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Web www.dtubbenhauer.com/teaching.html

I apologize in advances for any typos or other errors on these slides!
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Topology
Unit outline

Topology is the study of properties of spaces that are preserved
by continuous deformation

We will study:

Graphs
Surfaces
Knots

These are all “topological” objects and we will study all of them
by using invariants and by approximating them with graphs

In topology we are allowed to bend and stretch
We are not allowed to cut, tear or join surfaces together
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Underlying theme in this unit
In this course we want to understand curves and surfaces but we allow
ourselves to wiggle and stretch the curves and surfaces

Thinking about an arbitrary curve or surface in space is hard, and this is
even before we allow them to be continuously deformed

One of the key ideas that we will use is that we can approximate curves
and surfaces using graphs
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Topological equivalences

≡

Topologically, a square and a circle are the same

≡

Topologically, a cube and a sphere are the same

We will see in more detail why these are the same later

...as well as looking at more exotic surfaces

= ≡ ??
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A torus is the same as a coffee mug

Source https://en.wikipedia.org/wiki/Topology
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Graphs
A (finite) graph is an ordered pair G = (V ,E ), where:

• V is a non-empty finite set of vertices
• E is a finite multiset of edges, which are unordered pairs of vertices

The difference between a set and a multiset is that multisets can have
repeated entries

Examples

• V = {1, 2, 3} and E =
{
{1, 1}, {1, 1}, {1, 1}, {2, 3}

}
• V = {a, b, c , d} and E =

{
{a, a}, {a, b}, {a, b}, {a, c}, {a, d}

}
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Graphs in the plane
Rather than working with the abstract definition of graphs, it is more
intuitive to draw pictures of graphs in the plane

where:
vertices = distinct points in R2, edges = curves between the points

This is called a realization of the graph in R2

Examples

• V = {1, 2, 3} and E =
{
{1, 1}, {1, 1}, {1, 1}, {2, 3}

}
1 2 3 (not connected!)

• V = {a, b, c , d} and E =
{
{a, a}, {a, b}, {a, b}, {a, c}, {a, d}

}

a d

c

b
(connected!)

As shown, we allow loops and duplicate edges
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Warning: drawings can be misleading
Drawings of graphs are useful pictorial aids, but be careful:
There are many ways to draw the same graph so we always need to check
that whatever are doing does not depend on how the graph is drawn!

Here are four different ways to draw the same graph

a d

c

b

a

cd

b

a c

d

b

a

cd

b

c a d

b
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Standard graphs
Path graphs Pn, for n ≥ 1 (also called line graphs)
Vertex set V = {1, 2, . . . , n}
Edge set E =

{
{1, 2}, {2, 3}, . . . , {n − 1, n}

}

1 1 2 1 2 3 1 2 3 4 · · ·

Cyclic graphs Cn, for n ≥ 1
Vertex set V = {1, 2, . . . , n}
Edge set the multiset E =

{
{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}

}

1 1

2
1

23

1

2

3

4

1

2

34

5
· · ·
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Standard graphs...
Complete graphs Kn, for n ≥ 1
Vertex set V = {1, 2, . . . , n}
Edge set E =

{
{i , j}

∣∣ 1 ≤ i < j ≤ n
}

1

1

2
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1
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2

3
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6
1

2

3

45
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2

3

4
5

6

7
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1

2

3

4
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7

8

9
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Standard graphs...
Complete bipartite graphs Kn,m, for n,m ≥ 1
Vertex set V = {1, 2, . . . , n, 1′, 2′, . . . ,m′}
Edge set E =

{
{i , j ′}

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

K2,3

1 2

1′ 2′ 3′

K3,2

1 2 3

1′ 2′
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Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b
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Subgraphs
A subgraph of a graph G = (V ,E ) is a graph H = (W ,F ) such that

W ⊆ V and F ⊆ E

If (V ,E ) is a graph and W ⊆ V then the full subgraph of (V ,E ) with
vertex set W is the graph (W ,F ) with F =

{
{w ,w ′} ∈ E

∣∣w ,w ′ ∈ W
}

That is, the full subgraph of G = (V ,E ) with vertex set W is the subgraph
of G that contains every edge in G that connects vertices in W .

