Topology - week 10 Math3061

Daniel Tubbenhauer, University of Sydney

(c) Semester 2, 2023

Words for surfaces

A polygonal decomposition for a surface that has one face can be encoded in a word

Words for surfaces

A polygonal decomposition for a surface that has one face can be encoded in a word

Words for surfaces

A polygonal decomposition for a surface that has one face can be encoded in a word

Words for surfaces

A polygonal decomposition for a surface that has one face can be encoded in a word

- write x for an edge pointing anticlockwise
- write \bar{x} for an edge pointing clockwise

Words for surfaces

A polygonal decomposition for a surface that has one face can be encoded in a word

- write x for an edge pointing anticlockwise
- write \bar{x} for an edge pointing clockwise
- We always read the word in anticlockwise order

Words for basic surfaces

- $S^{2}=a$

Words for basic surfaces

Words for basic surfaces

$$
=a \bar{a}
$$

Words for basic surfaces

Words for basic surfaces

Words for basic surfaces

Words for basic surfaces

$=a \bar{a}$

- $\mathbb{A}=\begin{array}{ll}\leftarrow \mathrm{a} \longrightarrow \\ \vdots & ! \\ \vdots\end{array}$

Words for basic surfaces

Words for basic surfaces

$=a b \bar{c} \bar{b}$

Words for basic surfaces

$$
=a \bar{a}
$$

Words for basic surfaces

$$
=a \bar{a}
$$

$$
=a b
$$

Words for basic surfaces

$$
=a \bar{a}
$$

$=a b \bar{c} \bar{b}$

Words for basic surfaces

$$
=a \bar{a}
$$

$$
=a b
$$

Words for basic surfaces

$=a b \bar{c} \bar{b}$

Properties of words

- Words encode orientability
$>$ Orientable: ...a... $\bar{a} .$. or ... $\bar{a} . . . a \ldots$
- Non-orientable: ...a....a... or ... $\bar{a} . . \bar{a} .$.

Properties of words

- Words encode orientability
> Orientable:a... \bar{a}... or ... $\bar{a} \ldots$.....
$>$ Non-orientable: ...a...a... or ... \bar{a}... \bar{a}...
- Words give a compact and easily readable way of describing surfaces

Properties of words

- Words encode orientability
- Orientable:
...a... $\bar{a} .$. or ... $\bar{a} \ldots a .$.
- Non-orientable:a....a... or ... $\bar{a} . . . \bar{a} .$.
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)

Properties of words

- Words encode orientability
- Orientable:
...a... $\bar{a} .$. or ... $\bar{a} \ldots a .$.
- Non-orientable:a...a... or ... $\bar{a} . . \bar{a} .$.
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

Properties of words

- Words encode orientability
- Orientable: ...a....a... or ... $\bar{a} . . . a .$.
- Non-orientable: ...a...a... or ... $\bar{a} . . \bar{a} .$.
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

Example The following words are all words for the torus \mathbb{T} :

$a b \bar{a} \bar{b}$	$b \bar{a} \bar{b} a$	$\bar{a} \bar{b} a b$	$\bar{b} a b \bar{a}$
$a \bar{b} \bar{a} b$	$\bar{b} \bar{a} b a$	$\bar{a} b a \bar{b}$	$b a \bar{b} \bar{a}$

Properties of words

- Words encode orientability
- Orientable:a... \bar{a}... or ... $\bar{a} \ldots$.....
$>$ Non-orientable:a...a... or ... $\bar{a} . . \bar{a} .$.
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

Example The following words are all words for the torus \mathbb{T} :

$a b \bar{a} \bar{b}$	$b \bar{a} \bar{b} a$	$\bar{a} \bar{b} a b$	$\bar{b} a b \bar{a}$
$a \bar{b} \bar{a} b$	$\bar{b} \bar{a} b a$	$\bar{a} b a \bar{b}$	$b a \bar{b} \bar{a}$

- The word of a surface can be used to give generators and relations for the first homotopy group of the surface - this generalises independent cycles and are beyond the scope of this unit

Standard words for closed orientable surfaces

- Connected sums of tori: $\#^{t} \mathbb{T}$

$$
\nabla \mathbb{T}=\underset{\substack{b \\ b}}{\substack{b \\ b}}=a b \bar{a} \bar{b}
$$

Standard words for closed orientable surfaces

- Connected sums of tori: $\#^{t} \mathbb{T}$

Standard words for closed orientable surfaces

- Connected sums of tori: $\#^{t} \mathbb{T}$

Standard words for closed orientable surfaces

- Connected sums of tori: $\#^{t} \mathbb{T}$

Words for closed non-orientable surfaces

- Connected sums of projective plans $\#^{P} \mathbb{P}^{2}$
$\triangleright \mathbb{P}^{2}=a$

