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Eulerian circuits and graphs
A Eulerian circuit is a circuit that passes through every edge exactly once

A graph is Eulerian if it has a Eulerian circuit

Example

Warning Eulerian graphs do not need to be connected because they
may have vertices of degree 0!
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Finding Eulerian circuits
In 1736 Euler asked when graphs have Eulerian circuits (without having
this terminology)

The motivation was that they wanted to know if it was possible to walk
around the city of Königsberg crossing each bridge exactly once

In answering this question Euler laid the foundations of graph theory
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Classifying Eulerian graphs
Theorem
Let G = (V ,E ) be a connected graph. Then G is Eulerian if and only if
every vertex has even degree

Proof

Assume that there is at least one vertex v of odd degree. Since we want to
visit every edge exactly once we will eventually get stuck in v or another
vertex of odd degree while trying to create an Eulerian cycle. Hence, G can
not have an Eulerian cycle
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Classifying Eulerian graphs

Proof continued

Conversely, if every vertex has even degree, then G is not a tree so contains
some circuit C . If C is an Euler circuit we are done, and if not remove all
edges of C from G . The resulting (potentially disconnected) graph G ′ has
still even degrees for all of its vertices but fewer edges than G

So we can argue by induction on the number of edges (the base case has
no edges and is thus clear), and inductively we can assume that the
connected components of G ′ have Euler circuits C1, . . . ,Cn
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Classifying Eulerian graphs

Proof continued

We piece C and C1, . . . ,Cn together into an Euler cycle: we walk along C
and whenever we hit a vertex of Ci we take a detour over Ci
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Eulerian paths
A Eulerian path is a path that is not a circuit and which passes through
every edge exactly once

Corollary
Let G = (V ,E ) be a connected graph that is not Eulerian. Then G has a
Eulerian path if and only if it has exactly two vertices of odd degree

Proof

Only vertices of odd degree can be a start or an end vertex, so we need
precisely two of them (all other must be of even degree by the same
argument as before)
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Eulerian paths

Proof continued

Conversely, if v and w are the two vertices of even degree, then we put an
additional edge e between them. We get a graph G ′ = G ∪ {e} and the
previous theorem gives us an Euler circuit C in G ′. Then C \ {e} is an
Euler path
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What about Königsberg?

There is no Eulerian circuit since all vertices have odd degree

There is no Eulerian path since all vertices have odd degree

Solution: Destroy bridge e ;-)

— Topology – week 8



What about Königsberg?

There is no Eulerian circuit since all vertices have odd degree

There is no Eulerian path since all vertices have odd degree

Solution: Destroy bridge e ;-)

— Topology – week 8



What about Königsberg?

There is no Eulerian circuit since all vertices have odd degree

There is no Eulerian path since all vertices have odd degree

Solution: Destroy bridge e ;-)

— Topology – week 8



What about Königsberg?

There is no Eulerian circuit since all vertices have odd degree

There is no Eulerian path since all vertices have odd degree

Solution: Destroy bridge e ;-)

— Topology – week 8



Topological equivalence
Let X ⊆ Rm and Y ⊆ Rn, for m, n ≥ 1

Definition
A homeomorphism f :X −→Y is a continuous map that has a continuous
inverse g :Y −→X . The spaces X and Y are homeomorphic if there is a
homeomorphism f :X −→Y

Remarks

• Homeomorphism is the higher dim analog of isomorphism for graphs
We treat two spaces as being “equal” if they are homeomorphic

• The maps f and g are both bijections with continuous inverses

• We have X ∼= X

• If X ∼= Y , then Y ∼= X

• If X ∼= Y and Y ∼= Z , then X ∼= Z
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Examples of homeomorphisms

Proposition
If a < b and c < d , then [a, b] ∼= [c , d ]

Proof

Define maps f : [a, b]−→ [c , d ]; x 7→ c + d−c
b−a (x − a)

g : [c , d ]−→ [a, b]; x 7→ a+ b−a
d−c (x − c)

Exercise Show that (a, b) ∼= (c , d) and (a, b] ∼= (c, d ]

!!!∼=

[a, b) ∼= [c , d)

Proposition
If a < b, then (a, b) ∼= R
Proof It is enough to show that (−π

2 ,
π
2 )

∼= R
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Examples of homeomorphisms
Proof continued

Homeomorphisms are given by f (x) = tan(x) and g(x) = tan−1(x)
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Examples of homeomorphisms...

