Topology - week 7 Math3061

Daniel Tubbenhauer, University of Sydney

(c) Semester 2, 2023

Technicalities

Lecturer Daniel Tubbenhauer
Office hour Zoom (https://uni-sydney.zoom.us/j/89436493625) Monday 4:30pm-5:30pm or by appointment (an informal email suffices)
Contact daniel.tubbenhauer@sydney.edu.au
Web www.dtubbenhauer.com/teaching.html

- I apologize in advances for any typos or other errors on these slides!
- I'd be grateful for any corrections that you send to me or post on Ed

Topology

Unit outline

Topology

Unit outline
Topology is the study of properties of spaces that are preserved by continuous deformation

Topology

Unit outline
Topology is the study of properties of spaces that are preserved by continuous deformation
We will study:

- Graphs
- Surfaces
- Knots

Topology

Unit outline
Topology is the study of properties of spaces that are preserved by continuous deformation

We will study:

- Graphs
- Surfaces
- Knots

These are all "topological" objects and we will study all of them by using invariants and by approximating them with graphs

Topology

Unit outline

Topology is the study of properties of spaces that are preserved by continuous deformation

We will study:

- Graphs
- Surfaces
- Knots

These are all "topological" objects and we will study all of them by using invariants and by approximating them with graphs

- In topology we are allowed to bend and stretch
- We are not allowed to cut, tear or join surfaces together

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces
Thinking about an arbitrary curve or surface in space is hard, and this is even before we allow them to be continuously deformed

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces
Thinking about an arbitrary curve or surface in space is hard, and this is even before we allow them to be continuously deformed

One of the key ideas that we will use is that we can approximate curves and surfaces using graphs

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces
Thinking about an arbitrary curve or surface in space is hard, and this is even before we allow them to be continuously deformed
One of the key ideas that we will use is that we can approximate curves and surfaces using graphs

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces
Thinking about an arbitrary curve or surface in space is hard, and this is even before we allow them to be continuously deformed
One of the key ideas that we will use is that we can approximate curves and surfaces using graphs

Underlying theme in this unit

In this course we want to understand curves and surfaces but we allow ourselves to wiggle and stretch the curves and surfaces
Thinking about an arbitrary curve or surface in space is hard, and this is even before we allow them to be continuously deformed
One of the key ideas that we will use is that we can approximate curves and surfaces using graphs

Topological equivalences

Topological equivalences

Topologically, a square and a circle are the same

Topological equivalences

Topologically, a square and a circle are the same

Topologically, a cube and a sphere are the same

Topological equivalences

Topologically, a square and a circle are the same

Topologically, a cube and a sphere are the same We will see in more detail why these are the same later

Topological equivalences

Topologically, a square and a circle are the same

Topologically, a cube and a sphere are the same
We will see in more detail why these are the same later
...as well as looking at more exotic surfaces

\equiv

A torus is the same as a coffee mug

Source https://en.wikipedia.org/wiki/Topology

Graphs

A (finite) graph is an ordered pair $G=(V, E)$, where:

- V is a non-empty finite set of vertices
- E is a finite multiset of edges, which are unordered pairs of vertices

Graphs

A (finite) graph is an ordered pair $G=(V, E)$, where:

- V is a non-empty finite set of vertices
- E is a finite multiset of edges, which are unordered pairs of vertices The difference between a set and a multiset is that multisets can have repeated entries

Graphs

A (finite) graph is an ordered pair $G=(V, E)$, where:

- V is a non-empty finite set of vertices
- E is a finite multiset of edges, which are unordered pairs of vertices

The difference between a set and a multiset is that multisets can have repeated entries

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

Graphs

A (finite) graph is an ordered pair $G=(V, E)$, where:

- V is a non-empty finite set of vertices
- E is a finite multiset of edges, which are unordered pairs of vertices

The difference between a set and a multiset is that multisets can have repeated entries

