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Classifying surfaces using invariants
We have seen that homeomorphic surfaces must have:

• The same Euler characteristic

• The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they
are not enough to distinguish between all surfaces

Example
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Orientability
Definition
A surface S is non-orientable if it contains a Möbius strip M
If S does not contain a Möbius strip it is orientable

Remarks

• Even though this looks hard to apply we will see it isn’t

• Clearly, M is non-orientable, but there are no other “easy” examples

M =

a

b

a

c

• Are S2, A, D2, T, P2, K, . . . orientable or non-orientable?

• Can a surface be orientable and non-orientable for different
polygonal decompositions? (That would be bad!)
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The Klein bottle K

K =

=

= =

= =
M
M

=⇒ The Klein bottle K is non-orientable!

. . . although it might be more accurate to say that the Klein bottle
is a Möbius strip without boundary
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The projective plane P2

P2 =

=

= =
D2

M
D2

=⇒ The projective plane P2 is non-orientable

. . . or maybe P2 and not K
is a Möbius strip without boundary?
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What does orientability mean?
Orientability is a generalisation of direction to higher dimensions

• One dimension R
right

• Two dimensions R2

anticlockwise rotation

clockwise rotation

• Three dimensions R3 ???

• Higher dimensions Rn, for n ≥ 3 ???
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Direction in higher dimensions
To generalise direction, choose an ordered basis B = {b1, b2, . . . , bn} of Rn

The order of the basis elements is the key to understanding direction

We can compare B to the standard basis E = {e1, e2, . . . , en} of column
vectors by computing the sign of the determinant

det(B) = det

 ...
...

...
b1 b2 ... bn
...

...
...

 sign(B) = ±1

• One dimension R

e1b1

sign(B) = −1
b1

sign(B) = +1
e1

• Two dimensions R2

e1

e2
b1 b2

sign(B) = −1

e1

e2
b2 b1

sign(B) = +1
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Direction on the Möbius strip
Pick a point m ∈ M on the Möbius strip and an ordered basis
B = {b1, b2, b3} positioned at m with b3 = b1 × b2 pointing outwards

Now imagine m, and the coordinate axes moving, continuously around the
Möbius strip so that the xyz-coordinate axes around M

Initially, b3 is pointing outwards but after one rotation it is pointing inwards

The vector b3 is always normal to the surface of the Möbius strip. The
direction of b3 can change from pointing outside to inside because the
Möbius strip is a surface with a boundary that only has one side
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Direction on the Klein bottle K

We can do the same experiment with the
Klein bottle and we see the same
phenomenon: the vector b3 changes from
pointing outside to pointing inside the
surface

This time is slightly different because K is a
surface without boundary

=⇒ The Klein bottle K does not have
an inside and an outside !!

In contrast, orientable surfaces without
boundary like S2 and T do have an inside
and an outside

Warning: this is a drawing of K in R3 but it is not the actual Klein bottle!
Similarly, the pictures of the sphere S2 in R3 are not really the sphere!
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Alternative description

Alternatively, think of an orientation as a consistent of a coordinate system
for each point:
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Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

S

ω

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface
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Vout = { x ∈ R3 | s(x) is even }

=⇒ R3 = S ∪ Vin ∪ Vout (disjoint union)

S

ω

1

0

2

2
3

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface
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Orientable surfaces...
Now suppose that S is non-orientable, so that it contains a Möbius strip M

Pick a point m ∈ S that is on this Möbius strip and fix an ordered basis
{b1, b2, b3} with b1 and b2 tangential to m and b3 = b1 × b2.

Replacing b3 with −b3, if necessary, we assume that b3 points out of S

Now move m, and B = {b1, b2, b3}, continuously around S

=⇒ det(B) changes continuously as m moves around S

By moving m around the Möbius strip in M, we can move m to a point
where b3 now points inside S

=⇒ By continuity, at some point b3 must have been in the plane
spanned by b1 and b2

=⇒ det(B) = 0    since B is linearly independent!

Corollary
Let S be a non-orientable closed surface. Then S does not embed in R3.
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You can’t fill a liquid into the Klein bottle

Strictly speaking the liquid is neither in- nor outside
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Jordan curve theorem
This argument used to prove theorem can be made rigorous for surfaces
with finite polygonal decompositions but for “general surfaces” it is difficult
to prove that R3 = S ∪ Vin ∪ Vout.