Example The full subgraph of K6 with vertex set W = {1, 3, 5} is:
1

2

3

4

5

6
1

35

That is, F =
{
{1, 3}, {3, 5}, {5, 1}

}
Clearly, (W ,F ) is “the same” as the cyclic graph C3

...but what does it mean for graphs to be “the same ”?
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Isomorphic graphs
Two graphs G = (V ,E ) and H = (W ,F ) are isomorphic, written G ∼= H,
if there is a bijection f :V −→W such that the induced map on edges,
which sends an edge {v , v ′} ∈ E to {f (v), f (v ′)}, is also a bijection.

Notice that if f :G−→H is a graph isomorphism then:
• if {v , v ′} ∈ E is an edge of G then {f (v), f (v ′)} ∈ F is an edge of H
• Every edge {w ,w ′} ∈ F can be written uniquely as {f (v), f (v ′)}

Examples
• G ∼= H if and only if H ∼= G

• Kn,m
∼= Km,n

• The full subgraph of K6 with vertex set W = {1, 3, 5} has
edge set F =

{
{1, 3}, {3, 5}, {5, 1}

}
1

2

3

4

5

6
1

35

Claim (W ,F ) ∼= C3
For example, define f by

f (1) = 1,
f (3) = 2, and
f (5) = 3
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Subgraphs of complete graphs
Proposition
Let G = (V ,E ) be a graph on n vertices that has no loops and no
duplicated edges. Then G is isomorphic to a subgraph of Kn.

Proof

Write V = {v1, v2, . . . , vn}.
Let N = {1, 2, . . . , n} be the vertex set of Kn and let

En =
{
{i , j}

∣∣ 1 ≤ i < j ≤ n
}

be its edge set.

Define H = (N,EV ) to be the subgraph of Kn with
EV =

{
{i , j}

∣∣ {vi , vj} ∈ E
}
.

Then the map f :N−→V given by f (i) = vi ∈ V is
a graph isomorphism.
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Planar graphs
A planar graph is a graph that can be drawn in the R2 in such a way that
no edges cross.

This gives a planar embedding of the graph

Examples
• Graphs can have planar embeddings and other non-planar realizations

• Every path graph Pn is planar

• Every cyclic graph Cn is planar

1 2 3 4

1

2

34

5
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Complete graphs are rarely planar

• K1 1

• K2 1 2

• K3

1

23

• K4

1

2

3

4

• K5

1

2

34

5

• K6

1

2

3

4

5

6

— Topology – week 7



Complete graphs are rarely planar

• K1 1

• K2 1 2

• K3

1

23

• K4

1

2

3

4

• K5

1

2

34

5

• K6

1

2

3

4

5

6

— Topology – week 7



Complete graphs are rarely planar

• K1 1

• K2 1 2

• K3

1

23

• K4

1

2

3

4

• K5

1

2

34

5

• K6

1

2

3

4

5

6

— Topology – week 7



Graph embeddings in R3

Theorem
Every graph can be embedded (i.e. without edge crossings) in R3

Moral Graphs are “low dimensional” objects

Proof First, loops and duplicate edges are easy to treat, so we ignore
them. Next, use a book embedding:

A 3-page embedding of K5:

In general, one can embed Kn into a book with ⌈n/2⌉ pages. Since every
graph is a subgraph of some Kn, so we are done since books ⊂ R3
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The degree of a vertex
Let G = (V ,E ) be a graph. The degree of a vertex v ∈ V is

deg(v) = #
{

number of edges in E that have v as an endpoint
}

Examples

• 1 2 3 deg(1)=3

•
a d

c

b
deg(a)=5

• Pn 1 2 3 4 5 6 deg(4)=2
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Degrees of vertices in standard graphs; examples

• Cn

1

2

3

4

5

6

deg(4)=2

• Kn

1

2

3

4

5

6

deg(4)=5

• Kn,m

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′
deg(4)=5
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The handshaking lemma
Proposition (Vertex-degree equation = handshaking lemma)
Let G = (V ,E ) be a finite graph. Then∑

v∈V
deg(v) = 2|E |

Proof If I shake your hand, then you shake mine: every edges is adjacent
to two vertices, hence each edges contributes twice
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The handshaking lemma
Proposition (Vertex-degree equation = handshaking lemma)
Let G = (V ,E ) be a finite graph. Then∑

v∈V
deg(v) = 2|E |

Proof

Strictly speaking, we would use induction on |E |:
There is nothing to show if there is no edge, and if |E | > 0 remove any edge
e use induction for E ′ = E \ {e}, and add e using the previous observation
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The Euler characteristic of a graph
Let G = (V ,E ) be a graph. The Euler characteristic of G is the integer