Words for closed non-orientable surfaces

- Connected sums of projective plans $\#^{P} \mathbb{P}^{2}$

Words for closed non-orientable surfaces

- Connected sums of projective plans $\#^{P} \mathbb{P}^{2}$

Words for closed non-orientable surfaces

- Connected sums of projective plans $\#^{p} \mathbb{P}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$
$\nabla \mathbb{D}^{2}=a$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

$\Rightarrow \#^{2} \mathbb{D}^{2}=a$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

- $\#^{d} \mathbb{D}^{2}$

Standard words for surfaces with boundary

$\#^{3} \mathbb{D}^{2}$

Standard words for surfaces with boundary

$$
\#^{3} \mathbb{D}^{2}=\#^{2} \mathbb{D}^{2} \# \mathbb{D}^{2}
$$

Standard words for surfaces with boundary

Words to surfaces

What standard surface is given by the word adb $\bar{c} e \bar{c} \bar{f} d h g e \bar{a} h$?

Words to surfaces

What standard surface is given by the word adb $\bar{c} e \bar{c} \bar{f} d h g e \bar{a} h \quad$?

$\Longrightarrow \quad d=1$ and $\chi(S)=3-8+1=-4$
$\Longrightarrow S \cong \mathbb{D}^{2} \# \#^{5} \mathbb{P}^{2}$
$\Longrightarrow \quad S=a b b c c d d e \operatorname{eff}$

The vertex-degree equation revisited

When we looked at graphs we proved the vertex-degree equation:

$$
\sum \operatorname{deg}(v)=2|E| \quad \text { for } G=(V, E) \text { a graph }
$$

The vertex-degree equation revisited

When we looked at graphs we proved the vertex-degree equation:

$$
\sum \operatorname{deg}(v)=2|E| \quad \text { for } G=(V, E) \text { a graph }
$$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of $\operatorname{deg}(x)$ and $\operatorname{deg}(y)$ on the left-hand side
$-+2=2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$

The vertex-degree equation revisited

When we looked at graphs we proved the vertex-degree equation:

$$
\sum \operatorname{deg}(v)=2|E| \quad \text { for } G=(V, E) \text { a graph }
$$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of $\operatorname{deg}(x)$ and $\operatorname{deg}(y)$ on the left-hand side
$-+2=2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$ We want similar formulas for a surface $S=(V, E, F)$ with a polygonal decomposition
Question What is the correct definition of degree in S ?

When we looked at graphs we proved the vertex-degree equation:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E| \quad \text { for } G=(V, E) \text { a graph }
$$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of $\operatorname{deg}(x)$ and $\operatorname{deg}(y)$ on the left-hand side
$-+2=2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$ We want similar formulas for a surface $S=(V, E, F)$ with a polygonal decomposition
Question What is the correct definition of degree in S ?
The problem
We are identifying edges in S and hence implicitly identifying vertices
- Do we identify edges and vertices when computing $\operatorname{deg}(v)$ and $|E|$?

When we looked at graphs we proved the vertex-degree equation:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E| \quad \text { for } G=(V, E) \text { a graph }
$$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of $\operatorname{deg}(x)$ and $\operatorname{deg}(y)$ on the left-hand side
$-+2=2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$ We want similar formulas for a surface $S=(V, E, F)$ with a polygonal decomposition
Question What is the correct definition of degree in S ?
The problem
We are identifying edges in S and hence implicitly identifying vertices
- Do we identify edges and vertices when computing $\operatorname{deg}(v)$ and $|E|$?

Answer Yes and no!

Consider the surface with polygonal decomposition

Consider the surface with polygonal decomposition

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$
\Longrightarrow \operatorname{deg}(x)=5, \operatorname{deg}(y)=3, \text { so } \operatorname{deg}(x)+\operatorname{deg}(y)=8=2|E|
$$

The degree of a vertex

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$
\Longrightarrow \quad \operatorname{deg}(x)=5, \operatorname{deg}(y)=3, \text { so } \operatorname{deg}(x)+\operatorname{deg}(y)=8=2|E|
$$

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

The degree of a vertex

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities
$\Longrightarrow \operatorname{deg}(x)=5, \operatorname{deg}(y)=3$, so $\operatorname{deg}(x)+\operatorname{deg}(y)=8=2|E|$
Not using identified edges or vertices (i.e. as a graph, ignoring the face)
\Longrightarrow six vertices of degree 2 and six edges, so $12=2 \cdot 6$