The corresponding result for curves in R2 is known as the Jordan Curve
Theorem, which says that any closed curve C in R2 gives rise to a
decomposition R2 = C ∪ Vin ∪ Vout (disjoint union)

This is really hard to prove!

To appreciate why this is a nontrivial result consider:

The left is easy, but can you tell for the right what is “in” or “out”?
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Jordan curve theorem - 2
The main meat is that one needs to deal with “crazy” curves:
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Embedding the projective plane in R4

The projective plane P2 is non-orientable, so it does not embed in R3

By definition, the projective plane is defined by identifying antipodal
points on the sphere S2:

P2 =
{
(x , y , z) ∈ R3

∣∣ x2 + y2 + z2 = 1
}/

(x , y , z) ∼ (−x ,−y ,−z)

We can embed P2 into R4 using the continuous map:

(x , y , z) 7→ (xy , xz , yz , y2 − z2)

It is not hard to check that this is a well-defined injective function

=⇒ P2 is homeomorphic to the image of this map in R4

Remark

We will soon see that every non-orientable surface can be constructed
using projective planes, so this implies that every non-orientable surface
embeds in R4

In contrast, every orientable surface embeds in R3
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Connected sums
We need a way to build new surfaces from old surfaces

The boundary of a surface is the union of its boundary circles, or
free edges. The interior of a surface is anything not on the boundary

Definition
The connected sum of surfaces S and T is the surface S #Tobtained by

1 cutting disks DS and DT out of the interiors of S and T , respectively

2 identifying the boundary circles of DS and DT
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Connected sums
We need a way to build new surfaces from old surfaces

The boundary of a surface is the union of its boundary circles, or
free edges. The interior of a surface is anything not on the boundary

Definition
The connected sum of surfaces S and T is the surface S #Tobtained by

1 cutting disks DS and DT out of the interiors of S and T , respectively

2 identifying the boundary circles of DS and DT

S T

DS DT

Identifying DS and DT is the same as connecting them with a cylinder
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Connected sums with spheres
• What is S2 # S2 ?

DS DT ∼= DS DT

∼= DS DT ∼=

Hence, S2 #S2 ∼= S2

• If T is any surface then T # S2 ∼= T

This follows by exactly the same calculation!

So S2 is the unit under the operation #
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Connected sums with disks
• What is D2 #D2 ?

DS DT

∼= DS DT

∼= DS DT ∼= ∼= A

Hence, D2 #D2 ∼= A, which is the annulus or cylinder

• If T is any surface then T #D2 puts a puncture, or hole, in T

This follows by exactly the same calculation!

=⇒ T #D2 # . . .#D2︸ ︷︷ ︸
d times

= T ##dD2 is equal to T with d

punctures or, equivalently, T with d additional boundary circles
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Connected sums with tori
• What is T#T ?

DS DT

∼=

The double torus
T#T = #2T

Similarly, there are triple tori #3T

. . . and, more generally, t-tori #tT
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We already know t-tori
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Properties of connected sums
• S #T is independent of the location of the disks DS and DT

S T

DS DT

As long as DS stays in the interior of S , and DT in the interior
of T , the surface S #T is unchanged up to homeomorphism

• S #T ∼= T # S

S T

DS
DT ∼=

S
T

DSDT
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Associativity of connected sums...
• S #

(
T #U

) ∼= (
S #T

)
#U

S

T U

D1
D2

D2 D3

∼=
S

T U

D3
D4

D1 D2

In these diagrams, D1 and D2 are cut first and then D3 and D4

=⇒ # is a “surface addition or multiplication”
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Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks
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Examples
• If S is any surface then S ∼= S # S2

=⇒ χ(S) = χ(S) + χ(S2)︸ ︷︷ ︸
=2

−2 = χ(S)

• A ∼= D2 #D2 =⇒ χ(A) = χ(D2) + χ(D2)− 2 = 1 + 1 − 2 = 0

• χ(T#T#T) = (χ(T) + χ(T)− 2) + χ(T)− 2 = −4

— Topology – week 9



Connected sums and polygonal decompositions

T#T =

a

b

a

b #

c

d

c

d

=

a

b

e

a

b c

d

e

c

d

=

a
b

d

c
d

c

a

b

e

=⇒ For surfaces without a boundary you can cut the disks anywhere!
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Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b

∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc

∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

,

#4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b ∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .

— Topology – week 9



Connected sums and polygonal decompositions...

