regular decomposition of the sphere into two polygons each with 𝑛 mark 𝑛 equally spaced points
on the great circle. Then gives a polygonal decomposition of the sphere into two 𝑛-gons whose vertices are the
marked points, edges the great circle arcs joining them and faces the northern and southern hemispheres. This is
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regular decomposition into 𝑛-gons because the same number two, of 𝑛-gons, meets at each vertex.

MATH3061: Tutorial 11 — Solutions Page 5 of 5


