Topology - week 9 Math3061

Daniel Tubbenhauer, University of Sydney

(c) Semester 2, 2023

Classifying surfaces using invariants

We have seen that homeomorphic surfaces must have:

- The same Euler characteristic
- The same number of boundary circles

Classifying surfaces using invariants

We have seen that homeomorphic surfaces must have:

- The same Euler characteristic
- The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they are not enough to distinguish between all surfaces

Classifying surfaces using invariants

We have seen that homeomorphic surfaces must have:

- The same Euler characteristic
- The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they are not enough to distinguish between all surfaces

Example

\mathbb{T}

?

Classifying surfaces using invariants

We have seen that homeomorphic surfaces must have:

- The same Euler characteristic
- The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they are not enough to distinguish between all surfaces

Example

\mathbb{T}

Orientability

Definition

A surface S is non-orientable if it contains a Möbius strip \mathbb{M} If S does not contain a Möbius strip it is orientable

Orientability

Definition

A surface S is non-orientable if it contains a Möbius strip \mathbb{M} If S does not contain a Möbius strip it is orientable

Remarks

- Even though this looks hard to apply we will see it isn't

Orientability

Definition

A surface S is non-orientable if it contains a Möbius strip \mathbb{M}
If S does not contain a Möbius strip it is orientable

Remarks

- Even though this looks hard to apply we will see it isn't
- Clearly, \mathbb{M} is non-orientable, but there are no other "easy" examples

Orientability

Definition

A surface S is non-orientable if it contains a Möbius strip \mathbb{M}
If S does not contain a Möbius strip it is orientable

Remarks

- Even though this looks hard to apply we will see it isn't
- Clearly, \mathbb{M} is non-orientable, but there are no other "easy" examples

- Are $S^{2}, \mathbb{A}, \mathbb{D}^{2}, \mathbb{T}, \mathbb{P}^{2}, \mathbb{K}, \ldots$ orientable or non-orientable?

Orientability

Definition

A surface S is non-orientable if it contains a Möbius strip \mathbb{M}
If S does not contain a Möbius strip it is orientable

Remarks

- Even though this looks hard to apply we will see it isn't
- Clearly, \mathbb{M} is non-orientable, but there are no other "easy" examples

- Are $S^{2}, \mathbb{A}, \mathbb{D}^{2}, \mathbb{T}, \mathbb{P}^{2}, \mathbb{K}, \ldots$ orientable or non-orientable?
- Can a surface be orientable and non-orientable for different polygonal decompositions? (That would be bad!)

The Klein bottle \mathbb{K}

Topology - week 9

The Klein bottle \mathbb{K}

The Klein bottle \mathbb{K}

Topology - week 9

The Klein bottle \mathbb{K}

The Klein bottle \mathbb{K}

Topology - week 9

The Klein bottle \mathbb{K}

The Klein bottle \mathbb{K}

\Longrightarrow The Klein bottle \mathbb{K} is non-orientable!

\Longrightarrow The Klein bottle \mathbb{K} is non-orientable!
... although it might be more accurate to say that the Klein bottle is a Möbius strip without boundary

The projective plane \mathbb{P}^{2}

The projective plane \mathbb{P}^{2}

\Longrightarrow The projective plane \mathbb{P}^{2} is non-orientable

The projective plane \mathbb{P}^{2}

\Longrightarrow The projective plane \mathbb{P}^{2} is non-orientable
\ldots or maybe \mathbb{P}^{2} and not \mathbb{K}
is a Möbius strip without boundary?

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

- Three dimensions \mathbb{R}^{3} ???

What does orientability mean?

Orientability is a generalisation of direction to higher dimensions

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

- Three dimensions \mathbb{R}^{3} ???
- Higher dimensions \mathbb{R}^{n}, for $n \geq 3$???

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
The order of the basis elements is the key to understanding direction

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
b_{1} & b_{2} & \ldots \\
\vdots & b_{n} \\
\vdots & \vdots & \\
\vdots
\end{array}\right)
$$

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & \vdots & \\
b_{1} & b_{2} & \ldots \\
b_{n} \\
\vdots & \vdots & \\
\vdots
\end{array}\right) \leadsto \operatorname{sign}(B)= \pm 1
$$

- One dimension \mathbb{R}

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & \vdots & \\
b_{1} & b_{2} & \ldots \\
b_{n} \\
\vdots & \vdots & \\
\vdots
\end{array}\right) \leadsto \operatorname{sign}(B)= \pm 1
$$

- One dimension \mathbb{R}

$\operatorname{sign}(B)=+1$

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
b_{1} & b_{2} & \ldots \\
b_{n} \\
\vdots & \vdots & \vdots
\end{array}\right) \leadsto \operatorname{sign}(B)= \pm 1
$$

- One dimension \mathbb{R}

$\operatorname{sign}(B)=+1$

- Two dimensions \mathbb{R}^{2}

Direction in higher dimensions

To generalise direction, choose an ordered basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n} The order of the basis elements is the key to understanding direction We can compare B to the standard basis $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of column vectors by computing the sign of the determinant

$$
\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
b_{1} & b_{2} & \ldots \\
b_{n} \\
\vdots & \vdots & \vdots
\end{array}\right) \leadsto \operatorname{sign}(B)= \pm 1
$$

- One dimension \mathbb{R}

- Two dimensions \mathbb{R}^{2}

$$
\operatorname{sign}(B)=-1
$$

$$
\operatorname{sign}(B)=+1
$$

Direction on the Möbius strip

Pick a point $m \in \mathbb{M}$ on the Möbius strip and an ordered basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ positioned at m with $b_{3}=b_{1} \times b_{2}$ pointing outwards

Direction on the Möbius strip

Pick a point $m \in \mathbb{M}$ on the Möbius strip and an ordered basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ positioned at m with $b_{3}=b_{1} \times b_{2}$ pointing outwards Now imagine m, and the coordinate axes moving, continuously around the Möbius strip so that the xyz-coordinate axes around \mathbb{M}