D2 #D2 ∼= a

b

c # d

e

f

∼= a

b

cg # d

e

fh

=

a

b

g

g

c

#

d

e

h

h

f

=

a
b

g
i

g

c
d

e

h
i

h

f

=

a
b

g

h

f
d

e

h

g

c

i

=⇒ For surfaces with a boundary, you can cut into the interior,
if necessary, to form the connected sum
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Surgery
We have already seen that it is possible to change one polygonal
decomposition into another using surgery

There are two basic operations:

• Adding and removing edges:

a
=

a
a

• Cutting and gluing

a = a a

Perhaps surprisingly, these two operations and subdivision
are all that we need

— Topology – week 9
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Surgery on the Möbius strip
Lemma

M ∼= D2 #P2 (= a punctured projective plane)

Proof

M =

a

b

c

b ∼=

a

b

c

bd ∼=

a

c

d

db

∼= e

d

d where e = ac

∼= D2 #P2

=⇒ A Möbius strip is a punctured projective plane

=⇒ Every non-orientable surface contains the projective plane
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Surgery on the Klein bottle
Lemma

K ∼= P2 #P2 ∼= #2P2

Proof

K =

a

b

a

b =

a

b

a

bc
=

a

a

c

cb

∼= c c # a a

∼= P2 #P2
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Surgery on a torus and projective plane
Theorem

T#P2 ∼= K#P2

Proof

T#P2 =

a

b

a

b # c c ∼=

∼=

a
b

d
b

a

d
c ∼=

a
b

d
b

a

d

e
∼=

a
d

e
e

a

d
b

∼= e e #

a

d

a

d ∼= P2 #K
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Projective planes dominate
On the last slide we saw that T#P2 ∼= K#P2

=⇒ T#P2 ∼= #3P2 since K ∼= #2P2

suggests that the connected sum of any surface with a
projective plane is non-orientable

Warning Connected sums do not cancel since T ̸∼= K
Why? T embeds in R3 but K does not!
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Oriented and unoriented edges

Compare: P2 = a a and T =

a

b

a

b

Paired edges on a polygon are oriented if they point in opposite directions
and unoriented if they point in the same direction

a

a

Oriented Unoriented

Oriented edges can be folded together without twisting whereas unoriented
edges can only be brought together if the surface is twisted

— Topology – week 9



Oriented and unoriented edges

Compare: P2 = a a and T =

a

b

a

b

Paired edges on a polygon are oriented if they point in opposite directions
and unoriented if they point in the same direction

a

a b b

Oriented Unoriented

Oriented edges can be folded together without twisting whereas unoriented
edges can only be brought together if the surface is twisted

— Topology – week 9



Oriented and unoriented edges

Compare: P2 = a a and T =

a

b

a

b

Paired edges on a polygon are oriented if they point in opposite directions
and unoriented if they point in the same direction

a

a b b

Oriented Unoriented

Oriented edges can be folded together without twisting whereas unoriented
edges can only be brought together if the surface is twisted

— Topology – week 9



Oriented and unoriented edges

Compare: P2 = a a and T =

a

b

a

b

Paired edges on a polygon are oriented if they point in opposite directions
and unoriented if they point in the same direction

a

a b b

c

d M

Oriented Unoriented

Oriented edges can be folded together without twisting whereas unoriented
edges can only be brought together if the surface is twisted

— Topology – week 9



Classification of connected surfaces
Theorem
Let S be a connected surface. Then there exist non-negative integers d , p
and t such that

1 S ∼= S2 ##dD2 ##pP2 ##tT

2 the boundary of S is the disjoint union of d circles

3 S is orientable if and only if p = 0
Moreover, we can assume that pt = 0, in which case S is uniquely
determined up to homeomorphism by (d , p, t)

Remark If d + p + t ̸= 0 we can omit the sphere S2

Proof We argue by induction on the number of edges in a polygonal
decomposition of S with one face to first prove 1

Base case: If S has one edge then either

S = a a

∼= S2

or S = b b

∼= P2

=⇒ The theorem is true in this case
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Proof of the classification theorem
Now suppose that S has at least two edges and that the theorem is true
whenever all surfaces that have a polygonal decomposition with one face
and fewer edges

If S has only free edges then S ∼= D2 and the theorem holds

Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

∼=
b

b
a

∼= P2 #

=⇒ S ∼= P2 #T

By induction, T ∼= S2 ##dD2 ##pP2 ##tT since T has fewer edges

=⇒ S ∼= S2 ##dD2 ##p+1P2 ##tT as required
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Proof of the classification theorem...
Case II: All paired edges in S are oriented

