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Words for surfaces
A polygonal decomposition for a surface that has one face can be
encoded in a word

a d b e d c b g e f e i h g

▶ write x for an edge pointing anticlockwise

▶ write x for an edge pointing clockwise

▶ We always read the word in anticlockwise order
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Words for basic surfaces

• S2 = a a

• P2 = a a • D2 = a b

= a a = a a = a b

• A =

a

b

c

b

= a b c b

• T =

a

b

a

b

= a b a b

• M =

a

b

c

b

= a b c b

• K =

a

b

a

b

= a b a b
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Properties of words
• Words encode orientability

▶ Orientable: . . . a . . . a . . . or . . . a . . . a . . .
▶ Non-orientable: . . . a . . . a . . . or . . . a . . . a . . .

• Words give a compact and easily readable way of describing surfaces

• Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)

• The word of a surface is well-defined only up to cyclic permutation
and reversing the direction of any edge

Example The following words are all words for the torus T:
a b a b b a b a a b a b b a b a
a b a b b a b a a b a b b a b a

• The word of a surface can be used to give generators and relations
for the first homotopy group of the surface — this generalises
independent cycles and are beyond the scope of this unit
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Standard words for closed orientable surfaces
• Connected sums of tori: #tT

▶ T =

a

b

a

b = a b a b

▶ #2T =

a
b

a

b
c

d

c

d

= a b a b c d c d

▶ #3T =

ab

a

b

c

d c d

e

f

e

f

= a b a b c d c d e f e f

▶ . . . #tT = a1 b1 a1 b1 a2 b2 a2 b2 . . . at btat bt

— Topology – week 10



Standard words for closed orientable surfaces
• Connected sums of tori: #tT

▶ T =

a

b

a

b = a b a b

▶ #2T =

a
b

a

b
c

d

c

d

= a b a b c d c d

▶ #3T =

ab

a

b

c

d c d

e

f

e

f

= a b a b c d c d e f e f

▶ . . . #tT = a1 b1 a1 b1 a2 b2 a2 b2 . . . at btat bt

— Topology – week 10



Standard words for closed orientable surfaces
• Connected sums of tori: #tT

▶ T =

a

b

a

b = a b a b

▶ #2T =

a
b

a

b
c

d

c

d

= a b a b c d c d

▶ #3T =

ab

a

b

c

d c d

e

f

e

f

= a b a b c d c d e f e f

▶ . . . #tT = a1 b1 a1 b1 a2 b2 a2 b2 . . . at btat bt

— Topology – week 10



Standard words for closed orientable surfaces
• Connected sums of tori: #tT

▶ T =

a

b

a

b = a b a b

▶ #2T =

a
b

a

b
c

d

c

d

= a b a b c d c d

▶ #3T =

ab

a

b

c

d c d

e

f

e

f

= a b a b c d c d e f e f

▶ . . . #tT = a1 b1 a1 b1 a2 b2 a2 b2 . . . at btat bt

— Topology – week 10



Words for closed non-orientable surfaces
• Connected sums of projective plans #pP2

▶ P2 = a a = a a

▶ #2P2 =

a

a

b

b = a a b b
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a

a

b

b

c

c

= a a b b c c
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Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e
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Words to surfaces
What standard surface is given by the word a d b c e c f d h g e a h ?

a

d

b

c

e

c
f

d

h

g

e

a

h
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Words to surfaces
What standard surface is given by the word a d b c e c f d h g e a h ?

a

d

b

c

e

c
f

d

h

g

e

a

h

x
xy

y

x

x

x

y

y

y

z

z

z

Free edges

x b y

x g z

y f z

=⇒ d = 1 and χ(S) = 3 − 8 + 1 = −4

=⇒ S ∼= D2 ##5P2

=⇒ S = a b b c c d d e e f f
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The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}
We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!
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We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!
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The degree of a vertex
Consider the surface with polygonal decomposition

a
d

a
b

c

b

a
d

a
b

c

b

x

x

x

x

y

y

Using identified vertices and edges + count with multiplicities

=⇒ deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E |

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

=⇒ six vertices of degree 2 and six edges, so 12 = 2 · 6

The vertex-degree equation holds using either identified or non-identified
edges and vertices because in both cases the degree of a vertex is defined
to be the number of incident edges to the vertex
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The surface degree-vertex equation
Proposition
Let S = (V ,E ,F ) be a surface with polygonal decomposition. Then∑

v∈V
deg(v) = 2|E |

Proof The proof is the same as before: the edge {x , y} contributes +2 to
both sides of this equation because edge contributes +1 to deg(x)
and +1 to deg(y).