Direction on the Möbius strip

Pick a point $m \in \mathbb{M}$ on the Möbius strip and an ordered basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ positioned at m with $b_{3}=b_{1} \times b_{2}$ pointing outwards Now imagine m, and the coordinate axes moving, continuously around the Möbius strip so that the xyz-coordinate axes around \mathbb{M}

Initially, b_{3} is pointing outwards but after one rotation it is pointing inwards

Direction on the Möbius strip

Pick a point $m \in \mathbb{M}$ on the Möbius strip and an ordered basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ positioned at m with $b_{3}=b_{1} \times b_{2}$ pointing outwards Now imagine m, and the coordinate axes moving, continuously around the Möbius strip so that the xyz-coordinate axes around \mathbb{M}

Initially, b_{3} is pointing outwards but after one rotation it is pointing inwards The vector b_{3} is always normal to the surface of the Möbius strip. The direction of b_{3} can change from pointing outside to inside because the Möbius strip is a surface with a boundary that only has one side

Direction on the Klein bottle \mathbb{K}

We can do the same experiment with the Klein bottle and we see the same phenomenon: the vector b_{3} changes from pointing outside to pointing inside the surface

Direction on the Klein bottle \mathbb{K}

We can do the same experiment with the Klein bottle and we see the same phenomenon: the vector b_{3} changes from pointing outside to pointing inside the surface

This time is slightly different because \mathbb{K} is a surface without boundary
\Longrightarrow The Klein bottle \mathbb{K} does not have an inside and an outside !!

Direction on the Klein bottle \mathbb{K}

We can do the same experiment with the Klein bottle and we see the same phenomenon: the vector b_{3} changes from pointing outside to pointing inside the surface

This time is slightly different because \mathbb{K} is a surface without boundary
\Longrightarrow The Klein bottle \mathbb{K} does not have an inside and an outside !!

In contrast, orientable surfaces without boundary like S^{2} and \mathbb{T} do have an inside and an outside

Direction on the Klein bottle \mathbb{K}

We can do the same experiment with the Klein bottle and we see the same phenomenon: the vector b_{3} changes from pointing outside to pointing inside the surface

This time is slightly different because \mathbb{K} is a surface without boundary
\Longrightarrow The Klein bottle \mathbb{K} does not have an inside and an outside !!

In contrast, orientable surfaces without boundary like S^{2} and \mathbb{T} do have an inside and an outside

Direction on the Klein bottle \mathbb{K}

We can do the same experiment with the Klein bottle and we see the same phenomenon: the vector b_{3} changes from pointing outside to pointing inside the surface

This time is slightly different because \mathbb{K} is a surface without boundary
\Longrightarrow The Klein bottle \mathbb{K} does not have an inside and an outside !!

In contrast, orientable surfaces without boundary like S^{2} and \mathbb{T} do have an inside and an outside

Warning: this is a drawing of \mathbb{K} in \mathbb{R}^{3} but it is not the actual Klein bottle! Similarly, the pictures of the sphere S^{2} in \mathbb{R}^{3} are not really the sphere!

Alternative description

Alternatively, think of an orientation as a consistent of a coordinate system for each point:

Alternative description

Alternatively, think of an orientation as a consistent of a coordinate system for each point:

Alternative description

Alternatively, think of an orientation as a consistent of a coordinate system for each point:

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

$$
\begin{aligned}
& \text { Set } V_{\text {in }}=\left\{x \in \mathbb{R}^{3} \mid x \notin S \text { and } s(x) \text { is odd }\right\} \\
& \quad V_{\text {out }}=\left\{x \in \mathbb{R}^{3} \mid s(x) \text { is even }\right\}
\end{aligned}
$$

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

$$
\begin{aligned}
& \text { Set } V_{\text {in }}=\left\{x \in \mathbb{R}^{3} \mid x \notin S \text { and } s(x) \text { is odd }\right\} \\
& V_{\text {out }}=\left\{x \in \mathbb{R}^{3} \mid s(x) \text { is even }\right\} \\
& \Longrightarrow \mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }} \quad \text { (disjoint union) }
\end{aligned}
$$

Orientable surfaces

Theorem

Suppose that S is a connected surface without boundary that embeds in \mathbb{R}^{3}. Then S is orientable.
Proof Embed S in \mathbb{R}^{3} and pick a point ω a "long" way from S
For each point $x \in \mathbb{R}^{3}$ draw a line from ω to x and define $s(x)$ to be the number of times this line crosses the boundary of S

$$
\begin{aligned}
& \text { Set } V_{\text {in }}=\left\{x \in \mathbb{R}^{3} \mid x \notin S \text { and } s(x) \text { is odd }\right\} \\
& V_{\text {out }}=\left\{x \in \mathbb{R}^{3} \mid s(x) \text { is even }\right\}
\end{aligned}
$$

$$
\Longrightarrow \quad \mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }} \quad \text { (disjoint union) }
$$

Notice that since S is a closed surface it does not have boundary, so the "circle" in the picture, which contains a point x with $s(x)=2$, should be interpreted as a tube through the surface

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M} Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S
Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M} Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S
Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \operatorname{det}(B)$ changes continuously as m moves around S

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}
Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \quad \operatorname{det}(B)$ changes continuously as m moves around S
By moving m around the Möbius strip in M, we can move m to a point where b_{3} now points inside S

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}
Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \quad \operatorname{det}(B)$ changes continuously as m moves around S
By moving m around the Möbius strip in M, we can move m to a point where b_{3} now points inside S
\Longrightarrow By continuity, at some point b_{3} must have been in the plane spanned by b_{1} and b_{2}

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}
Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \quad \operatorname{det}(B)$ changes continuously as m moves around S
By moving m around the Möbius strip in M, we can move m to a point where b_{3} now points inside S
\Longrightarrow By continuity, at some point b_{3} must have been in the plane spanned by b_{1} and b_{2}
$\Longrightarrow \operatorname{det}(B)=0$

Orientable surfaces.