If S has adjacent oriented edges then

S ∼=
a

a

∼= a ∼= T

=⇒ S ∼= T ∼= S2 ##dD2 ##pP2 ##tT by induction

Hence, we can assume that the paired edges are not adjacent

Similarly, we can assume that S does not have any adjacent free edges
as such edges can be replaced with a single free edge

Fix an (oriented) paired edge a such that the number of edges between
the two copies of a is minimal
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Proof of the classification theorem...
Case IIa: All edges on one side of a are free

=⇒ S ∼=

a
b

a ∼= D2 #

a
a

∼= D2 #T

By induction, T ∼= S2 ##dD2 ##pP2 ##tT

=⇒ S ∼= D2 #T ∼= S2 ##d+1D2 ##pP2 ##tT

Hence, we can assume that there are paired edges on both sides of a
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Proof of the classification theorem...
Case IIb: There are paired edges on both sides of a

The number of edges between the ends of a is minimal, so

=⇒ S ∼= ∼=

∼=

dc
d

c a ∼= T# ∼= T#U

By induction, U ∼= S2 ##dD2 ##pP2 ##tT

=⇒ S ∼= D2 #U ∼= S2 ##dD2 ##pP2 ##t+1T
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— Topology – week 9



Proof of the classification theorem...
Case IIb: There are paired edges on both sides of a
The number of edges between the ends of a is minimal, so

=⇒ S ∼=

a

b

a

bc ∼=

ac
a

c

d

∼=

dc
d

c a ∼= T# ∼= T#U

By induction, U ∼= S2 ##dD2 ##pP2 ##tT

=⇒ S ∼= D2 #U ∼= S2 ##dD2 ##pP2 ##t+1T
— Topology – week 9



Proof of the classification theorem...
We have now proved that every surface can be written in the form

S ∼= S2 ##dD2 ##pP2 ##tT
for non-negative integers d , p and t

The proof so far shows that d is the number of boundary circles

Next, note that if p > 0 then P2 is contained in S

=⇒ S is non-orientable if p ̸= 0

On the other hand, S ∼= S2 ##dD2 ##tT ↪→ R3 is orientable if p = 0

=⇒ S is orientable if and only if p = 0

We have now proved 1 , 2 and 3 from the theorem!

Next, observe that if p ̸= 0 and t ̸= 0 then S contains P2 #T ∼= #3P2

=⇒ #tT#P2 ∼= #t−1T##3P2 ∼= . . . ∼= #2t+1P2

=⇒ Hence, we can assume t = 0 if p ̸= 0

That is, we can assume pt = 0 — equivalently, p = 0 or t = 0
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Proof of the classification theorem...
It remains to prove if S ∼= S2 ##dD2 ##pP2 ##tT with tp = 0 then S
is uniquely determined up to homeomorphism by (d , p, t)

Let T = S2 ##eD2 ##qP2 ##sT, with sq ̸= 0

=⇒ We need to show that S ∼= T if and only if (d , p, t) = (e, q, s)

If (d , p, t) = (e, q, s) there is nothing to prove, so suppose S ∼= T

• d = e as homeomorphism preserve boundary circles

• p ̸= 0 ⇔ q ̸= 0 as homeomorphisms preserve orientability

• Homeomorphisms preserve Euler characteristic. By tutorial 9,

▶ χ(S2 ##aD2 ##bP2) = 2 − a− b

▶ χ(S2 ##aD2 ##cT) = 2 − a− 2c

=⇒ (d , p, t) = (e, q, s) since χ(S) = χ(T )

All parts of the classification theorem are now proved!!

Hence, we now know all surfaces up to homeomorphism!
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Orientability
Corollary
A surface S is non-orientable if and only if its polygonal decomposition
contains an unoriented edge

Proof Any unoriented edge gives a Möbius band inside S :

Conversely, S = S2 ##dD2 ##tT embeds in R3, so it is orientable.
Hence, a polygonal decomposition of S can only contain oriented edges

It is now not hard to find an explicit polygonal decomposition of
S = S2 ##dD2 ##tT

and check that surgery cannot create unoriented edges in S
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Standard forms
Theorem
Let S be a connected surface. Then there exist non-negative integers d , p
and t with pt = 0 such that

1 S ∼= S2 ##dD2 ##pP2 ##tT

2 the boundary of S is the disjoint union of d circles

3 S is orientable if and only if p = 0

The surface S is in standard form when written as
S ∼= S2 ##dD2 ##pP2 ##tT

with pt = 0 — that is, p = 0 or t = 0

• The standard form uniquely identifies S

• S is orientable if and only if p = 0

• S has d boundary circles

• S has Euler characteristic χ(S) = 2 − d − p − 2t (tutorials!)