The degree of a vertex

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$
\Longrightarrow \quad \operatorname{deg}(x)=5, \operatorname{deg}(y)=3, \text { so } \operatorname{deg}(x)+\operatorname{deg}(y)=8=2|E|
$$

Not using identified edges or vertices (i.e. as a graph, ignoring the face)
$\Longrightarrow \quad$ six vertices of degree 2 and six edges, so $12=2 \cdot 6$
The vertex-degree equation holds using either identified or non-identified edges and vertices because in both cases the degree of a vertex is defined to be the number of incident edges to the vertex

The surface degree-vertex equation

Proposition

Let $S=(V, E, F)$ be a surface with polygonal decomposition. Then

$$
\sum \operatorname{deg}(v)=2|E|
$$

The surface degree-vertex equation

Proposition

Let $S=(V, E, F)$ be a surface with polygonal decomposition. Then

$$
\sum \operatorname{deg}(v)=2|E|
$$

Proof The proof is the same as before: the edge $\{x, y\}$ contributes +2 to both sides of this equation because edge contributes +1 to $\operatorname{deg}(x)$ and +1 to $\operatorname{deg}(y)$.

The surface degree-vertex equation

Proposition

Let $S=(V, E, F)$ be a surface with polygonal decomposition. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof The proof is the same as before: the edge $\{x, y\}$ contributes +2 to both sides of this equation because edge contributes +1 to $\operatorname{deg}(x)$ and +1 to $\operatorname{deg}(y)$.
Therefore, we have two degree-vertex equations:

- The graph degree-vertex equation where we do not identify edges and vertices in S
- The surface degree-vertex equation where we do identify edges and vertices in S

The degree of a face

Let $S=(V, E, F)$ be a surface with polygonal decomposition
Let $f \in F$ be a face of S. The degree of f is
$\operatorname{deg}(f)=$ number of edges (count with multiplicities) incident with f

The degree of a face

Let $S=(V, E, F)$ be a surface with polygonal decomposition
Let $f \in F$ be a face of S. The degree of f is
$\operatorname{deg}(f)=$ number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an n-gon

The degree of a face

Let $S=(V, E, F)$ be a surface with polygonal decomposition
Let $f \in F$ be a face of S. The degree of f is
$\operatorname{deg}(f)=$ number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an n-gon

$$
\Longrightarrow \quad \operatorname{deg}(f)=n
$$

The degree of a face

Let $S=(V, E, F)$ be a surface with polygonal decomposition
Let $f \in F$ be a face of S. The degree of f is $\operatorname{deg}(f)=$ number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an n-gon

$$
\Longrightarrow \quad \operatorname{deg}(f)=n
$$

Notice that faces are never identified in the polygonal decomposition

The degree of a face

Let $S=(V, E, F)$ be a surface with polygonal decomposition
Let $f \in F$ be a face of S. The degree of f is $\operatorname{deg}(f)=$ number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an n-gon

$$
\Longrightarrow \quad \operatorname{deg}(f)=n
$$

Notice that faces are never identified in the polygonal decomposition
Question How are $\sum \operatorname{deg}(f)$ and $2|E|$ related?

Face degrees of basic surfaces

In all cases $\operatorname{deg}($ face $)=4$ as there are 4 non-identified edges

- Sphere

- Torus

- Annulus

- Projective plane

- Disk

- Klein bottle

- Möbius band

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon
Proposition (The surface face-degree equation)
Let $S=(V, E, F)$ be a closed surface (no boundary). Then

$$
\sum_{f \in F} \operatorname{deg}(f)=2|E|,
$$

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon
Proposition (The surface face-degree equation)
Let $S=(V, E, F)$ be a closed surface (no boundary). Then

$$
\sum_{f \in F} \operatorname{deg}(f)=2|E|,
$$

Proof By definition, $\operatorname{deg}(f)=n$ if f is an n-gon

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon
Proposition (The surface face-degree equation)
Let $S=(V, E, F)$ be a closed surface (no boundary). Then

$$
\sum_{f \in F} \operatorname{deg}(f)=2|E|,
$$

Proof By definition, $\operatorname{deg}(f)=n$ if f is an n-gon
Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon
Proposition (The surface face-degree equation)
Let $S=(V, E, F)$ be a closed surface (no boundary). Then

$$
\sum_{f \in F} \operatorname{deg}(f)=2|E|,
$$

Proof By definition, $\operatorname{deg}(f)=n$ if f is an n-gon
Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