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}
Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \quad \operatorname{det}(B)$ changes continuously as m moves around S
By moving m around the Möbius strip in M, we can move m to a point where b_{3} now points inside S
\Longrightarrow By continuity, at some point b_{3} must have been in the plane spanned by b_{1} and b_{2}
$\Longrightarrow \operatorname{det}(B)=0 \quad$ 玄々 since B is linearly independent!

Orientable surfaces

Now suppose that S is non-orientable, so that it contains a Möbius strip \mathbb{M}
Pick a point $m \in S$ that is on this Möbius strip and fix an ordered basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{1} and b_{2} tangential to m and $b_{3}=b_{1} \times b_{2}$.
Replacing b_{3} with $-b_{3}$, if necessary, we assume that b_{3} points out of S Now move m, and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, continuously around S
$\Longrightarrow \operatorname{det}(B)$ changes continuously as m moves around S
By moving m around the Möbius strip in M, we can move m to a point where b_{3} now points inside S
\Longrightarrow By continuity, at some point b_{3} must have been in the plane spanned by b_{1} and b_{2}
$\Longrightarrow \operatorname{det}(B)=0$ 立立 since B is linearly independent!

Corollary

Let S be a non-orientable closed surface. Then S does not embed in \mathbb{R}^{3}.

You can't fill a liquid into the Klein bottle

Strictly speaking the liquid is neither in- nor outside

Jordan curve theorem

This argument used to prove theorem can be made rigorous for surfaces with finite polygonal decompositions but for "general surfaces" it is difficult to prove that $\mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }}$.

Jordan curve theorem

This argument used to prove theorem can be made rigorous for surfaces with finite polygonal decompositions but for "general surfaces" it is difficult to prove that $\mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }}$.
The corresponding result for curves in \mathbb{R}^{2} is known as the Jordan Curve Theorem, which says that any closed curve C in \mathbb{R}^{2} gives rise to a decomposition $\quad \mathbb{R}^{2}=C \cup V_{\text {in }} \cup V_{\text {out }}$ (disjoint union)
This is really hard to prove!

Jordan curve theorem

This argument used to prove theorem can be made rigorous for surfaces with finite polygonal decompositions but for "general surfaces" it is difficult to prove that $\mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }}$.
The corresponding result for curves in \mathbb{R}^{2} is known as the Jordan Curve Theorem, which says that any closed curve C in \mathbb{R}^{2} gives rise to a decomposition $\quad \mathbb{R}^{2}=C \cup V_{\text {in }} \cup V_{\text {out }}$ (disjoint union)
This is really hard to prove!
To appreciate why this is a nontrivial result consider:

Jordan curve theorem

This argument used to prove theorem can be made rigorous for surfaces with finite polygonal decompositions but for "general surfaces" it is difficult to prove that $\mathbb{R}^{3}=S \cup V_{\text {in }} \cup V_{\text {out }}$.
The corresponding result for curves in \mathbb{R}^{2} is known as the Jordan Curve Theorem, which says that any closed curve C in \mathbb{R}^{2} gives rise to a decomposition $\quad \mathbb{R}^{2}=C \cup V_{\text {in }} \cup V_{\text {out }}$ (disjoint union)
This is really hard to prove!
To appreciate why this is a nontrivial result consider:

The left is easy, but can you tell for the right what is "in" or "out"?

[^0]The main meat is that one needs to deal with "crazy" curves:

Topology - week 9

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3}

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3} By definition, the projective plane is defined by identifying antipodal points on the sphere S^{2} :

$$
\mathbb{P}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3} By definition, the projective plane is defined by identifying antipodal points on the sphere S^{2} :

$$
\mathbb{P}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} /(x, y, z) \sim(-x,-y,-z)
$$

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3}
By definition, the projective plane is defined by identifying antipodal points on the sphere S^{2} :

$$
\mathbb{P}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} /(x, y, z) \sim(-x,-y,-z)
$$

We can embed \mathbb{P}^{2} into \mathbb{R}^{4} using the continuous map:

$$
(x, y, z) \quad \mapsto \quad\left(x y, x z, y z, y^{2}-z^{2}\right)
$$

It is not hard to check that this is a well-defined injective function
$\Longrightarrow \mathbb{P}^{2}$ is homeomorphic to the image of this map in \mathbb{R}^{4}

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3}
By definition, the projective plane is defined by identifying antipodal points on the sphere S^{2} :

$$
\mathbb{P}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} /(x, y, z) \sim(-x,-y,-z)
$$

We can embed \mathbb{P}^{2} into \mathbb{R}^{4} using the continuous map:

$$
(x, y, z) \quad \mapsto \quad\left(x y, x z, y z, y^{2}-z^{2}\right)
$$

It is not hard to check that this is a well-defined injective function
$\Longrightarrow \mathbb{P}^{2}$ is homeomorphic to the image of this map in \mathbb{R}^{4}

Remark

We will soon see that every non-orientable surface can be constructed using projective planes, so this implies that every non-orientable surface embeds in \mathbb{R}^{4}

Embedding the projective plane in \mathbb{R}^{4}

The projective plane \mathbb{P}^{2} is non-orientable, so it does not embed in \mathbb{R}^{3}
By definition, the projective plane is defined by identifying antipodal points on the sphere S^{2} :

$$
\mathbb{P}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} /(x, y, z) \sim(-x,-y,-z)
$$

We can embed \mathbb{P}^{2} into \mathbb{R}^{4} using the continuous map:

$$
(x, y, z) \quad \mapsto \quad\left(x y, x z, y z, y^{2}-z^{2}\right)
$$

It is not hard to check that this is a well-defined injective function $\Longrightarrow \mathbb{P}^{2}$ is homeomorphic to the image of this map in \mathbb{R}^{4}

Remark

We will soon see that every non-orientable surface can be constructed using projective planes, so this implies that every non-orientable surface embeds in \mathbb{R}^{4}

In contrast, every orientable surface embeds in \mathbb{R}^{3}

Connected sums

We need a way to build new surfaces from old surfaces

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Definition

The connected sum of surfaces S and T is the surface $S \# T$

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Definition

The connected sum of surfaces S and T is the surface $S \# T$ obtained by (1) cutting disks D_{S} and D_{T} out of the interiors of S and T, respectively