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$
- $V=\{a, b, c, d\}$ and $E=\{\{a, a\},\{a, b\},\{a, b\},\{a, c\},\{a, d\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

2
3

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

- $V=\{a, b, c, d\}$ and $E=\{\{a, a\},\{a, b\},\{a, b\},\{a, c\},\{a, d\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

- $V=\{a, b, c, d\}$ and $E=\{\{a, a\},\{a, b\},\{a, b\},\{a, c\},\{a, d\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

- $V=\{a, b, c, d\}$ and $E=\{\{a, a\},\{a, b\},\{a, b\},\{a, c\},\{a, d\}\}$

Graphs in the plane

Rather than working with the abstract definition of graphs, it is more intuitive to draw pictures of graphs in the plane where:
vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ curves between the points
This is called a realization of the graph in \mathbb{R}^{2}

Examples

- $V=\{1,2,3\}$ and $E=\{\{1,1\},\{1,1\},\{1,1\},\{2,3\}\}$

- $V=\{a, b, c, d\}$ and $E=\{\{a, a\},\{a, b\},\{a, b\},\{a, c\},\{a, d\}\}$

As shown, we allow loops and duplicate edges

Warning: drawings can be misleading

Drawings of graphs are useful pictorial aids, but be careful:
There are many ways to draw the same graph so we always need to check that whatever are doing does not depend on how the graph is drawn!

Warning: drawings can be misleading

Drawings of graphs are useful pictorial aids, but be careful:
There are many ways to draw the same graph so we always need to check that whatever are doing does not depend on how the graph is drawn!

Here are four different ways to draw the same graph

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1) 2

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
(2)
(1) 2

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
2.
(1) 2
(1) 2
3
(4)...

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
1.
2.
(1) 2
(3)
(1) 2
(3)
(4) \ldots

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
1.
2.
(1) 2
(3)
(1) 2
(3)
(4) \ldots

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
(2)
(1) 2
(3)
(1) 2
(3)
(4) \ldots

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
(2)
(1) 2
(3)
(1) 2
(3)
(4) \ldots

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$ Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
2.
(1)
(2)
(3)
(1)
(2)
3
(4) \ldots

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)
Vertex set $V=\{1,2, \ldots, n\}$ Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)
2
(1)
2
(3)
(1)
(2)
3
(4)...

Cyclic graphs C_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set the multiset $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$
(1)

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$
1.
1.

2

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$
Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$ Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$
(1)

Standard graphs.

Complete graphs K_{n}, for $n \geq 1$
Vertex set $V=\{1,2, \ldots, n\}$ Edge set $E=\{\{i, j\} \mid 1 \leq i<j \leq n\}$
(1) $\begin{array}{r}1 \\ 2\end{array}$

Standard graphs.

Complete bipartite graphs $K_{n, m}$, for $n, m \geq 1$
Vertex set $V=\left\{1,2, \ldots, n, 1^{\prime}, 2^{\prime}, \ldots, m^{\prime}\right\}$ Edge set $E=\left\{\left\{i, j^{\prime}\right\} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

- $V=\{1,2,3\}$ and $E=\{(1,1),(1,1),(1,1),(2,3)\}$

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

- $V=\{1,2,3\}$ and $E=\{(1,1),(1,1),(1,1),(2,3)\}$

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

- $V=\{1,2,3\}$ and $E=\{(1,1),(1,1),(1,1),(2,3)\}$

- $V=\{a, b, c, d\}$ and $E=\{(a, a),(a, b),(b, a),(a, c),(a, d)\}$

Directed graphs

We sometimes use directed graphs where we care about the orientation of the edges.
Formally, a (finite) directed graph is an ordered pair (V, E), where:

- V is a finite set of vertices
- E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

- $V=\{1,2,3\}$ and $E=\{(1,1),(1,1),(1,1),(2,3)\}$

- $V=\{a, b, c, d\}$ and $E=\{(a, a),(a, b),(b, a),(a, c),(a, d)\}$

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that $W \subseteq V$ and $F \subseteq E$

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that $W \subseteq V$ and $F \subseteq E$
If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.
Example The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ is:

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.