$$
\Longrightarrow \quad \sum_{f \in F} \operatorname{deg}(f)=2|E|
$$

The face-degree equation

Recall that for any graph $G=(V, E)$ we proved that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$
Let (V, E, F) be a polygonal decomposition
The degree of a face $f \in F$ is $\operatorname{deg}(f)=n$ if P is an n-gon
Proposition (The surface face-degree equation)
Let $S=(V, E, F)$ be a closed surface (no boundary). Then

$$
\sum_{f \in F} \operatorname{deg}(f)=2|E|,
$$

Proof By definition, $\operatorname{deg}(f)=n$ if f is an n-gon
Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

$$
\Longrightarrow \quad \sum_{f \in F} \operatorname{deg}(f)=2|E|
$$

Remark To use this formula we need to know the number of identified edges in the polygonal decomposition

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct
The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

- the vertex set of S^{*} is $V^{*}=F$, the set of faces of S

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct
The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

- the vertex set of S^{*} is $V^{*}=F$, the set of faces of S
- there is an edge between two vertices f and f^{\prime} of S^{*} if the faces f and f^{\prime} in S are separated by an edge

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct
The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

- the vertex set of S^{*} is $V^{*}=F$, the set of faces of S
- there is an edge between two vertices f and f^{\prime} of S^{*} if the faces f and f^{\prime} in S are separated by an edge
$\Longrightarrow \quad$ the faces of S^{*} are the vertices of S

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

- the vertex set of S^{*} is $V^{*}=F$, the set of faces of S
- there is an edge between two vertices f and f^{\prime} of S^{*} if the faces f and f^{\prime} in S are separated by an edge
\Longrightarrow the faces of S^{*} are the vertices of S

Examples

Dual surfaces

Let $S=(V, E, F)$ be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct
The dual surface S^{*} has polygonal decomposition $\left(V^{*}, E^{*}, F^{*}\right)$, where

- the vertex set of S^{*} is $V^{*}=F$, the set of faces of S
- there is an edge between two vertices f and f^{\prime} of S^{*} if the faces f and f^{\prime} in S are separated by an edge
\Longrightarrow the faces of S^{*} are the vertices of S

Examples

The dual of the cube

The dual of the cube

The dual of the cube

The dual of the cube

\Longrightarrow the dual surface to the cube is the octahedron

Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces

Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces
$\Longrightarrow \quad$ if $v \in V$ then $v \in F^{*}$ and $\operatorname{deg}_{S}(v)=\operatorname{deg}_{S^{*}}(v)$

Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces
$\Longrightarrow \quad$ if $v \in V$ then $v \in F^{*}$ and $\operatorname{deg}_{S}(v)=\operatorname{deg}_{S *}(v)$
\Longrightarrow the vertex-degree equation for S is the same as the face-degree equation for S^{*}

Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces
\Longrightarrow if $v \in V$ then $v \in F^{*}$ and $\operatorname{deg}_{s}(v)=\operatorname{deg}_{S *}(v)$
\Longrightarrow the vertex-degree equation for S is the same as the face-degree equation for S^{*}

Example

We will see better examples when we look at Platonic solids

diverfiscombinata claflibus: Ma: res, Cubus \& Dodecaëdron ex primariis; foeminæ, OCtoëdron \& Icofiëdron ex fecundarijssqui.

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$
Let $\mathscr{P}(S)$ be the set of all paths on S

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$
Let $\mathscr{P}(S)$ be the set of all paths on S
If S is any surface and $G=(V, E)$ is a graph then an embedding of G in S is a pair of maps

$$
f: V \longrightarrow S \quad \text { and } \quad \mathrm{p}: E \longrightarrow \mathscr{P}(S)
$$

such that:

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$
Let $\mathscr{P}(S)$ be the set of all paths on S
If S is any surface and $G=(V, E)$ is a graph then an embedding of G in S is a pair of maps

$$
f: V \longrightarrow S \quad \text { and } \quad \mathrm{p}: E \longrightarrow \mathscr{P}(S)
$$

such that:

- The map f is injective

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$
Let $\mathscr{P}(S)$ be the set of all paths on S
If S is any surface and $G=(V, E)$ is a graph then an
embedding of G in S is a pair of maps

$$
f: V \longrightarrow S \quad \text { and } \quad \mathrm{p}: E \longrightarrow \mathscr{P}(S)
$$

such that:

- The map f is injective
- If $e=\{v, w\} \in E$ then $\mathrm{p}(e) \in \mathscr{P}(S)$ is an injective path from $f(v)$ to $f(w)$