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Definition

The connected sum of surfaces S and T is the surface $S \# T$ obtained by
(1) cutting disks D_{S} and D_{T} out of the interiors of S and T, respectively
(2) identifying the boundary circles of D_{S} and D_{T}

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Definition

The connected sum of surfaces S and T is the surface $S \# T$ obtained by
(1) cutting disks D_{S} and D_{T} out of the interiors of S and T, respectively
(2) identifying the boundary circles of D_{S} and D_{T}

Connected sums

We need a way to build new surfaces from old surfaces
The boundary of a surface is the union of its boundary circles, or free edges. The interior of a surface is anything not on the boundary

Definition

The connected sum of surfaces S and T is the surface $S \# T$ obtained by
(1) cutting disks D_{S} and D_{T} out of the interiors of S and T, respectively
(2) identifying the boundary circles of D_{S} and D_{T}

Identifying D_{S} and D_{T} is the same as connecting them with a cylinder

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Hence, $S^{2} \# S^{2} \cong S^{2}$

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Hence, $S^{2} \# S^{2} \cong S^{2}$

- If T is any surface then $T \# S^{2} \cong T$

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Hence, $S^{2} \# S^{2} \cong S^{2}$

- If T is any surface then $T \# S^{2} \cong T$

This follows by exactly the same calculation!

Connected sums with spheres

- What is $S^{2} \# S^{2}$?

Hence, $S^{2} \# S^{2} \cong S^{2}$

- If T is any surface then $T \# S^{2} \cong T$

This follows by exactly the same calculation!
So S^{2} is the unit under the operation \#

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

This is not the same as collapsing a sphere, which closes up the hole, because the disk has a boundary!

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Hence, $\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \mathbb{A}$, which is the annulus or cylinder

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Hence, $\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \mathbb{A}$, which is the annulus or cylinder

- If T is any surface then $T \# \mathbb{D}^{2}$ puts a puncture, or hole, in T

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Hence, $\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \mathbb{A}$, which is the annulus or cylinder

- If T is any surface then $T \# \mathbb{D}^{2}$ puts a puncture, or hole, in T

This follows by exactly the same calculation!

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Hence, $\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \mathbb{A}$, which is the annulus or cylinder

- If T is any surface then $T \# \mathbb{D}^{2}$ puts a puncture, or hole, in T

This follows by exactly the same calculation!

$$
\Longrightarrow T \# \underbrace{\mathbb{D}^{2} \# \ldots \# \mathbb{D}^{2}}_{d \text { times }}=T \# \#^{d} \mathbb{D}^{2}
$$

Connected sums with disks

- What is $\mathbb{D}^{2} \# \mathbb{D}^{2}$?

Hence, $\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \mathbb{A}$, which is the annulus or cylinder

- If T is any surface then $T \# \mathbb{D}^{2}$ puts a puncture, or hole, in T This follows by exactly the same calculation!

$$
\Longrightarrow T \# \underbrace{\mathbb{D}^{2} \# \ldots \# \mathbb{D}^{2}}_{d \text { times }}=T \# \#^{d} \mathbb{D}^{2} \text { is equal to } T \text { with } d
$$

punctures or, equivalently, T with d additional boundary circles

Connected sums with tori

- What is $\mathbb{T} \# \mathbb{T}$?

Connected sums with tori

- What is $\mathbb{T} \# \mathbb{T}$?

The double torus $\mathbb{T} \# \mathbb{T}=\#^{2} \mathbb{T}$

Connected sums with tori

- What is $\mathbb{T} \# \mathbb{T}$?

The double torus $\mathbb{T} \# \mathbb{T}=\#^{2} \mathbb{T}$

Similarly, there are triple tori $\#^{3} \mathbb{T}$

Connected sums with tori

- What is $\mathbb{T} \# \mathbb{T}$?

The double torus $\mathbb{T} \# \mathbb{T}=\#^{2} \mathbb{T}$

Similarly, there are triple tori $\#^{3} \mathbb{T}$

\ldots. and, more generally, t-tori $\#^{t} \mathbb{T}$

We already know t-tori

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

As long as D_{S} stays in the interior of S, and D_{T} in the interior of T, the surface $S \# T$ is unchanged up to homeomorphism

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

As long as D_{S} stays in the interior of S, and D_{T} in the interior of T, the surface $S \# T$ is unchanged up to homeomorphism

- $S \# T \cong T \# S$

Properties of connected sums

- $S \# T$ is independent of the location of the disks D_{S} and D_{T}

As long as D_{S} stays in the interior of S, and D_{T} in the interior of T, the surface $S \# T$ is unchanged up to homeomorphism

- $S \# T \cong T \# S$

Associativity of connected sums...

- $S \#(T \# U) \cong(S \# T) \# U$

Associativity of connected sums.

- $S \#(T \# U) \cong(S \# T) \# U$

In these diagrams, D_{1} and D_{2} are cut first and then D_{3} and D_{4}

Associativity of connected sums

- $S \#(T \# U) \cong(S \# T) \# U$

In these diagrams, D_{1} and D_{2} are cut first and then D_{3} and D_{4} $\Longrightarrow \quad \#$ is a "surface addition or multiplication"