Example The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ is:

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.
Example The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ is:

That is, $F=\{\{1,3\},\{3,5\},\{5,1\}\}$

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.
Example The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ is:

That is, $F=\{\{1,3\},\{3,5\},\{5,1\}\}$
Clearly, (W, F) is "the same" as the cyclic graph C_{3}

Subgraphs

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that

$$
W \subseteq V \text { and } F \subseteq E
$$

If (V, E) is a graph and $W \subseteq V$ then the full subgraph of (V, E) with vertex set W is the graph (W, F) with $F=\left\{\left\{w, w^{\prime}\right\} \in E \mid w, w^{\prime} \in W\right\}$
That is, the full subgraph of $G=(V, E)$ with vertex set W is the subgraph of G that contains every edge in G that connects vertices in W.
Example The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ is:

That is, $F=\{\{1,3\},\{3,5\},\{5,1\}\}$
Clearly, (W, F) is "the same" as the cyclic graph C_{3}
...but what does it mean for graphs to be "the same "?

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection.

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection. Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection. Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection. Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection. Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

- $G \cong H$ if and only if $H \cong G$

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection. Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

- $G \cong H$ if and only if $H \cong G$
- $K_{n, m} \cong K_{m, n}$

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection.
Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

- $G \cong H$ if and only if $H \cong G$
- $K_{n, m} \cong K_{m, n}$
- The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ has edge set $F=\{\{1,3\},\{3,5\},\{5,1\}\}$

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection.
Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

- $G \cong H$ if and only if $H \cong G$
- $K_{n, m} \cong K_{m, n}$
- The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ has edge set $F=\{\{1,3\},\{3,5\},\{5,1\}\}$

$\operatorname{Claim}(W, F) \cong C_{3}$

Isomorphic graphs

Two graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic, written $G \cong H$, if there is a bijection $f: V \longrightarrow W$ such that the induced map on edges, which sends an edge $\left\{v, v^{\prime}\right\} \in E$ to $\left\{f(v), f\left(v^{\prime}\right)\right\}$, is also a bijection.
Notice that if $f: G \longrightarrow H$ is a graph isomorphism then:

- if $\left\{v, v^{\prime}\right\} \in E$ is an edge of G then $\left\{f(v), f\left(v^{\prime}\right)\right\} \in F$ is an edge of H
- Every edge $\left\{w, w^{\prime}\right\} \in F$ can be written uniquely as $\left\{f(v), f\left(v^{\prime}\right)\right\}$

Examples

- $G \cong H$ if and only if $H \cong G$
- $K_{n, m} \cong K_{m, n}$
- The full subgraph of K_{6} with vertex set $W=\{1,3,5\}$ has edge set $F=\{\{1,3\},\{3,5\},\{5,1\}\}$

Claim $(W, F) \cong C_{3}$
For example, define f by

$$
\begin{aligned}
& f(1)=1, \\
& f(3)=2, \text { and } \\
& f(5)=3
\end{aligned}
$$

Subgraphs of complete graphs

Proposition

Let $G=(V, E)$ be a graph on n vertices that has no loops and no duplicated edges. Then G is isomorphic to a subgraph of K_{n}.

Subgraphs of complete graphs

Proposition

Let $G=(V, E)$ be a graph on n vertices that has no loops and no duplicated edges. Then G is isomorphic to a subgraph of K_{n}. Proof

Subgraphs of complete graphs

Proposition

Let $G=(V, E)$ be a graph on n vertices that has no loops and no duplicated edges. Then G is isomorphic to a subgraph of K_{n}.

Proof
Write $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $N=\{1,2, \ldots, n\}$ be the vertex set of K_{n} and let

$$
E_{n}=\{\{i, j\} \mid 1 \leq i<j \leq n\}
$$

be its edge set.
Define $H=\left(N, E_{V}\right)$ to be the subgraph of K_{n} with

$$
E_{V}=\left\{\{i, j\} \mid\left\{v_{i}, v_{j}\right\} \in E\right\} .
$$

Then the map $f: N \longrightarrow V$ given by $f(i)=v_{i} \in V$ is a graph isomorphism.