Graphs on surfaces

Recall that a graph G is planar if it can be drawn in \mathbb{R}^{2} without edge crossings
Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that $p(0)=x$ and $p(1)=y$
Let $\mathscr{P}(S)$ be the set of all paths on S
If S is any surface and $G=(V, E)$ is a graph then an
embedding of G in S is a pair of maps

$$
f: V \longrightarrow S \quad \text { and } \quad \mathrm{p}: E \longrightarrow \mathscr{P}(S)
$$

such that:

- The map f is injective
- If $e=\{v, w\} \in E$ then $\mathrm{p}(e) \in \mathscr{P}(S)$ is an injective path from $f(v)$ to $f(w)$
- If $e, e^{\prime} \in E$ then the paths $F(e)$ and $F\left(e^{\prime}\right)$ can intersect only at the images of their endpoints

Planar graphs

Theorem

Let G be a (finite) graph. Then the following are equivalent.
(1) There is an embedding of G in \mathbb{R}^{2} (= the graph is planar)

Planar graphs

Theorem

Let G be a (finite) graph. Then the following are equivalent.
(1) There is an embedding of G in \mathbb{R}^{2} (= the graph is planar)
(2) There is an embedding of G in \mathbb{D}^{2}

Planar graphs

Theorem

Let G be a (finite) graph. Then the following are equivalent.
(1) There is an embedding of G in \mathbb{R}^{2} (= the graph is planar)
(2) There is an embedding of G in \mathbb{D}^{2}
(There is an embedding of G in S^{2}

Planar graphs

Theorem

Let G be a (finite) graph. Then the following are equivalent.
(1) There is an embedding of G in \mathbb{R}^{2} (= the graph is planar)
(2) There is an embedding of G in \mathbb{D}^{2}
(3) There is an embedding of G in S^{2}

Planar graphs

Theorem

Let G be a (finite) graph. Then the following are equivalent.
(1) There is an embedding of G in \mathbb{R}^{2} (= the graph is planar)
(2) There is an embedding of G in \mathbb{D}^{2}

- There is an embedding of G in S^{2}

Proof Stereographic projection! (Move G away from ∞.)

Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S

Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S
The faces of G are the connected components of $S \backslash G$

Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S
The faces of G are the connected components of $S \backslash G$ Example Taking $S=\mathbb{D}^{2}$ and $G=K_{4}$ gives four faces:

Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S
The faces of G are the connected components of $S \backslash G$ Example Taking $S=\mathbb{D}^{2}$ and $G=K_{4}$ gives four faces:

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G
Proof Since G is connected, and S^{2} does not have a boundary, $S^{2} \backslash G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G
Proof Since G is connected, and S^{2} does not have a boundary, $S^{2} \backslash G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.
Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G
Proof Since G is connected, and S^{2} does not have a boundary, $S^{2} \backslash G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.
Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G
\Longrightarrow there are two faces adjacent to every edge in G

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G
Proof Since G is connected, and S^{2} does not have a boundary, $S^{2} \backslash G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.
Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G
\Longrightarrow there are two faces adjacent to every edge in G
\Longrightarrow the embedding of G in S^{2} induces a polygonal decomposition on S^{2}

Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S^{2} where the polygons correspond to the non-trivial cycles in G
Proof Since G is connected, and S^{2} does not have a boundary, $S^{2} \backslash G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.
Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G
\Longrightarrow there are two faces adjacent to every edge in G
\Longrightarrow the embedding of G in S^{2} induces a polygonal decomposition on S^{2}
Remark The argument cheats slightly because we are implicitly assuming that the edges are "nice" curves. This allows us to side-step issues connected with the Jordan curve theorem

Planar graphs and Euler characteristic

Theorem
Let $G=(V, E)$ be a connected planar graph with face set F.
Then $2=|V|-|E|+|F|$

Planar graphs and Euler characteristic

Theorem

Let $G=(V, E)$ be a connected planar graph with face set F.
Then $2=|V|-|E|+|F|$
Proof Use the previous theorem or argue by induction on $|E|$

Planar graphs and Euler characteristic

Theorem

Let $G=(V, E)$ be a connected planar graph with face set F.
Then $2=|V|-|E|+|F|$
Proof Use the previous theorem or argue by induction on $|E|$
Case $1 G$ is a tree
Combine $|V|-|E|=1$ (previous lectures) and that there is only one face
Case $2 G$ is not a tree
By $\chi\left(S^{2}\right)=2$ and the previous theorem

Planarity of K_{5}

Proposition

Planarity of K_{5}

Proposition

The complete graph $K_{5}=$

is not planar

Proof Assume that K_{5} is planar with $|F|$ faces
We have $|V|=5$ and $|E|=10$, so $2=|V|-|E|+|F| \Longrightarrow|F|=7$
Let's count the number of faces in this polygonal decomposition differently