Connected sums of Euler characteristic

Theorem
Let S and T be surfaces with polygonal decompositions. Then

$$
\chi(S \# T)=\chi(S)+\chi(T)-2
$$

Connected sums of Euler characteristic

Theorem

Let S and T be surfaces with polygonal decompositions. Then

$$
\chi(S \# T)=\chi(S)+\chi(T)-2
$$

Proof

Connected sums of Euler characteristic

Theorem

Let S and T be surfaces with polygonal decompositions. Then

$$
\chi(S \# T)=\chi(S)+\chi(T)-2
$$

Proof

Connected sums of Euler characteristic

Theorem

Let S and T be surfaces with polygonal decompositions. Then

$$
\chi(S \# T)=\chi(S)+\chi(T)-2
$$

$$
\Longrightarrow \quad \chi(S \# T)=(\chi(S)-(3-3+1))+(\chi(T)-(3-3+1))
$$

Connected sums of Euler characteristic

Theorem

Let S and T be surfaces with polygonal decompositions. Then

$$
\chi(S \# T)=\chi(S)+\chi(T)-2
$$

Proof

$$
\Longrightarrow \quad \chi(S \# T)=(\chi(S)-(3-3+1))+(\chi(T)-(3-3+1))
$$

Moral The -2 comes from cutting out two disks

Examples

- If S is any surface then $S \cong S \# S^{2}$

$$
\Longrightarrow \quad \chi(S)=\chi(S)+\underbrace{\chi\left(S^{2}\right)}_{=2}-2=\chi(S)
$$

- $\mathbb{A} \cong \mathbb{D}^{2} \# \mathbb{D}^{2} \Longrightarrow \chi(\mathbb{A})=\chi\left(\mathbb{D}^{2}\right)+\chi\left(\mathbb{D}^{2}\right)-2=1+1-2=0$
- $\chi(\mathbb{T} \# \mathbb{T} \# \mathbb{T})=(\chi(\mathbb{T})+\chi(\mathbb{T})-2)+\chi(\mathbb{T})-2=-4$

Connected sums and polygonal decompositions

Connected sums and polygonal decompositions

$\mathbb{T} \# \mathbb{T}=$

Connected sums and polygonal decompositions

$\mathbb{T} \# \mathbb{T}=$

 $=d_{d}^{b}$

Connected sums and polygonal decompositions

\Longrightarrow For surfaces without a boundary you can cut the disks anywhere!

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

\bullet What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums with projective planes

- What is $\mathbb{P}^{2} \# \mathbb{P}^{2}$?

Connected sums and polygonal decompositions...

$$
\mathbb{D}^{2} \# \mathbb{D}^{2} \cong
$$

Connected sums and polygonal decompositions...

$\mathbb{D}^{2} \# \mathbb{D}^{2} \cong$

Connected sums and polygonal decompositions...

$\mathbb{D}^{2} \# \mathbb{D}^{2} \cong$

Connected sums and polygonal decompositions..

$\mathbb{D}^{2} \# \mathbb{D}^{2} \cong$

Connected sums and polygonal decompositions.

$\mathbb{D}^{2} \# \mathbb{D}^{2} \cong$

Connected sums and polygonal decompositions.

$$
\mathbb{D}^{2} \# \mathbb{D}^{2} \cong
$$

\Longrightarrow For surfaces with a boundary, you can cut into the interior, if necessary, to form the connected sum

Surgery

We have already seen that it is possible to change one polygonal decomposition into another using surgery

There are two basic operations:

Surgery

We have already seen that it is possible to change one polygonal decomposition into another using surgery

There are two basic operations:

- Adding and removing edges:

Surgery

We have already seen that it is possible to change one polygonal decomposition into another using surgery

There are two basic operations:

- Adding and removing edges:

- Cutting and gluing

Surgery

We have already seen that it is possible to change one polygonal decomposition into another using surgery

There are two basic operations:

- Adding and removing edges:

- Cutting and gluing

Perhaps surprisingly, these two operations and subdivision are all that we need

Surgery on the Möbius strip

Lemma
$\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=$ a punctured projective plane $)$
Proof

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

$\cong \mathbb{D}^{2} \# \mathbb{P}^{2}$

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

$$
\cong \mathbb{D}^{2} \# \mathbb{P}^{2}
$$

\Longrightarrow A Möbius strip is a punctured projective plane

Surgery on the Möbius strip

Lemma

$$
\mathbb{M} \cong \mathbb{D}^{2} \# \mathbb{P}^{2} \quad(=\text { a punctured projective plane })
$$

Proof

$$
\cong \quad \mathbb{D}^{2} \# \mathbb{P}^{2}
$$

\Longrightarrow A Möbius strip is a punctured projective plane
\Longrightarrow Every non-orientable surface contains the projective plane

Surgery on the Klein bottle

Lemma

$\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}$

Surgery on the Klein bottle

Lemma

$$
\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}
$$

Proof

Surgery on the Klein bottle

Lemma

$$
\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}
$$

Proof

Surgery on the Klein bottle

Lemma

$$
\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}
$$

Proof

Surgery on the Klein bottle

Lemma

$$
\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}
$$

Proof

Surgery on the Klein bottle

Lemma

$$
\mathbb{K} \cong \mathbb{P}^{2} \# \mathbb{P}^{2} \cong \#^{2} \mathbb{P}^{2}
$$

Proof

$\cong \mathbb{P}^{2} \# \mathbb{P}^{2}$

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$

Surgery on a torus and projective plane

Theorem

$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$

Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Surgery on a torus and projective plane

Theorem
$\mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
Proof

Projective planes dominate

On the last slide we saw that $\quad \mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$

Projective planes dominate

On the last slide we saw that $\quad \mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
$\Longrightarrow \mathbb{T} \# \mathbb{P}^{2} \cong \#^{3} \mathbb{P}^{2}$ since $\mathbb{K} \cong \#^{2} \mathbb{P}^{2}$

Projective planes dominate

On the last slide we saw that $\quad \mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
$\Longrightarrow \mathbb{T} \# \mathbb{P}^{2} \cong \#^{3} \mathbb{P}^{2}$ since $\mathbb{K} \cong \#^{2} \mathbb{P}^{2}$
suggests that the connected sum of any surface with a projective plane is non-orientable

Projective planes dominate

On the last slide we saw that $\quad \mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
$\Longrightarrow \mathbb{T} \# \mathbb{P}^{2} \cong \#^{3} \mathbb{P}^{2}$ since $\mathbb{K} \cong \#^{2} \mathbb{P}^{2}$
suggests that the connected sum of any surface with a projective plane is non-orientable

Warning Connected sums do not cancel since $\mathbb{T} \not \not \mathbb{K}$

Projective planes dominate

On the last slide we saw that $\quad \mathbb{T} \# \mathbb{P}^{2} \cong \mathbb{K} \# \mathbb{P}^{2}$
$\Longrightarrow \mathbb{T} \# \mathbb{P}^{2} \cong \#^{3} \mathbb{P}^{2}$ since $\mathbb{K} \cong \#^{2} \mathbb{P}^{2}$
~s suggests that the connected sum of any surface with a projective plane is non-orientable

Warning Connected sums do not cancel since $\mathbb{T} \not \not \mathbb{K}$
Why? \mathbb{T} embeds in \mathbb{R}^{3} but \mathbb{K} does not!