The standard form of a surface that is not connected has each component
in standard form
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1 S ∼= S2 ##dD2 ##pP2 ##tT

2 the boundary of S is the disjoint union of d circles

3 S is orientable if and only if p = 0

The surface S is in standard form when written as
S ∼= S2 ##dD2 ##pP2 ##tT

with pt = 0 — that is, p = 0 or t = 0

• The standard form uniquely identifies S

• S is orientable if and only if p = 0

• S has d boundary circles

• S has Euler characteristic χ(S) = 2 − d − p − 2t (tutorials!)

The standard form of a surface that is not connected has each component
in standard form
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Corollary of classification
Corollary
A connected surface is uniquely determined, up to homeomorphism by

1 the number of boundary circles

2 its orientability

3 its Euler characteristic

Proof Write S ∼= S2 ##dD2 ##pP2 ##tT in standard form with tp = 0

=⇒ χ(S) = 2 − d − p − 2t

Hence, the standard form uniquely determines the number of boundary
circles, orientability and Euler characteristic of S

Conversely, these three characteristics of S determine (d , p, t)
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2 its orientability
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Proof Write S ∼= S2 ##dD2 ##pP2 ##tT in standard form with tp = 0

=⇒ χ(S) = 2 − d − p − 2t

Hence, the standard form uniquely determines the number of boundary
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Spheres with punctures
• S2 ##dD2 is a sphere with d punctures

S2 #D2 =

S2 ##2D2 =

S2 ##3D2 =

S2 ##4D2 =

S2 ##5D2 =

S2 ##6D2 =

More generally, S ##dD2 is S with d punctures
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Spheres with punctures
• S2 ##dD2 is a sphere with d punctures

S2 #D2 =

S2 ##2D2 =

S2 ##3D2 =

S2 ##4D2 =

S2 ##5D2 =

S2 ##6D2 =

More generally, S ##dD2 is S with d punctures
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A spheres with zero and one puncture
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Spheres with handles
• S2 ##tT is a sphere with t handles

S2 #T ∼= T ∼= ∼=

S2 ##2T ∼= #2T ∼= ∼=

S2 ##3T ∼= ∼=

Continuing like this constructs a sphere with t-handles #tT
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Spheres with handles
• S2 ##tT is a sphere with t handles

S2 #T ∼= T ∼= ∼=

S2 ##2T ∼= #2T ∼= ∼=

S2 ##3T ∼= ∼=

Continuing like this constructs a sphere with t-handles #tT
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Handle decomposition
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

— Topology – week 9
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##1
P2 ∼=
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##2
P2 ∼=
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##3
P2 ∼=
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##4
P2 ∼=
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##5
P2 ∼=
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##6
P2 ∼=
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What do standard surfaces look like?
We can combine the pictures above to draw all of the standard surfaces:

#8D2 ##7T ∼=

#6D2 ##9P2 ∼=

#3D2 ##2T##3P2 ∼= ∼=
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What do standard surfaces look like?
We can combine the pictures above to draw all of the standard surfaces:

#8D2 ##7T ∼=

#6D2 ##9P2 ∼=

#3D2 ##2T##3P2 ∼= ∼=
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Putting a surface in standard form
Given a polygonal decomposition for a surface we can put it in standard
form by:

• Find all of the vertices (identified edges implicitly identify vertices)

• Count the number d of boundary circles

• S is orientable (p = 0) if all edges are oriented otherwise
it is non-orientable (t = 0)

• Compute χ(S) = 2 − d − p − 2t to determine the missing
variable, which is t if S is orientable and or p if non-orientable
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Example 1
What is the surface with the below polygonal decomposition?

a
e

f

g

d

h
a

c

e

f

g

b

yx

x

z

z

v

x y

x

x

z

z

a c e f g b a e f g dh (overline=opposite direction)

=⇒ This is #1D2 ##0T##4P2
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Example 2
What is the standard form of the surface with polygonal decomposition?

a

b

c

d

a

b

c

d
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