Planar graphs

A planar graph is a graph that can be drawn in the \mathbb{R}^{2} in such a way that no edges cross.

This gives a planar embedding of the graph

Planar graphs

A planar graph is a graph that can be drawn in the \mathbb{R}^{2} in such a way that no edges cross.

This gives a planar embedding of the graph
Examples

Planar graphs

A planar graph is a graph that can be drawn in the \mathbb{R}^{2} in such a way that no edges cross.

This gives a planar embedding of the graph

Examples

- Graphs can have planar embeddings and other non-planar realizations
- Every path graph P_{n} is planar
- Every cyclic graph C_{n} is planar

Complete graphs are rarely planar

- K_{1}

1

- K_{2}

1.

2

- K_{3}

- K_{4}

Complete graphs are rarely planar

- K_{1}
- K_{2}
(1)
(1)-2

- K_{3}

- K_{5}

Complete graphs are rarely planar

- K_{1}
- K_{2}
(1)
(1)-2

- K_{3}

- K_{4}
- K_{5}

Graph embeddings in \mathbb{R}^{3}

Theorem

Every graph can be embedded (i.e. without edge crossings) in \mathbb{R}^{3}

Graph embeddings in \mathbb{R}^{3}

Theorem

Every graph can be embedded (i.e. without edge crossings) in \mathbb{R}^{3}
Moral Graphs are "low dimensional" objects

Graph embeddings in \mathbb{R}^{3}

Theorem

Every graph can be embedded (i.e. without edge crossings) in \mathbb{R}^{3}
Moral Graphs are "low dimensional" objects
Proof

Graph embeddings in \mathbb{R}^{3}

Theorem

Every graph can be embedded (i.e. without edge crossings) in \mathbb{R}^{3}
Moral Graphs are "low dimensional" objects
Proof First, loops and duplicate edges are easy to treat, so we ignore them. Next, use a book embedding:

A 3-page embedding of K_{5} :

In general, one can embed K_{n} into a book with $\lceil n / 2\rceil$ pages. Since every graph is a subgraph of some K_{n}, so we are done since books $\subset \mathbb{R}^{3}$

The degree of a vertex

Let $G=(V, E)$ be a graph. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=\#\{$ number of edges in E that have v as an endpoint $\}$

The degree of a vertex

Let $G=(V, E)$ be a graph. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=\#\{$ number of edges in E that have v as an endpoint $\}$ Examples

The degree of a vertex

Let $G=(V, E)$ be a graph. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=\#\{$ number of edges in E that have v as an endpoint $\}$

Examples

(2) (3) $\operatorname{deg}(1)=3$

- P_{n}
(1)-2

3.

4
5
(6) $\operatorname{deg}(4)=2$

Degrees of vertices in standard graphs; examples

- C_{n}

- K_{n}

- $K_{n, m}$

The handshaking lemma

Proposition (Vertex-degree equation = handshaking lemma)
Let $G=(V, E)$ be a finite graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

The handshaking lemma

Proposition (Vertex-degree equation = handshaking lemma)
Let $G=(V, E)$ be a finite graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof

The handshaking lemma

Proposition (Vertex-degree equation = handshaking lemma)

Let $G=(V, E)$ be a finite graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof If I shake your hand, then you shake mine: every edges is adjacent to two vertices, hence each edges contributes twice

The handshaking lemma

Proposition (Vertex-degree equation = handshaking lemma)
Let $G=(V, E)$ be a finite graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof

Strictly speaking, we would use induction on $|E|$:
There is nothing to show if there is no edge, and if $|E|>0$ remove any edge e use induction for $E^{\prime}=E \backslash\{e\}$, and add e using the previous observation