Oriented and unoriented edges

Oriented and unoriented edges

Paired edges on a polygon are oriented if they point in opposite directions and unoriented if they point in the same direction

Oriented

Unoriented

Oriented and unoriented edges

Paired edges on a polygon are oriented if they point in opposite directions and unoriented if they point in the same direction

Oriented

Unoriented

Oriented edges can be folded together without twisting whereas unoriented edges can only be brought together if the surface is twisted

Oriented and unoriented edges

Paired edges on a polygon are oriented if they point in opposite directions and unoriented if they point in the same direction

Oriented

Unoriented

Oriented edges can be folded together without twisting whereas unoriented edges can only be brought together if the surface is twisted

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)
Remark If $d+p+t \neq 0$ we can omit the sphere S^{2}

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)
Remark If $d+p+t \neq 0$ we can omit the sphere S^{2}
Proof We argue by induction on the number of edges in a polygonal decomposition of S with one face to first prove (1)

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)
Remark If $d+p+t \neq 0$ we can omit the sphere S^{2}
Proof We argue by induction on the number of edges in a polygonal decomposition of S with one face to first prove (1)
Base case: If S has one edge then either

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)
Remark If $d+p+t \neq 0$ we can omit the sphere S^{2}
Proof We argue by induction on the number of edges in a polygonal decomposition of S with one face to first prove (1)
Base case: If S has one edge then either

or

$$
S=\mathrm{b}
$$

Classification of connected surfaces

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Moreover, we can assume that $p t=0$, in which case S is uniquely determined up to homeomorphism by (d, p, t)
Remark If $d+p+t \neq 0$ we can omit the sphere S^{2}
Proof We argue by induction on the number of edges in a polygonal decomposition of S with one face to first prove (1)
Base case: If S has one edge then either

$$
S=\mathrm{a} \cong S^{2} \quad \text { or } \quad S=\mathrm{b} \quad \mathrm{~b} \cong \mathbb{P}^{2}
$$

\Longrightarrow The theorem is true in this case

[^1]
Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds
Hence, we can assume that S has at least one paired edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds
Hence, we can assume that S has at least one paired edge
Case I: S has an unoriented edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge
Case I: S has an unoriented edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds
Hence, we can assume that S has at least one paired edge
Case I: S has an unoriented edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

$\Longrightarrow S \cong \mathbb{P}^{2} \# T$

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

$\Longrightarrow S \cong \mathbb{P}^{2} \# T$
By induction, $T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ since T has fewer edges

Proof of the classification theorem

Now suppose that S has at least two edges and that the theorem is true whenever all surfaces that have a polygonal decomposition with one face and fewer edges
If S has only free edges then $S \cong \mathbb{D}^{2}$ and the theorem holds Hence, we can assume that S has at least one paired edge
Case I: S has an unoriented edge

$\Longrightarrow S \cong \mathbb{P}^{2} \# T$
By induction, $T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ since T has fewer edges
$\Longrightarrow S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p+1} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ as required

Proof of the classification theorem

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

Proof of the classification theorem...

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

Proof of the classification theorem...

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

Proof of the classification theorem...

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

Proof of the classification theorem...

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

$\Longrightarrow S \cong T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ by induction

Proof of the classification theorem.

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

$\Longrightarrow S \cong T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ by induction
Hence, we can assume that the paired edges are not adjacent

Proof of the classification theorem.

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

$\Longrightarrow S \cong T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ by induction
Hence, we can assume that the paired edges are not adjacent
Similarly, we can assume that S does not have any adjacent free edges as such edges can be replaced with a single free edge

Proof of the classification theorem

Case II: All paired edges in S are oriented
If S has adjacent oriented edges then

$\Longrightarrow S \cong T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ by induction
Hence, we can assume that the paired edges are not adjacent
Similarly, we can assume that S does not have any adjacent free edges as such edges can be replaced with a single free edge

Fix an (oriented) paired edge a such that the number of edges between the two copies of a is minimal

Proof of the classification theorem...
Case Ila: All edges on one side of a are free

Proof of the classification theorem...

Case Ila: All edges on one side of a are free

Proof of the classification theorem...

Case Ila: All edges on one side of a are free

Proof of the classification theorem...

Case Ila: All edges on one side of a are free

Proof of the classification theorem...

Case Ila: All edges on one side of a are free

By induction, $T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$

Proof of the classification theorem..

Case Ila: All edges on one side of a are free

By induction, $T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$

$$
\Longrightarrow S \cong \mathbb{D}^{2} \# T \cong S^{2} \# \#^{d+1} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

Proof of the classification theorem.

Case Ila: All edges on one side of a are free

By induction, $T \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$

$$
\Longrightarrow S \cong \mathbb{D}^{2} \# T \cong S^{2} \# \#^{d+1} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

Hence, we can assume that there are paired edges on both sides of a

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a

Proof of the classification theorem

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a The number of edges between the ends of a is minimal, so

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a
The number of edges between the ends of a is minimal, so

By induction, $U \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$

Proof of the classification theorem.