Therefore, we have two degree-vertex equations:

• The graph degree-vertex equation where we do not identify edges
and vertices in S

• The surface degree-vertex equation where we do identify edges
and vertices in S
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The degree of a face
Let S = (V ,E ,F ) be a surface with polygonal decomposition

Let f ∈ F be a face of S . The degree of f is
deg(f ) =number of edges (count with multiplicities) incident

with f

Examples Suppose that f ∈ F is an n-gon

=⇒ deg(f ) = n

Notice that faces are never identified in the polygonal decomposition

Question How are
∑
f ∈F

deg(f ) and 2|E | related?
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Face degrees of basic surfaces
In all cases deg(face) = 4 as there are 4 non-identified edges

• Sphere

S2 ∼=

a

b

b

a

xy

yz

• Projective plane

P2 ∼=

a

b

a

b

x

x

y

y

• Disk

D2 ∼=

a

b

c

d

w

y

x

z

• Torus

T ∼=

a

b

a

b

xx

x x

• Klein bottle

K ∼=

a

b

a

b

xx

x x

• Annulus

A ∼=

a

b

a

c

x

x

y

y

• Möbius band

M ∼=

a

b

a

c

x

x

y

y
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The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition
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Dual surfaces
Let S = (V ,E ,F ) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S∗ has polygonal decomposition (V ∗,E ∗,F ∗), where

• the vertex set of S∗ is V ∗ = F , the set of faces of S

• there is an edge between two vertices f and f ′ of S∗ if the
faces f and f ′ in S are separated by an edge

=⇒ the faces of S∗ are the vertices of S

Examples
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The dual of the cube

=⇒ the dual surface to the cube is the octahedron
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Dual surfaces and the degree equations
Taking the dual of a surface swaps the vertices and faces

=⇒ if v ∈ V then v ∈ F ∗ and degS(v) = degS∗(v)

=⇒ the vertex-degree equation for S is the same as
the face-degree equation for S∗

Example

S2 =

a

b

b

ac

xy

yz

(S2)∗ = a by a cx b cz

We will see better examples when we look at Platonic solids

— Topology – week 10



Dual surfaces and the degree equations
Taking the dual of a surface swaps the vertices and faces

=⇒ if v ∈ V then v ∈ F ∗ and degS(v) = degS∗(v)

=⇒ the vertex-degree equation for S is the same as
the face-degree equation for S∗

Example

S2 =

a

b

b

ac

xy

yz

(S2)∗ = a by a cx b cz

We will see better examples when we look at Platonic solids

— Topology – week 10



Dual surfaces and the degree equations
Taking the dual of a surface swaps the vertices and faces

=⇒ if v ∈ V then v ∈ F ∗ and degS(v) = degS∗(v)

=⇒ the vertex-degree equation for S is the same as
the face-degree equation for S∗

Example

S2 =

a

b

b

ac

xy

yz

(S2)∗ = a by a cx b cz

We will see better examples when we look at Platonic solids

— Topology – week 10



Dual surfaces and the degree equations
Taking the dual of a surface swaps the vertices and faces

=⇒ if v ∈ V then v ∈ F ∗ and degS(v) = degS∗(v)

=⇒ the vertex-degree equation for S is the same as
the face-degree equation for S∗

Example

S2 =

a

b

b

ac

xy

yz

(S2)∗ = a by a cx b cz

We will see better examples when we look at Platonic solids

— Topology – week 10



Kepler’s Harmonices Mundi
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Graphs on surfaces
Recall that a graph G is planar if it can be drawn
in R2 without edge crossings

Let S be a surface and x , y ∈ S . A path from x to y on S is a
continuous map p : [0, 1]−→S such that p(0) = x and p(1) = y

Let P(S) be the set of all paths on S

If S is any surface and G = (V ,E ) is a graph then an
embedding of G in S is a pair of maps

f :V −→S and p :E−→P(S)
such that:

• The map f is injective

• If e = {v ,w} ∈ E then p(e) ∈ P(S) is an injective path
from f (v) to f (w)

• If e, e ′ ∈ E then the paths F (e) and F (e ′) can intersect only at
the images of their endpoints
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Let P(S) be the set of all paths on S

If S is any surface and G = (V ,E ) is a graph then an
embedding of G in S is a pair of maps

f :V −→S and p :E−→P(S)
such that:

• The map f is injective

• If e = {v ,w} ∈ E then p(e) ∈ P(S) is an injective path
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Planar graphs
Theorem
Let G be a (finite) graph. Then the following are equivalent.