The Euler characteristic of a graph

Let $G=(V, E)$ be a graph. The Euler characteristic of G is the integer

$$
\chi(G)=|V|-|E|
$$

The Euler characteristic of a graph

Let $G=(V, E)$ be a graph. The Euler characteristic of G is the integer

$$
\chi(G)=|V|-|E|
$$

Moral
$\chi(G)=\#($ degree 0 components of $G)-\#($ degree 1 components of $G)$

The Euler characteristic of a graph

Let $G=(V, E)$ be a graph. The Euler characteristic of G is the integer

$$
\chi(G)=|V|-|E|
$$

Moral
$\chi(G)=\#($ degree 0 components of $G)-\#($ degree 1 components of $G)$ Examples

The Euler characteristic of a graph

Let $G=(V, E)$ be a graph. The Euler characteristic of G is the integer

$$
\chi(G)=|V|-|E|
$$

Moral
$\chi(G)=\#($ degree 0 components of $G)-\#($ degree 1 components of $G)$ Examples

(2) (3) $\chi(G)=-1$

- P_{n}
(1)-2

3
4
5
(6) $\chi(G)=1$

The Euler characteristic of standard graphs

- C_{n}

$$
\chi(G)=n-\frac{1}{2} n(n-1)=-\frac{1}{2} n(n-3)
$$

- $K_{n, m}$

$\chi(G)=n+m-n m$

Subdividing graphs

Let $G=(V, E)$. A subdivision of G is any graph \dot{G} that is obtained from G by successively replacing V with $V \cup\{u\}$, for $u \notin V$, and E with $E \cup\{\{v, u\},\{u, w\}\} \backslash\{\{v, w\}\}$, for an edge $\{v, w\} \in E$

Subdividing graphs

Let $G=(V, E)$. A subdivision of G is any graph \dot{G} that is obtained from G by successively replacing V with $V \cup\{u\}$, for $u \notin V$, and E with $E \cup\{\{v, u\},\{u, w\}\} \backslash\{\{v, w\}\}$, for an edge $\{v, w\} \in E$ That is, we successively replace an edge

Subdividing graphs

Let $G=(V, E)$. A subdivision of G is any graph \dot{G} that is obtained from G by successively replacing V with $V \cup\{u\}$, for $u \notin V$, and E with $E \cup\{\{v, u\},\{u, w\}\} \backslash\{\{v, w\}\}$, for an edge $\{v, w\} \in E$ That is, we successively replace an edge \qquad (w) with Examples

(2)

- 0

- 1) ${ }^{1}$ (

2
(3)
(4)

Subdivision and Euler characteristic

Proposition

Let \dot{G} be a subdivision of G. Then $\chi(\dot{G})=\chi(G)$

Subdivision and Euler characteristic

Proposition

Let \dot{G} be a subdivision of G. Then $\chi(\dot{G})=\chi(G)$
Proof

Subdivision and Euler characteristic

Proposition

Let \dot{G} be a subdivision of G. Then $\chi(\dot{G})=\chi(G)$

Proof
The operation

clearly increases V and E by one, so their difference does not change.

Paths in graphs

Let $G=(V, E)$ be a graph and $v, w \in V$. A path in G of length n from v to w is a sequence of vertices $v=v_{0}, v_{1}, \ldots, v_{n}=w$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$, for $0 \leq i<n$.

Paths in graphs

Let $G=(V, E)$ be a graph and $v, w \in V$. A path in G of length n from v to w is a sequence of vertices $v=v_{0}, v_{1}, \ldots, v_{n}=w$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$, for $0 \leq i<n$.