χ(G ) = |V | − |E |

Moral
χ(G ) = #(degree 0 components of G )−#(degree 1 components of G )
Examples

• 1 2 3 χ(G ) = −1

•
a d

c

b
χ(G ) = −1

• Pn 1 2 3 4 5 6 χ(G ) = 1
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The Euler characteristic of standard graphs

• Cn

1

2

3

4

5

6

χ(G ) = 0

• Kn

1

2

3

4

5

6

χ(G ) = n − 1
2n(n − 1) = −1

2n(n − 3)

• Kn,m

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′

χ(G ) = n +m − nm

— Topology – week 7



Subdividing graphs
Let G = (V ,E ). A subdivision of G is any graph Ġ that is obtained
from G by successively replacing V with V ∪ {u}, for u /∈ V ,
and E with E ∪

{
{v , u}, {u,w}

}
\
{
{v ,w}

}
, for an edge {v ,w} ∈ E

That is, we successively replace an edge v w with v u w

Examples

• 1 2 3 7→ 1 2 3 4

• 1 2 3 7→
1

2

2 3

• 1 7→ 1 2 3 4
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Subdivision and Euler characteristic
Proposition

Let Ġ be a subdivision of G . Then χ(Ġ ) = χ(G )

Proof

The operation

v w 7→ v u w

clearly increases V and E by one, so their difference does not change.
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Let Ġ be a subdivision of G . Then χ(Ġ ) = χ(G )
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Paths in graphs
Let G = (V ,E ) be a graph and v ,w ∈ V . A path in G of length n
from v to w is a sequence of vertices v = v0, v1, . . . , vn = w such
that {vi , vi+1} ∈ E , for 0 ≤ i < n.

That is, the path looks like v0 v1 v2 . . . vn

Example
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Connectivity in graphs
Observations

• Every vertex is a path of length 0

• A path can pass through any edge zero or more times

• A path can go through any vertex zero or more times

• A path P = (v = v0 → v2 → · · · → vn = w) of length n in a graph
is the same as a graph homomorphism (not nes. an iso) f :Pn+1−→G
with f (i) = vi−1, for 1 ≤ i ≤ n + 1

A graph is connected if there is a path between any two vertices

The connected components of a graph G are the maximal connected
subgraphs of G . That is, H = (W ,F ) is a connected component of
G = (V ,E ) if H is
connected and {v ,w} ∈ F whenever {v ,w} ∈ E and w ∈ W

Example

1 2 3 Not connected, two connected components
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Connected examples
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Connected examples

• A fully “disconnected” graph:
1

2

3

4
56

7

8

9
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Circuits
A circuit or cycle in G is a path from any vertex to itself

Example
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Observations about circuits
Observations

• Every vertex is a circuit of length 0

• A circuit can pass through any edge zero or more times

• A circuit can go through any vertex zero or more times

• A circuit P = (v = v0 → v2 → · · · → vn = v) of length n in a graph
is the same as a graph homomorphism (not nes. an iso) f :Cn−→G
with f (i) = vi , for 0 ≤ i ≤ n

• “Inefficient circuits” backtrack over the same edges and vertices

• We will soon see that the Euler characteristic is closed related
to the number of “reduced” circuits in a graph
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Contractible circuits
A circuit v = v0 → v1 → · · · → vn = v is contractible if it contains two
consecutive repeated edges {vi , vi+1} = {vi+1, vi+2}, for some
0 ≤ i ≤ n − 2
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Reduced circuits
A circuit is reduced if it is not contractible

Notice that every circuit v = v0 → v1 → · · · → vn = v can be replaced
with a reduced circuit by successively deleting the repeated edges

vi → vi+1 → vi+2 = vi .