1 There is an embedding of G in R2 (= the graph is planar)

2 There is an embedding of G in D2

3 There is an embedding of G in S2

Proof Stereographic projection! (Move G away from ∞.)
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Faces of embedded graphs
Suppose that G has an embedding on a surface S

Identify G with its image in S

The faces of G are the connected components of S \ G
Example Taking S = D2 and G = K4 gives four faces:

K4 = =

=
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Planar graphs and polygonal decompositions
Theorem
Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S2 where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S2 does not have a boundary, S2 \ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G .

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G

=⇒ there are two faces adjacent to every edge in G

=⇒ the embedding of G in S2 induces a polygonal
decomposition on S2

Remark The argument cheats slightly because we are implicitly assuming
that the edges are “nice” curves. This allows us to side-step issues
connected with the Jordan curve theorem
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Planar graphs and Euler characteristic
Theorem
Let G = (V ,E ) be a connected planar graph with face set F .
Then 2 = |V | − |E |+ |F |

Proof Use the previous theorem or argue by induction on |E |
Case 1 G is a tree

Combine |V | − |E | = 1 (previous lectures) and that there is only one face

Case 2 G is not a tree

By χ(S2) = 2 and the previous theorem
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Planarity of K5

Proposition

The complete graph K5 =

1

2

34

5
is not planar

Proof Assume that K5 is planar with |F | faces

We have |V | = 5 and |E | = 10, so 2 = |V | − |E |+ |F | =⇒ |F | = 7

Let’s count the number of faces in this polygonal decomposition differently

• The faces correspond to cycles in K5

• Every face has at least 3 edges, so by the degree-face equation

=⇒ 2|E | =
∑

f ∈F deg(f ) ≥ 3|F |
=⇒ 2|E | = 20 ≥ 21 = 3|F |    

Hence, the complete graph K5 is not planar
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Planarity of complete graphs
Corollary
The complete graph Kn is planar if and only if 1 ≤ n ≤ 4

Proof

K5 sits in Kn for n ≥ 5, and the previous theorem applies
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Planarity of bipartite graphs
Proposition

The bipartite graph K3,3 =

1 2 3

1′ 2′ 3′
is not planar

Proof Tutorials

Theorem (Kuratowski)
Let G be a graph. Then G if planar if and only if it has no subgraph
isomorphic to a subdivision of K5 or K3,3

The proof is out of the scope of this unit!
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Platonic solids
A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex

Examples

Tetrahedron Cube Octahedron Dodecahedron Isosahedron

n 3 4 3 5 3
|V| 4 8 6 20 12
|E| 6 12 12 30 30
|F| 4 6 8 12 20

Questions

• Are there any others?

• Can we understand them as polygonal decompositions of the sphere?
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Vertices, edges and faces of Platonic solids
Let P be a polygonal decomposition of S2 obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are |V | vertices, |E | edges and |F | faces

=⇒ each vertex has degree p and each face degree n

=⇒ p|V | = 2|E | by the vertex-degree equation

=⇒ 2|E | = n|F | by the face-degree equation

=⇒ 2 = χ(S2) = |V | − |E |+ |F | = 2|E |
p − |E |+ 2|E |

n

=⇒ 1
2 + 1

|E | =
1
p + 1

n

=⇒ 1
p + 1

n = 1
2 + 1

|E | >
1
2

We require p ≥ 3, n ≥ 3 and |E | ≥ 2

The equations above give:

|E | =
(

1
p + 1

n − 1
2

)−1
, |V | = 2|E |

p and |F | = 2|E |
n
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We require p ≥ 3, n ≥ 3 and |E | ≥ 2

The equations above give:

|E | =
(

1
p + 1

n − 1
2

)−1
, |V | = 2|E |

p and |F | = 2|E |
n
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Classification of Platonic solids

Theorem
The complete list of Platonic solids is:

p n 1
p + 1

n e =
( 1
p + 1

n − 1
2

)−1
v = 2e

p f = 2e
n Platonic solid

3 3 2
3 6 4 4 Tetrahedron

3 4 7
12 12 8 6 Cube

3 5 8
15 30 20 12 Dodecahedron

4 3 7
12 12 6 8 Octahedron

5 3 8
15 30 12 20 Isosahedron

Proof Since 1
p + 1

n > 1
2 and p, n ≥ 3 we get n < 6 since 1

3 + 1
6 = 1

2
Case-by-case we then get the above values for p, n as the only possible
values for Platonic solids.

To prove existence we need to actually construct them
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Classification of Platonic solids