That is, the path looks like v_{0}
v_{1}
v_{2}

Paths in graphs

Let $G=(V, E)$ be a graph and $v, w \in V$. A path in G of length n from v to w is a sequence of vertices $v=v_{0}, v_{1}, \ldots, v_{n}=w$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$, for $0 \leq i<n$.
That is, the path looks like v_{0}
v_{1}
v_{2}

Example

Connectivity in graphs

Observations

Connectivity in graphs

Observations

- Every vertex is a path of length 0

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times
- A path $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=w\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: P_{n+1} \longrightarrow G$ with $f(i)=v_{i-1}$, for $1 \leq i \leq n+1$

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times
- A path $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=w\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: P_{n+1} \longrightarrow G$ with $f(i)=v_{i-1}$, for $1 \leq i \leq n+1$
A graph is connected if there is a path between any two vertices

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times
- A path $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=w\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: P_{n+1} \longrightarrow G$ with $f(i)=v_{i-1}$, for $1 \leq i \leq n+1$
A graph is connected if there is a path between any two vertices
The connected components of a graph G are the maximal connected subgraphs of G. That is, $H=(W, F)$ is a connected component of $G=(V, E)$ if H is
connected and $\{v, w\} \in F$ whenever $\{v, w\} \in E$ and $w \in W$

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times
- A path $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=w\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: P_{n+1} \longrightarrow G$ with $f(i)=v_{i-1}$, for $1 \leq i \leq n+1$
A graph is connected if there is a path between any two vertices
The connected components of a graph G are the maximal connected subgraphs of G. That is, $H=(W, F)$ is a connected component of $G=(V, E)$ if H is connected and $\{v, w\} \in F$ whenever $\{v, w\} \in E$ and $w \in W$ Example

Connectivity in graphs

Observations

- Every vertex is a path of length 0
- A path can pass through any edge zero or more times
- A path can go through any vertex zero or more times
- A path $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=w\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: P_{n+1} \longrightarrow G$ with $f(i)=v_{i-1}$, for $1 \leq i \leq n+1$
A graph is connected if there is a path between any two vertices
The connected components of a graph G are the maximal connected subgraphs of G. That is, $H=(W, F)$ is a connected component of $G=(V, E)$ if H is connected and $\{v, w\} \in F$ whenever $\{v, w\} \in E$ and $w \in W$ Example

(2) 3 Not connected, two connected components

Connected examples

Connected examples

- A fully "disconnected" graph:

8(3)

7
4
(6) 5

Connected examples

- A fully "disconnected" graph:
- A fully connected graph:
9^{1} 2
8
(3)

7
(6) 5

4

Connected examples

- A fully "disconnected" graph:
(1) 2
9

8
(3)

7
4
(6) 5

- A fully connected graph:
- Three connected components

Connected examples

- A fully "disconnected" graph:
9
(1)
(2)

8
7
(6) 5
(4)

- Three connected components

- A fully connected graph:

- Three connected components

Circuits

A circuit or cycle in G is a path from any vertex to itself

A circuit or cycle in G is a path from any vertex to itself

Example

Observations about circuits

Observations

Observations about circuits

Observations

- Every vertex is a circuit of length 0

Observations about circuits

Observations

- Every vertex is a circuit of length 0
- A circuit can pass through any edge zero or more times

Observations about circuits

Observations

- Every vertex is a circuit of length 0
- A circuit can pass through any edge zero or more times
- A circuit can go through any vertex zero or more times

Observations about circuits

Observations

- Every vertex is a circuit of length 0
- A circuit can pass through any edge zero or more times
- A circuit can go through any vertex zero or more times
- A circuit $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=v\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: C_{n} \longrightarrow G$ with $f(i)=v_{i}$, for $0 \leq i \leq n$

Observations about circuits

Observations

- Every vertex is a circuit of length 0
- A circuit can pass through any edge zero or more times
- A circuit can go through any vertex zero or more times
- A circuit $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=v\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: C_{n} \longrightarrow G$ with $f(i)=v_{i}$, for $0 \leq i \leq n$
- "Inefficient circuits" backtrack over the same edges and vertices