Case IIb: There are paired edges on both sides of a
The number of edges between the ends of a is minimal, so

By induction, $U \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$

$$
\Longrightarrow S \cong \mathbb{D}^{2} \# U \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t+1} \mathbb{T}
$$

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles
Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles
Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!
Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T}$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!
Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T} \cong \#^{3} \mathbb{P}^{2}$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!
Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T} \cong \#^{3} \mathbb{P}^{2}$

$$
\Longrightarrow \quad \#^{t} \mathbb{T} \# \mathbb{P}^{2} \cong \#^{t-1} \mathbb{T} \# \#^{3} \mathbb{P}^{2}
$$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!
Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T} \cong \#^{3} \mathbb{P}^{2}$

$$
\Longrightarrow \quad \#^{t} \mathbb{T} \# \mathbb{P}^{2} \cong \#^{t-1} \mathbb{T} \# \#^{3} \mathbb{P}^{2} \cong \ldots \cong \#^{2 t+1} \mathbb{P}^{2}
$$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$
$\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem!
Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T} \cong \#^{3} \mathbb{P}^{2}$

$$
\Longrightarrow \quad \#^{t} \mathbb{T} \# \mathbb{P}^{2} \cong \#^{t-1} \mathbb{T} \# \#^{3} \mathbb{P}^{2} \cong \ldots \cong \#^{2 t+1} \mathbb{P}^{2}
$$

\Longrightarrow Hence, we can assume $t=0$ if $p \neq 0$

Proof of the classification theorem

We have now proved that every surface can be written in the form

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

for non-negative integers d, p and t
The proof so far shows that d is the number of boundary circles Next, note that if $p>0$ then \mathbb{P}^{2} is contained in S
$\Longrightarrow S$ is non-orientable if $p \neq 0$
On the other hand, $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T} \hookrightarrow \mathbb{R}^{3}$ is orientable if $p=0$ $\Longrightarrow S$ is orientable if and only if $p=0$
We have now proved (1), (2) and (3) from the theorem! Next, observe that if $p \neq 0$ and $t \neq 0$ then S contains $\mathbb{P}^{2} \# \mathbb{T} \cong \#^{3} \mathbb{P}^{2}$

$$
\Longrightarrow \quad \#^{t} \mathbb{T} \# \mathbb{P}^{2} \cong \#^{t-1} \mathbb{T} \# \#^{3} \mathbb{P}^{2} \cong \ldots \cong \#^{2 t+1} \mathbb{P}^{2}
$$

\Longrightarrow Hence, we can assume $t=0$ if $p \neq 0$
That is, we can assume $p t=0$ - equivalently, $p=0$ or $t=0$

Proof of the classification theorem

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$

Proof of the classification theorem

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$

Proof of the classification theorem

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

Proof of the classification theorem

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles

Proof of the classification theorem.

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles
- $p \neq 0 \Leftrightarrow q \neq 0$ as homeomorphisms preserve orientability

Proof of the classification theorem.

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles
- $p \neq 0 \Leftrightarrow q \neq 0$ as homeomorphisms preserve orientability
- Homeomorphisms preserve Euler characteristic. By tutorial 9,

$$
\begin{aligned}
& > \\
& \quad \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{b} \mathbb{P}^{2}\right)=2-a-b \\
& > \\
& \left.>S^{2} \# \mathbb{D}^{2} \# \#^{c} \mathbb{T}\right)=2-a-2 c
\end{aligned}
$$

Proof of the classification theorem.

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles
- $p \neq 0 \Leftrightarrow q \neq 0$ as homeomorphisms preserve orientability
- Homeomorphisms preserve Euler characteristic. By tutorial 9,

$$
\begin{aligned}
& \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{b} \mathbb{P}^{2}\right)=2-a-b \\
& >\chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{c} \mathbb{T}\right)=2-a-2 c \\
\Longrightarrow & (d, p, t)=(e, q, s) \text { since } \chi(S)=\chi(T)
\end{aligned}
$$

Proof of the classification theorem.

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles
- $p \neq 0 \Leftrightarrow q \neq 0$ as homeomorphisms preserve orientability
- Homeomorphisms preserve Euler characteristic. By tutorial 9,

$$
\begin{aligned}
& \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{b} \mathbb{P}^{2}\right)=2-a-b \\
& \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{c} \mathbb{T}\right)=2-a-2 c \\
\Longrightarrow & (d, p, t)=(e, q, s) \text { since } \chi(S)=\chi(T)
\end{aligned}
$$

All parts of the classification theorem are now proved!!

Proof of the classification theorem

It remains to prove if $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ with $t p=0$ then S is uniquely determined up to homeomorphism by (d, p, t)
Let $T=S^{2} \# \#^{e} \mathbb{D}^{2} \# \#^{q} \mathbb{P}^{2} \# \#^{s} \mathbb{T}$, with $s q \neq 0$
\Longrightarrow We need to show that $S \cong T$ if and only if $(d, p, t)=(e, q, s)$
If $(d, p, t)=(e, q, s)$ there is nothing to prove, so suppose $S \cong T$

- $d=e$ as homeomorphism preserve boundary circles
- $p \neq 0 \Leftrightarrow q \neq 0$ as homeomorphisms preserve orientability
- Homeomorphisms preserve Euler characteristic. By tutorial 9,

$$
\begin{aligned}
& \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{b} \mathbb{P}^{2}\right)=2-a-b \\
& \chi\left(S^{2} \# \#^{a} \mathbb{D}^{2} \# \#^{c} \mathbb{T}\right)=2-a-2 c \\
\Longrightarrow & (d, p, t)=(e, q, s) \text { since } \chi(S)=\chi(T)
\end{aligned}
$$

All parts of the classification theorem are now proved!!
Hence, we now know all surfaces up to homeomorphism!