Proposition

∼= = S1

We show that ∼=

Proof

The square is
{
(x , y)

∣∣ |x |+ |y | = 1
}

and S1 =
{
(x , y)

∣∣ x2 + y2 = 1
}

Define: f : −→S1; (x , y) 7→
(

x√
x2+y2

, y√
x2+y2

)
g : S1−→ ; (x , y) 7→

(
x

|x |+|y | ,
y

|x |+|y |
)

Note that ̸∼=

For free we see that the square and disk are homeomorphic:

Corollary

∼= ∼=
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Stereographic projection in two dimensions
Think of the north pole of the circle S1 as ∞
Stereographic projection gives a homeomorphism π : S1 \ {∞} → R:

∞

x
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Stereographic projection in three dimensions
Think of the north pole of the circle S2 as ∞
Stereographic projection gives a homeomorphism π : S2 \ {∞} → R2:
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Maps
Stereographic projection is used to draw maps:

Other projections are also used such as gnomonic projections, conic
projections and the Mercator projection, which is a cylindrical projection

Now that we have seen homeomorphisms we are ready to define surfaces
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Surfaces — informal definition
Definition
A surface is a subset of Rn that, locally, is homeomorphic to the graph of
the function f :R2−→R3 given by f (x , y) = z / alternatively to a disc

Here “locally” means that we can find a “local neighborhood” of every point
where the function looks like the plane f (x , y) = z / a disc

Examples

• A standard xyz-plane in R3
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Surfaces — examples...
• Non-standard planes in R3

y

z

x

• Curved surfaces in R3
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Surfaces — examples...

• A disk D2

• An annulus A

∼=

Strictly speaking, these are not surfaces according to our definition because
they have a boundary, whereas planes in R2 do not have boundaries.

Our rigorous definition of a surface will allow surfaces with boundaries
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Surfaces — examples...
• A sphere S2

• A torus T
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Surfaces — real world examples...
• A sphere S2 ∼= soccer ball

• A torus T ∼= swim ring
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Surfaces — real world example...
• Here is a surface with boundary:

The patches are examples of neighborhoods which are discs
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Surfaces — examples...
• The real projective plane P2 = S2/antipode

We will see other ways to describe P2 later
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Surfaces — examples...
• A Möbius band, or Möbius strip, M

• A Klein bottle K, also Klein surface

This is a three dimensional “shadow” of a four dimensional object
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Surfaces — non-examples
• This is not a surface because of the cusp at the origin

• This is not a surface because the indicated point has not a disc neighborhood
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Identification spaces
A partition of a surface S ⊆ Rm is a collection X1, . . . ,Xr of subsets of S
such that S = X1 ∪ X2 ∪ · · · ∪ Xr

The space S is an identification space for Y ⊆ Rn if there exists a
continuous surjective map f :S−→Y

Note Y = f (X1) ∪ f (X2) ∪ · · · ∪ f (Xr ) and that the map f implicitly
identifies the points in f (Xi1) ∩ · · · ∩ f (Xis ), for 1 ≤ i1, . . . , is ≤ r

This makes is possible to understand Y in terms of, often, easier
spaces X1, . . . ,Xr , which we think of as covering Y like a patchwork quilt
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identifies the points in f (Xi1) ∩ · · · ∩ f (Xis ), for 1 ≤ i1, . . . , is ≤ r

This makes is possible to understand Y in terms of, often, easier
spaces X1, . . . ,Xr , which we think of as covering Y like a patchwork quilt
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Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A =

cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a

=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a torus

cut

a

a

b b

So, the torus T is obtained by identifying the top and bottom, and
the left and right, edges of a rectangle
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Identification space for a sphere

cut aa

b c

b

c
b

b

c

c

The sphere S2 is obtained by identifying adjacent sides of a rectangle,
or a 2-gon (a polygon with two sides)
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Identification space for the projective plane P2

cut

=
b

a

a squash

a

a

b

=

a

a

c

c
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Identification space for a Möbius strip

cut
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Identification space for a Klein bottle
The Klein bottle is defined to be the identification space

K =

b

b

a a

Glue b

Push

It is not clear how we to do the last step in R3 and, in fact, we can’t!
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Polygons in Rn