- The faces correspond to cycles in K_{5}
- Every face has at least 3 edges, so by the degree-face equation

$$
\begin{aligned}
& \Longrightarrow \quad 2|E|=\sum_{f \in F} \operatorname{deg}(f) \geq 3|F| \\
& \Longrightarrow \quad 2|E|=20 \geq 21=3|F|
\end{aligned}
$$

Hence, the complete graph K_{5} is not planar

Planarity of complete graphs

Corollary
The complete graph K_{n} is planar if and only if $1 \leq n \leq 4$

Planarity of complete graphs

Corollary
The complete graph K_{n} is planar if and only if $1 \leq n \leq 4$
Proof
K_{5} sits in K_{n} for $n \geq 5$, and the previous theorem applies

Planarity of bipartite graphs

Proposition

Planarity of bipartite graphs

Proposition

Proof Tutorials

Planarity of bipartite graphs

Proposition

The bipartite graph $K_{3,3}=$

Proof Tutorials

Theorem (Kuratowski)

Let G be a graph. Then G if planar if and only if it has no subgraph isomorphic to a subdivision of K_{5} or $K_{3,3}$

The proof is out of the scope of this unit!

Platonic solids

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular n-gons of the same shape and size such that the same number of polygons meet at every vertex

Platonic solids

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular n-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	Isosahedron
$\|\mathrm{V}\|$	4	8	6	5	3
$\|\mathrm{E}\|$	6	12	12	30	12
$\|\mathrm{~F}\|$	4	6	8	12	30

Platonic solids

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular n-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	Isosahedron
$\|\mathrm{V}\|$	3	8	6	5	3
$\|\mathrm{E}\|$	6	12	12	20	12
$\|\mathrm{~F}\|$	4	6	8	30	30

Questions

- Are there any others?

Platonic solids

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular n-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	Isosahedron
$\|\mathrm{V}\|$	4	8	6	5	3
$\|\mathrm{E}\|$	6	12	12	20	12
$\|\mathrm{~F}\|$	4	6	8	30	30

Questions

- Are there any others?
- Can we understand them as polygonal decompositions of the sphere?

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
\Longrightarrow each vertex has degree p and each face degree n

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$
$\Longrightarrow \quad \frac{1}{2}+\frac{1}{|E|}=\frac{1}{p}+\frac{1}{n}$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$
$\Longrightarrow \quad \frac{1}{2}+\frac{1}{|E|}=\frac{1}{p}+\frac{1}{n}$
$\Longrightarrow \quad \frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$
$\Longrightarrow \quad \frac{1}{2}+\frac{1}{|E|}=\frac{1}{p}+\frac{1}{n}$
$\Longrightarrow \quad \frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}>\frac{1}{2}$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
\Longrightarrow each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$
$\Longrightarrow \quad \frac{1}{2}+\frac{1}{|E|}=\frac{1}{p}+\frac{1}{n}$
$\Longrightarrow \quad \frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}>\frac{1}{2}$
We require $p \geq 3, n \geq 3$ and $|E| \geq 2$

Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S^{2} obtained by gluing together (regular) n-gons so that p polygon meet at each vertex
Suppose there are $|V|$ vertices, $|E|$ edges and $|F|$ faces
$\Longrightarrow \quad$ each vertex has degree p and each face degree n
$\Longrightarrow p|V|=2|E|$ by the vertex-degree equation
$\Longrightarrow 2|E|=n|F|$ by the face-degree equation
$\Longrightarrow \quad 2=\chi\left(S^{2}\right)=|V|-|E|+|F|=\frac{2|E|}{p}-|E|+\frac{2|E|}{n}$
$\Longrightarrow \quad \frac{1}{2}+\frac{1}{|E|}=\frac{1}{p}+\frac{1}{n}$
$\Longrightarrow \quad \frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}>\frac{1}{2}$
We require $p \geq 3, n \geq 3$ and $|E| \geq 2$
The equations above give:

$$
|E|=\left(\frac{1}{p}+\frac{1}{n}-\frac{1}{2}\right)^{-1},|V|=\frac{2|E|}{p} \text { and }|F|=\frac{2|E|}{n}
$$