Orientability

Corollary

A surface S is non-orientable if and only if its polygonal decomposition contains an unoriented edge

Orientability

Corollary

A surface S is non-orientable if and only if its polygonal decomposition contains an unoriented edge

Proof Any unoriented edge gives a Möbius band inside S :

Orientability

Corollary

A surface S is non-orientable if and only if its polygonal decomposition contains an unoriented edge

Proof Any unoriented edge gives a Möbius band inside S :

Conversely, $S=S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T}$ embeds in \mathbb{R}^{3}, so it is orientable. Hence, a polygonal decomposition of S can only contain oriented edges

Orientability

Corollary

A surface S is non-orientable if and only if its polygonal decomposition contains an unoriented edge

Proof Any unoriented edge gives a Möbius band inside S :

Conversely, $S=S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T}$ embeds in \mathbb{R}^{3}, so it is orientable. Hence, a polygonal decomposition of S can only contain oriented edges It is now not hard to find an explicit polygonal decomposition of

$$
S=S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{t} \mathbb{T}
$$

and check that surgery cannot create unoriented edges in S

[^2]
Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{P} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{P} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

- The standard form uniquely identifies S

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

- The standard form uniquely identifies S
- S is orientable if and only if $p=0$

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{P} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

- The standard form uniquely identifies S
- S is orientable if and only if $p=0$
- S has d boundary circles

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

- The standard form uniquely identifies S
- S is orientable if and only if $p=0$
- S has d boundary circles
- S has Euler characteristic $\chi(S)=2-d-p-2 t$ (tutorials!)

Standard forms

Theorem

Let S be a connected surface. Then there exist non-negative integers d, p and t with pt $=0$ such that
(1) $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$
(2) the boundary of S is the disjoint union of d circles
(3) S is orientable if and only if $p=0$

The surface S is in standard form when written as

$$
S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}
$$

with $p t=0$ - that is, $p=0$ or $t=0$

- The standard form uniquely identifies S
- S is orientable if and only if $p=0$
- S has d boundary circles
- S has Euler characteristic $\chi(S)=2-d-p-2 t$ (tutorials!)

The standard form of a surface that is not connected has each component in standard form

Corollary of classification

Corollary

A connected surface is uniquely determined, up to homeomorphism by
(1) the number of boundary circles
(2) its orientability
(3) its Euler characteristic

Corollary of classification

Corollary

A connected surface is uniquely determined, up to homeomorphism by
(1) the number of boundary circles
(2) its orientability
(3) its Euler characteristic

Proof Write $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ in standard form with $t p=0$
$\Longrightarrow \quad \chi(S)=2-d-p-2 t$

Corollary of classification

Corollary

A connected surface is uniquely determined, up to homeomorphism by
(1) the number of boundary circles
(2) its orientability
(3) its Euler characteristic

Proof Write $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ in standard form with $t p=0$
$\Longrightarrow \quad \chi(S)=2-d-p-2 t$
Hence, the standard form uniquely determines the number of boundary circles, orientability and Euler characteristic of S

Corollary of classification

Corollary

A connected surface is uniquely determined, up to homeomorphism by
(1) the number of boundary circles
(2) its orientability
(3) its Euler characteristic

Proof Write $S \cong S^{2} \# \#^{d} \mathbb{D}^{2} \# \#^{p} \mathbb{P}^{2} \# \#^{t} \mathbb{T}$ in standard form with $t p=0$
$\Longrightarrow \quad \chi(S)=2-d-p-2 t$
Hence, the standard form uniquely determines the number of boundary circles, orientability and Euler characteristic of S

Conversely, these three characteristics of S determine (d, p, t)

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

Spheres with punctures

- $S^{2} \# \#^{d} \mathbb{D}^{2}$ is a sphere with d punctures

More generally, $S \# \#^{d} \mathbb{D}^{2}$ is S with d punctures

A spheres with zero and one puncture

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles
$S^{2} \# \mathbb{T} \cong \mathbb{T} \cong$

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles
$S^{2} \# \mathbb{T} \cong \mathbb{T} \cong$

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Spheres with handles

- $S^{2} \# \#^{t} \mathbb{T}$ is a sphere with t handles

Continuing like this constructs a sphere with t-handles $\#^{t} \mathbb{T}$

Handle decomposition

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{1} \mathbb{P}^{2} \cong
$$

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{2} \mathbb{P}^{2} \cong
$$

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{3} \mathbb{P}^{2} \cong
$$

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{4} \mathbb{P}^{2} \cong
$$

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{5} \mathbb{P}^{2} \cong
$$

Sphere with cross-caps

- $S^{2} \# \#^{p} \mathbb{P}^{2}$ is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere This shape lives in \mathbb{R}^{4}, so difficult to visualize but Wikipedia draws it as:

In \mathbb{R}^{3} this surface self-intersects. We draw surfaces with cross caps as:

$$
S^{2} \# \#^{6} \mathbb{P}^{2} \cong
$$

What do standard surfaces look like?

We can combine the pictures above to draw all of the standard surfaces:

What do standard surfaces look like?

We can combine the pictures above to draw all of the standard surfaces:

$$
\#^{8} \mathbb{D}^{2} \# \#^{7} \mathbb{T} \cong
$$

What do standard surfaces look like?

We can combine the pictures above to draw all of the standard surfaces:

$$
\#^{8} \mathbb{D}^{2} \# \#^{7} \mathbb{T} \cong
$$

$$
\#^{6} \mathbb{D}^{2} \# \#^{9} \mathbb{P}^{2} \cong
$$

What do standard surfaces look like?

We can combine the pictures above to draw all of the standard surfaces:

What do standard surfaces look like?

We can combine the pictures above to draw all of the standard surfaces:

Putting a surface in standard form

Given a polygonal decomposition for a surface we can put it in standard form by:

- Find all of the vertices (identified edges implicitly identify vertices)
- Count the number d of boundary circles
- S is orientable $(p=0)$ if all edges are oriented otherwise it is non-orientable $(t=0)$
- Compute $\chi(S)=2-d-p-2 t$ to determine the missing variable, which is t if S is orientable and or p if non-orientable

Example 1

What is the surface with the below polygonal decomposition?

$a c \bar{e} f g b \bar{a}$ e $f \bar{g} \overline{d h}$ (overline=opposite direction) \Longrightarrow This is $\#^{1} \mathbb{D}^{2} \# \#^{0} \mathbb{T} \# \#^{4} \mathbb{P}^{2}$

Example 2

What is the standard form of the surface with polygonal decomposition?

Example 2

What is the standard form of the surface with polygonal decomposition?

Open Disk Closed Dis

[^0]: Topology - week 9

[^1]: - Topology - week 9

[^2]: - Topology - week 9