We have seen that all of our “standard surfaces” can be viewed as
identification spaces using rectangles

A polygon is an embedding of the cyclic graph Cm into R2, together with
its face, such that such that the vertices of Cm map to distinct points
in R2 and the images of the edges do not intersect in R2

=⇒ The image of Cn in R2 is homeomorphic to the closed disc D2

C2 C3 C4 C5 C6

· · ·

Remarks
• The image of Cm in R2 is an m-gon, or a polygon with m sides

• Polygons are surfaces in R2. They are different from cyclic graphs
because they have vertices, edges and one face

• The graph C2 has only one edge. When working with surfaces we
think of C2 as having two edges so that its image in R2 is a 2-gon
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Surfaces and polygonal decompositions
Definition
A surface S is an identification space in Rn that is obtained by gluing
together polygons along their edges in such a way that at most two edges
meet along any edge
The polygons give a polygonal decomposition of the surface S

Remarks

• A surface is an identification space where we identify pairs of edges
in polygons. Informally, a surface is a patchwork quilt of polygons

• This essentially agrees with our earlier definition of surfaces because
every polygon is homeomorphic to a closed disc D2 so, locally,
surfaces look like planes / like discs

• A surface can have many seemingly different polygonal decompositions

• A surface with a polygonal decomposition has vertices, edges and faces
• We sometimes write S = (V ,E ,F ), where V is the vertex set,

edge set E , and face set F
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Identifying edges in polygonal decompositions
Whenever we draw polygonal decompositions we will usually:

• Label all of the edges with letters: a, b, c , . . .

• Use the same color for edges that have the same label

• Fix a direction of every edge (this is important!)

Remarks

• Identifying edges implicitly identifies vertices

• Colouring the edges is not strictly necessary but makes it easier
to see how the edges are identified in the polygonal decomposition

• You do not need to color the edges in your work, but you can
if you want to

• It is important to give the correct orientation, or direction, for the
paired edges because changing the direction of a paired edge will usually
change the surface

• When doing surgery always double check that you do not
accidentally change the orientation of an edge
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Examples of polygonal decompositions
We have already seen that:

• Annulus A ∼=

a

b

a

c

• Sphere

S2 ∼= a a ∼=

a

b

b

a

• Torus T ∼=

a

b

a

b

• Projective plane

P2 ∼= a a ∼=

a

b

a

b

• Möbius strip M ∼=

a

b

a

c

• Klein bottle K ∼=

a

b

a

b
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Important facts about polygonal decompositions
• Every polygon is homeomorphic to a closed disk D2

• At most two polygons meet in any edge, so

is not polygonal decomposition of a surface

• Any polygonal decomposition can be replaced with one that
only uses 3-gons:

=⇒ Iterating this process, shows that any surface has infinitely many
different polygonal decompositions!
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Important facts about polygonal decompositions...
• Every connected surface has a polygonal decomposition with

one polygon — with identified edges
(A polygonal surface is connected if the underlying graph is connected)

• We have to check that what we are doing does not depend on the
choice of polygonal decomposition
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Surgery: cutting and gluing
Surgery is our main tool for working with surfaces: it allows us
to change a polygonal decomposition by cutting and gluing

T ∼=

a

b

a

b =

a

b

a

bc

∼=

∼=

a
d

d

b
c

c

a

b

∼=

a
d

d

b
c

c

a

b

e
∼=

a
d

e

c
a

c

e

d

b =

a
d

e

c
a

c

e

d

f

∼=

a
d

e
f

e

d
f

c

a

c

We want an easy way to identify surfaces from polygonal decompositions
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Surgery: cutting and gluing
Surgery is our main tool for working with surfaces: it allows us
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Example surface
Exercise Can we describe the following surface?

a

e

f

g

d

h

i f

g

b

i

a

c

e

=

a
e

f

g

d

h
a

c

e

f

g

b

i

Answer Not yet! First we need more language and technology.
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Free and paired edges and the boundary
Let S be a surface with a polygonal decomposition

• An edge is free if it occurs only once in the polygonal decomposition

• An edge is paired if it occurs twice

• The boundary of S is the union of the free edges

• A boundary circle is a cycle in the polygonal decomposition
in which every edge is free