Observations about circuits

Observations

- Every vertex is a circuit of length 0
- A circuit can pass through any edge zero or more times
- A circuit can go through any vertex zero or more times
- A circuit $P=\left(v=v_{0} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}=v\right)$ of length n in a graph is the same as a graph homomorphism (not nes. an iso) $f: C_{n} \longrightarrow G$ with $f(i)=v_{i}$, for $0 \leq i \leq n$
- "Inefficient circuits" backtrack over the same edges and vertices
- We will soon see that the Euler characteristic is closed related to the number of "reduced" circuits in a graph

Contractible circuits

A circuit $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}=v$ is contractible if it contains two consecutive repeated edges $\left\{v_{i}, v_{i+1}\right\}=\left\{v_{i+1}, v_{i+2}\right\}$, for some $0 \leq i \leq n-2$

Reduced circuits

A circuit is reduced if it is not contractible

Reduced circuits

A circuit is reduced if it is not contractible
Notice that every circuit $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}=v$ can be replaced with a reduced circuit by successively deleting the repeated edges

$$
v_{i} \rightarrow v_{i+1} \rightarrow v_{i+2}=v_{i} .
$$

Reduced circuits

A circuit is reduced if it is not contractible
Notice that every circuit $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}=v$ can be replaced with a reduced circuit by successively deleting the repeated edges

$$
v_{i} \rightarrow v_{i+1} \rightarrow v_{i+2}=v_{i} .
$$

Observations

Reduced circuits

A circuit is reduced if it is not contractible
Notice that every circuit $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}=v$ can be replaced with a reduced circuit by successively deleting the repeated edges

$$
v_{i} \rightarrow v_{i+1} \rightarrow v_{i+2}=v_{i}
$$

Observations

- Reduced circuits are "efficient" in the sense that they do not backtrack

Reduced circuits

A circuit is reduced if it is not contractible
Notice that every circuit $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}=v$ can be replaced with a reduced circuit by successively deleting the repeated edges

$$
v_{i} \rightarrow v_{i+1} \rightarrow v_{i+2}=v_{i}
$$

Observations

- Reduced circuits are "efficient" in the sense that they do not backtrack
- A reduced circuit of length n is not necessarily isomorphic to the cycle graph C_{n+1} because it could, for example, be a figure 8 graph

Leaves and trees

A non-trivial circuit is a reduced circuit of length $n>0$

Leaves and trees

A non-trivial circuit is a reduced circuit of length $n>0$
A tree is a connected graph that has no non-trivial circuits

- Saturated hydrocarbons

Methane

Ethane

Propane

Butane

Leaves and trees

A non-trivial circuit is a reduced circuit of length $n>0$
A tree is a connected graph that has no non-trivial circuits

Examples

- Saturated hydrocarbons

Methane

Ethane

Propane

Butane

Leaves and trees

A non-trivial circuit is a reduced circuit of length $n>0$
A tree is a connected graph that has no non-trivial circuits

Examples

- Saturated hydrocarbons

Methane

Ethane

Propane

Butane

- A tournament tree

A catalog of small (connected) trees

Trees have leaves

If T is a tree then a leaf in T is any vertex of degree 1

Trees have leaves

If T is a tree then a leaf in T is any vertex of degree 1
Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Trees have leaves

If T is a tree then a leaf in T is any vertex of degree 1

Theorem

Let T be a tree with at least one edge. Then T has at least two leaves.
Remark This result provides an inductive tool for proving facts about trees because removing a leaf gives a tree with one less edge and vertex

Trees have leaves

If T is a tree then a leaf in T is any vertex of degree 1

Theorem

Let T be a tree with at least one edge. Then T has at least two leaves.
Remark This result provides an inductive tool for proving facts about trees because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T, then both endpoints of P are leaves

Why? Say the endpoints are v and w. WLOG suppose v is not a leaf; then v has at least two neighbors and one of them is not in P. (Otherwise we would have a circuit.) Thus one can make P longer. Contradiction

Theorem
Suppose that T is a tree. Then $\chi(T)=1$

The Euler characteristic of a tree

Theorem

Suppose that T is a tree. Then $\chi(T)=1$

Proof Argue by induction on the number of edges $|E|$
For $|E|$ small use the previous table.
Otherwise, remove one leave (which exists by the previous statement). The resulting tree has $\chi(T)=1$, and adding the leave back increases V and E by one, so χ remains constant

Number of edges and vertices in a tree

Corollary
Suppose that $T=(V, E)$ is a tree. Then $|V|=|E|+1$.