Classification of Platonic solids

Theorem

The complete list of Platonic solids is:

p	n	$\frac{1}{p}+\frac{1}{n}$	$e=\left(\frac{1}{p}+\frac{1}{n}-\frac{1}{2}\right)^{-1}$	$v=\frac{2 e}{p}$	$f=\frac{2 e}{n}$	Platonic solid
3	3	$\frac{2}{3}$	6	4	4	Tetrahedron
3	4	$\frac{7}{12}$	12	8	6	Cube
3	5	$\frac{8}{15}$	30	20	12	Dodecahedron
4	3	$\frac{7}{12}$	12	6	8	Octahedron
5	3	$\frac{8}{15}$	30	12	20	Isosahedron

Classification of Platonic solids

Theorem

The complete list of Platonic solids is:

p	n	$\frac{1}{p}+\frac{1}{n}$	$e=\left(\frac{1}{p}+\frac{1}{n}-\frac{1}{2}\right)^{-1}$	$v=\frac{2 e}{p}$	$f=\frac{2 e}{n}$	Platonic solid
3	3	$\frac{2}{3}$	6	4	4	Tetrahedron
3	4	$\frac{7}{12}$	12	8	6	Cube
3	5	$\frac{8}{15}$	30	20	12	Dodecahedron
4	3	$\frac{7}{12}$	12	6	8	Octahedron
5	3	$\frac{8}{15}$	30	12	20	Isosahedron

Proof Since $\frac{1}{p}+\frac{1}{n}>\frac{1}{2}$ and $p, n \geq 3$ we get $n<6$ since $\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$ Case-by-case we then get the above values for p, n as the only possible values for Platonic solids.

To prove existence we need to actually construct them

Classification of Platonic solids

Proof Continued Their construction is well-known:

Dual tetrahedron $=$ tetrahedron

There is a symmetry in the Platonic solids given by $(p, n) \leftrightarrow(n, p)$. This corresponds to taking the dual surface

Cube and octahedron

Dodecahedron and icosahedron

Platonic soccer balls

Here are two dodecahedral decompositions of S^{2}

Example A ball is made by gluing together triangles and octagons so that each octagon is connected to four non-touching triangles. Determine the number of octagons and triangles used

Soccer ball

Example A ball is made by gluing together triangles and octagons so that each octagon is connected to four non-touching triangles. Determine the number of octagons and triangles used
Let there be $|V|$ vertices, $|E|$ edges and $|F|$ faces
Write $|F|=o+t$, where $o=\#$ octagons and $t=\#$ triangles

$$
\Longrightarrow \quad 2=|V|-|E|+o+t
$$

We have:

- vertex-degree equation: $3|V|=2|E|$
- face-degree equation: $2|E|=3 t+80$
- Every octagon meets 4 triangles,
$\Longrightarrow 3 t=40 \Longrightarrow 2|E|=120$
$\Longrightarrow \quad 2=o\left(4-6+1+\frac{4}{3}\right)=\frac{o}{3}$
$\Longrightarrow \quad 0=6$ and $t=8$
$\Longrightarrow|E|=36$ and $|V|=24$

The octacube

As with the Platonic solids, we have only shown that if such a surfaces exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but we have not shown that such a surface exists!

The octacube

As with the Platonic solids, we have only shown that if such a surfaces exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but we have not shown that such a surface exists!
In fact, this surface does exist and it can be constructed by cutting triangular corners off a cube

Coloring maps

Question

How many different colors do you need to color a map so that adjacent countries have different colors?

Coloring maps

Question

How many different colors do you need to color a map so that adjacent countries have different colors?

A map is a polygonal decomposition. The answer to this question involves the same ideas we used to understand Platonic solids

\author{

- Topology - week 10
}

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S

Chromatic number of (connected - assumed from now on) surfaces

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions

Examples
\square

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

$$
C_{P}\left(\mathbb{D}^{2}\right)=2
$$

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

$$
C_{P}\left(\mathbb{D}^{2}\right)=2 \quad C_{P}\left(\mathbb{D}^{2}\right)=3
$$

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

$$
C_{P}\left(\mathbb{D}^{2}\right)=2
$$

$$
C_{P}\left(\mathbb{D}^{2}\right)=3
$$

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

$$
C_{P}\left(\mathbb{D}^{2}\right)=2
$$

$C_{P}\left(\mathbb{D}^{2}\right)=3$

$$
C_{P}\left(\mathbb{D}^{2}\right)=4
$$

Let $P=(V, E, F)$ be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
Let $C_{P}(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S)=\max \left\{C_{P}(S) \mid P\right.$ is a "map" on $\left.S\right\}$
We still need to say what a map in in terms of polygonal decompositions That is, $C(S)$ is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

For maps of the world we are most interested in $C\left(\mathbb{D}^{2}\right)=C\left(S^{2}\right)$