We will show that boundary of S is a disjoint union of boundary circles

Example

D2 = ∼= a b ∼=

a

b

c

d ∼=

a
b

f

f
c

d

e

e
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Example boundary circles...
• Sphere

S2 ∼= a a ∼=

a

b

b

a

• Torus T ∼=

a

b

a

b

• Projective plane

P2 ∼= a a ∼=

a

b

a

b

• Klein bottle K ∼=

a

b

a

b

All edges paired =⇒ no boundary

• Annulus A ∼=

a

b

a

c • Möbius M ∼=

a

b

a

c
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Example boundary circles...
Exercise What is the boundary of the surface?

a
e

f

g

d

h
a

c

e

f

g

b

Free edges: b, c , d , h

Key observation
Paired edges imply
that some vertices are
equal
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The Euler characteristic of a surface
Let S = (V ,E ,F ) be a surface with a polygonal decomposition

Definition
The Euler characteristic of S is χ(S) = |V | − |E |+ |F |

Remarks

• The Euler characteristic χ(S) = |V | − |E |+ |F | of S is a
higher dimensional generalization of the Euler characteristic
of a graph G = (V ,E ), which is χ(G ) = |V | − |E |

• The definition of χ(S) appears to depend on the choice of polygonal
decomposition (V ,E ,F ) of S . In fact, we will soon see that χ(S) is
independent of this choice
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Euler characteristic of basic surfaces.
• Sphere

S2 ∼= a a ∼=

a

b

b

a , χ = 2

• Torus T ∼=

a

b

a

b , χ = 0

• Projective plane

P2 ∼= a a ∼=

a

b

a

b , χ = 1

• Klein bottle

K ∼=

a

b

a

b , χ = 0

• Annulus A ∼=

a

b

a

c , χ = 0 • Möbius M ∼=

a

b

a

c , χ = 0
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Euler characteristic example
Example What is the Euler characteristic of the surface:

S =

a
e

f

g

d

h
a

c

e

f

g

b
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Example What is the Euler characteristic of the surface:

S =

a
e

f

g

d

h
a

c

e

f

g

b

yx

x

w

w

v

x y

x

x

w

w

=⇒ χ(S) = −3
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Subdivision of a surface
Let S be a surface with a polygonal decomposition

A subdivision of S is any polygonal decomposition that is obtained from S
by successively applying the following operations:

• Subdividing an edge by adding a new vertex
x z x y z

• Subdividing a face by adding a new edge

Remarks

• The subdivision of a subdivision of S is a subdivision of S

• If Ṡ has a polygonal decomposition that is a subdivision of
a polygonal decomposition of S then S ∼= Ṡ
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— Topology – week 8



Subdividing and Euler characteristic
Proposition

Let Ṡ be a subdivision of S . Then χ(S) = χ(Ṡ)

Proof It is enough to check this for the two subdivision operations:

• Subdividing an edge:
x z x y z

• Subdividing a face:

Both operations preserve χ
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Common subdivisions
Theorem
Let S be a surface and suppose that S has polygonal decomposition
P1 = (V1,E1,F1) and P2 = (V2,E2,F2). Then S has a polygonal
decomposition (V ,E ,F ) that is a common subdivision of P1 and P2

Proof Merge the two subdivisions
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Common subdivisions
Theorem
Let S be a surface and suppose that S has polygonal decomposition
P1 = (V1,E1,F1) and P2 = (V2,E2,F2). Then S has a polygonal
decomposition (V ,E ,F ) that is a common subdivision of P1 and P2

Proof Merge the two subdivisions — adding extra vertices as necessary
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Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof

Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S)

= χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P)

= χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Why are invariants useful?

Question
Let S and T be surfaces. Is S ∼= T?

To show that S and T are homeomorphic is, in principle, easy: we find a
continuous map f :S−→T with a continuous inverse g :T −→S

Showing that S ̸∼= T is harder as we need to show that no such maps exist

Using invariants makes this easier because S ∼= T only if χ(S) = χ(T )
and if S and T have the same number of boundary circles

=⇒ if χ(S) ̸= χ(T ), or if S and T have a different number
of boundary circles, then S ̸∼= T

Exercise Using what we know so far, deduce that the surfaces

S2, A, D2, K, M, P2

are pairwise non-homeomorphic (see Tutorial 9)
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