Number of edges and vertices in a tree

Corollary
Suppose that $T=(V, E)$ is a tree. Then $|V|=|E|+1$.

Proof By the previous statement

Spanning trees

Proposition

Suppose that $G=(V, E)$ is a connected graph.
Then G has a subgraph $T=(V, F)$ (same vertices) that is a tree

Spanning trees

Proposition

Suppose that $G=(V, E)$ is a connected graph.
Then G has a subgraph $T=(V, F)$ (same vertices) that is a tree
Proof We remove edges to break circuits
(Formally, use induction on the number of nontrivial circuits of G)

Spanning trees

Proposition

Suppose that $G=(V, E)$ is a connected graph.
Then G has a subgraph $T=(V, F)$ (same vertices) that is a tree
Proof We remove edges to break circuits
(Formally, use induction on the number of nontrivial circuits of G)
A spanning tree of G is any subgraph T of G that is a tree and has the same set of vertices as G

Spanning trees

Proposition

Suppose that $G=(V, E)$ is a connected graph.
Then G has a subgraph $T=(V, F)$ (same vertices) that is a tree
Proof We remove edges to break circuits
(Formally, use induction on the number of nontrivial circuits of G)
A spanning tree of G is any subgraph T of G that is a tree and has the same set of vertices as G

Example

Spanning trees continued

Proposition

Suppose that $G=(V, E)$ is a connected graph.
Then G has a spanning tree $T=(V, F)$ (same vertices)

Proof Remove edges from nontrivial circuit of G to break them; the result is a spanning tree
(Formally, use induction on the number of nontrivial circuit of G)

An upper bound on $\chi(G)$

Corollary

Suppose that G is a connected graph. Then $\chi(G) \leq 1$ with equality if and only if G is a tree.

An upper bound on $\chi(G)$

Corollary

Suppose that G is a connected graph. Then $\chi(G) \leq 1$ with equality if and only if G is a tree.

Proof By the previous statements G has more edges than any of its spanning trees, hence, χ (span tree) $=1$ implies the corollary

An upper bound on $\chi(G)$

Corollary

Suppose that G is a connected graph. Then $\chi(G) \leq 1$ with equality if and only if G is a tree.

Proof By the previous statements G has more edges than any of its spanning trees, hence, χ (span tree) $=1$ implies the corollary

Corollary

Let G be a connected graph. The number of independent cycles (defined via example on the next slide)
in G is $1-\chi(G)$

An upper bound on $\chi(G)$

Corollary

Suppose that G is a connected graph. Then $\chi(G) \leq 1$ with equality if and only if G is a tree.

Proof By the previous statements G has more edges than any of its spanning trees, hence, χ (span tree) $=1$ implies the corollary

Corollary

Let G be a connected graph. The number of independent cycles (defined via example on the next slide) in G is $1-\chi(G)$

Proof By the previous statements

Independent cycles

Examples

We have $\{\{1,2\},\{2,3\},\{3,4\},\{1,4\}\}=$ $\{\{1,2\},\{2,4\},\{1,4\}\}+\{\{2,3\},\{3,4\},\{2,4\}\} \bmod 2$

Independent cycles

Examples

We have $\{\{1,2\},\{2,3\},\{3,4\},\{1,4\}\}=$ $\{\{1,2\},\{2,4\},\{1,4\}\}+\{\{2,3\},\{3,4\},\{2,4\}\} \bmod 2$
Remark It is possible to construct a vector space of "cycles" that has dimension $1-\chi(G)$, which shows that the number of independent cycles makes sense. This is beyond the scope of this course.