Proof Continued Their construction is well-known:
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Dual tetrahedron = tetrahedron
There is a symmetry in the Platonic solids given by (p, n) ↔ (n, p). This
corresponds to taking the dual surface
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Cube and octahedron
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Dodecahedron and icosahedron
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Platonic soccer balls
Here are two dodecahedral decompositions of S2
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Soccer ball
Example A ball is made by gluing together triangles and octagons so that
each octagon is connected to four non-touching triangles. Determine the
number of octagons and triangles used

Let there be |V | vertices, |E | edges and |F | faces

Write |F | = o + t, where o = #octagons and t = #triangles

=⇒ 2 = |V | − |E |+ o + t

We have:

• vertex-degree equation: 3|V | = 2|E |
• face-degree equation: 2|E | = 3t + 8o
• Every octagon meets 4 triangles,
=⇒ 3t = 4o =⇒ 2|E | = 12o
=⇒ 2 = o

(
4 − 6 + 1 + 4

3) =
o
3

=⇒ o = 6 and t = 8
=⇒ |E | = 36 and |V | = 24
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The octacube
As with the Platonic solids, we have only shown that if such a surfaces
exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!

In fact, this surface does exist and it can be constructed by cutting
triangular corners off a cube
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The octacube
As with the Platonic solids, we have only shown that if such a surfaces
exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!

In fact, this surface does exist and it can be constructed by cutting
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Coloring maps
Question
How many different colors do you need to color a map so that
adjacent countries have different colors?

A map is a polygonal decomposition. The answer to this question involves
the same ideas we used to understand Platonic solids
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Chromatic number of (connected – assumed from now on) surfaces
Let P = (V ,E ,F ) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let CP(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C (S) = max{CP(S) |P is a “map” on S }

We still need to say what a map in in terms of polygonal decompositions

That is, C (S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

CP(D2) = 2 CP(D2) = 3 CP(D2) = 4

=⇒ C (D2) ≥ 4

For maps of the world we are most interested in C (D2) = C (S2)
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Map colouring assumptions
A map on a surface S is a polygonal decomposition such that:

• All vertices have degree at least 3

• No region (i.e. face or polygon) has a border with itself

• No region contains a hole

• No region is completely surrounded by another

• No internal region has only two borders (i.e. edges)

These assumptions are purely for convenience because, in each
case, we can colour these maps using the same number of colours
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Understanding map colourings
The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V ,E ,F ) be a map on a surface S . Set

• ∂V = 2|E |
|V | , the average vertex-degree

• ∂F = 2|E |
|F | , the average face-degree

By definition, ∂V |V | = 2|E | = ∂F |F |
Moreover,

▶ ∂V ≥ 3 since vertices have degree at least 3

▶ ∂F ≤ |F | − 1 as no region borders itself

Remark For a Platonic solid that is made from n-gons with p polygons
meeting at each vertex we have ∂V = p and ∂F = n
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Bounding the face degree
Lemma
Suppose that M is a map on a closed surface S . Then

∂F =
(
1 − χ(S)

|F |

)/(
1
2 − 1

∂V

)

Proof This is a simple calculation with the Euler characteristic:

χ(S) = |V | − |E |+ |F | = |F |∂F
∂V

− |F |∂F
2 + |F |

=⇒ χ(S)
|F | = ∂F

∂V
− ∂F

2 + 1

=⇒ ∂F =
(
1 − χ(S)

|F |

)/(
1
2 − 1

∂V

)
Corollary

Let M be a map on a closed surface S . Then ∂F ≤ 6
(
1 − χ(S)

|F |

)
Proof By assumption, ∂V ≥ 3 =⇒ 1

2 − 1
∂V

≥ 1
2 − 1

3 = 1
6

=⇒ ∂F ≤ 6
(
1 − χ(S)

|F |

)
as required
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Maps on sphere and projective planes
Corollary
Let M be a map on S2 or P2. Then ∂F < 6

Proof By the last corollary, ∂F ≤ 6
(
1 − χ(S)

|F |

)
Hence the result follows since χ(S2) = 2 and χ(P2) = 1

Remarks

1 A Platonic solid constructed out of n-gons is a special type of map
on S2. As ∂F = n this reproves the fact that Platonic solids only
exist when 3 ≤ n ≤ 5

2 If the average face degree ∂F < 6 then there must be at least
one face f with deg(f ) ≤ 5
This observation will be important when we prove the Five color
theorem (not quite the four color theorem)
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