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

- No region contains a hole

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

- No region contains a hole

- No region is completely surrounded by another

\square

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

- No region contains a hole

- No region is completely surrounded by another

- No internal region has only two borders (i.e. edges)

Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

- No region contains a hole

- No region is completely surrounded by another

- No internal region has only two borders (i.e. edges)

These assumptions are purely for convenience because, in each case, we can colour these maps using the same number of colours

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,
$\Rightarrow \partial_{V} \geq 3$ since vertices have degree at least 3

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings
Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,

- $\partial_{V} \geq 3$ since vertices have degree at least 3
$\Rightarrow \partial_{F} \leq|F|-1$ as no region borders itself

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let $M=(V, E, F)$ be a map on a surface S. Set

- $\partial_{V}=\frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_{F}=\frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_{V}|V|=2|E|=\partial_{F}|F|$
Moreover,

- $\partial_{V} \geq 3$ since vertices have degree at least 3
$\Rightarrow \partial_{F} \leq|F|-1$ as no region borders itself
Remark For a Platonic solid that is made from n-gons with p polygons meeting at each vertex we have $\partial_{V}=p$ and $\partial_{F}=n$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \quad \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1
\end{aligned}
$$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Corollary

Let M be a map on a closed surface S. Then $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Corollary

Let M be a map on a closed surface S. Then $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Corollary

Let M be a map on a closed surface S. Then $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Proof By assumption, $\partial_{V} \geq 3$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Corollary

Let M be a map on a closed surface S. Then $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Proof By assumption, $\partial_{V} \geq 3 \quad \Longrightarrow \quad \frac{1}{2}-\frac{1}{\partial_{V}} \geq \frac{1}{2}-\frac{1}{3}=\frac{1}{6}$

Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

$$
\partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
$$

Proof This is a simple calculation with the Euler characteristic:

$$
\begin{aligned}
& \chi(S)=|V|-|E|+|F|=\frac{|F| \partial_{F}}{\partial_{V}}-\frac{|F| \partial_{F}}{2}+|F| \\
& \quad \Longrightarrow \frac{\chi(S)}{|F|}=\frac{\partial_{F}}{\partial_{V}}-\frac{\partial_{F}}{2}+1 \\
& \quad \Longrightarrow \partial_{F}=\left(1-\frac{\chi(S)}{|F|}\right) /\left(\frac{1}{2}-\frac{1}{\partial_{V}}\right)
\end{aligned}
$$

Corollary

Let M be a map on a closed surface S. Then $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Proof By assumption, $\partial_{V} \geq 3 \quad \Longrightarrow \quad \frac{1}{2}-\frac{1}{\partial_{V}} \geq \frac{1}{2}-\frac{1}{3}=\frac{1}{6}$

$$
\Longrightarrow \quad \partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right) \text { as required }
$$

Maps on sphere and projective planes

Corollary

Let M be a map on S^{2} or \mathbb{P}^{2}. Then $\partial_{F}<6$

Maps on sphere and projective planes

Corollary

Let M be a map on S^{2} or \mathbb{P}^{2}. Then $\partial_{F}<6$
Proof By the last corollary, $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Hence the result follows since $\chi\left(S^{2}\right)=2$ and $\chi\left(\mathbb{P}^{2}\right)=1$

Maps on sphere and projective planes

Corollary

Let M be a map on S^{2} or \mathbb{P}^{2}. Then $\partial_{F}<6$
Proof By the last corollary, $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Hence the result follows since $\chi\left(S^{2}\right)=2$ and $\chi\left(\mathbb{P}^{2}\right)=1$

Remarks

(1) A Platonic solid constructed out of n-gons is a special type of map on S^{2}. As $\partial_{F}=n$ this reproves the fact that Platonic solids only exist when $3 \leq n \leq 5$

Maps on sphere and projective planes

Corollary

Let M be a map on S^{2} or \mathbb{P}^{2}. Then $\partial_{F}<6$
Proof By the last corollary, $\partial_{F} \leq 6\left(1-\frac{\chi(S)}{|F|}\right)$
Hence the result follows since $\chi\left(S^{2}\right)=2$ and $\chi\left(\mathbb{P}^{2}\right)=1$

Remarks

(1) A Platonic solid constructed out of n-gons is a special type of map on S^{2}. As $\partial_{F}=n$ this reproves the fact that Platonic solids only exist when $3 \leq n \leq 5$
(2) If the average face degree $\partial_{F}<6$ then there must be at least one face f with $\operatorname{deg}(f) \leq 5$
This observation will be important when we prove the Five color theorem (not quite the four color theorem)