Observations

• Reduced circuits are “efficient” in the sense that they do not backtrack

• A reduced circuit of length n is not necessarily isomorphic to the
cycle graph Cn+1 because it could, for example, be a figure 8 graph
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Leaves and trees
A non-trivial circuit is a reduced circuit of length n > 0

A tree is a connected graph that has no non-trivial circuits

Examples

• Saturated hydrocarbons

H
C HH

H

Methane

H
C C H

H

H
H

H

Ethane

H
C C C H

H

H

H

H
H

H

Propane

H
C C C C H

H

H

H

H

H

H
H

H

Butane

• A tournament tree
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A catalog of small (connected) trees
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Trees have leaves
If T is a tree then a leaf in T is any vertex of degree 1

Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Remark This result provides an inductive tool for proving facts about trees
because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T , then both endpoints of P are
leaves

Why? Say the endpoints are v and w . WLOG suppose v is not a leaf; then
v has at least two neighbors and one of them is not in P . (Otherwise we
would have a circuit.) Thus one can make P longer. Contradiction

— Topology – week 7



Trees have leaves
If T is a tree then a leaf in T is any vertex of degree 1

Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Remark This result provides an inductive tool for proving facts about trees
because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T , then both endpoints of P are
leaves

Why? Say the endpoints are v and w . WLOG suppose v is not a leaf; then
v has at least two neighbors and one of them is not in P . (Otherwise we
would have a circuit.) Thus one can make P longer. Contradiction

— Topology – week 7



Trees have leaves
If T is a tree then a leaf in T is any vertex of degree 1

Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Remark This result provides an inductive tool for proving facts about trees
because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T , then both endpoints of P are
leaves

Why? Say the endpoints are v and w . WLOG suppose v is not a leaf; then
v has at least two neighbors and one of them is not in P . (Otherwise we
would have a circuit.) Thus one can make P longer. Contradiction

— Topology – week 7



Trees have leaves
If T is a tree then a leaf in T is any vertex of degree 1

Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Remark This result provides an inductive tool for proving facts about trees
because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T , then both endpoints of P are
leaves

Why? Say the endpoints are v and w . WLOG suppose v is not a leaf; then
v has at least two neighbors and one of them is not in P . (Otherwise we
would have a circuit.) Thus one can make P longer. Contradiction

— Topology – week 7



The Euler characteristic of a tree
Theorem
Suppose that T is a tree. Then χ(T ) = 1

Proof Argue by induction on the number of edges |E |
For |E | small use the previous table.

Otherwise, remove one leave (which exists by the previous statement). The
resulting tree has χ(T ) = 1, and adding the leave back increases V and E
by one, so χ remains constant
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Number of edges and vertices in a tree
Corollary
Suppose that T = (V ,E ) is a tree. Then |V | = |E |+ 1.

Proof By the previous statement
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Spanning trees
Proposition
Suppose that G = (V ,E ) is a connected graph.
Then G has a subgraph T = (V ,F ) (same vertices) that is a tree

Proof We remove edges to break circuits

(Formally, use induction on the number of nontrivial circuits of G )

A spanning tree of G is any subgraph T of G that is a tree and has
the same set of vertices as G

Example
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Spanning trees continued
Proposition
Suppose that G = (V ,E ) is a connected graph.
Then G has a spanning tree T = (V ,F ) (same vertices )

Proof Remove edges from nontrivial circuit of G to break them; the result
is a spanning tree

(Formally, use induction on the number of nontrivial circuit of G )
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An upper bound on χ(G )

Corollary
Suppose that G is a connected graph. Then χ(G ) ≤ 1 with equality if and
only if G is a tree.

Proof By the previous statements G has more edges than any of its
spanning trees, hence, χ(span tree) = 1 implies the corollary

Corollary
Let G be a connected graph. The number of independent cycles
(defined via example on the next slide)
in G is 1 − χ(G )

Proof By the previous statements
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Independent cycles
Examples

1

2

3

4 χ = 1, no independent cycles

1

2

3

4 χ = −1, two independent cycles

We have {{1, 2}, {2, 3}, {3, 4}, {1, 4}} =
{{1, 2}, {2, 4}, {1, 4}}+ {{2, 3}, {3, 4}, {2, 4}} mod2

Remark It is possible to construct a vector space of “cycles” that has
dimension 1 − χ(G ), which shows that the number of independent
cycles makes sense. This is beyond the scope of this course.

— Topology – week 7



Independent cycles
Examples

1

2

3

4 χ = 1, no independent cycles

1

2

3

4 χ = −1, two independent cycles

We have {{1, 2}, {2, 3}, {3, 4}, {1, 4}} =
{{1, 2}, {2, 4}, {1, 4}}+ {{2, 3}, {3, 4}, {2, 4}} mod2

Remark It is possible to construct a vector space of “cycles” that has
dimension 1 − χ(G ), which shows that the number of independent
cycles makes sense. This is beyond the scope of this course.

— Topology – week 7


