Topology – week 10 Math3061

Daniel Tubbenhauer, University of Sydney

(C) Semester 2, 2023

- write x for an edge pointing anticlockwise
- write \overline{x} for an edge pointing clockwise

A polygonal decomposition for a surface that has one face can be encoded in a word

- write x for an edge pointing anticlockwise
- \blacktriangleright write \overline{x} for an edge pointing clockwise
- We always read the word in anticlockwise order

– Topology – week 10

• $\mathbb{T} = b$

- Topology - week 10

• $\mathbb{M} = b$ = $a \ b \ \overline{c} \ b$

- Topology - week 10

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots$
 - ▶ Non-orientable: ... a ... a ... or ... \overline{a} ... \overline{a} ...

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots a \dots$
 - ▶ Non-orientable: ... a ... a ... or ... \overline{a} ... \overline{a} ...
- Words give a compact and easily readable way of describing surfaces

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots a \dots$
 - ► Non-orientable: ...a...a... or ... \overline{a} ... \overline{a} ...
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots$
 - ► Non-orientable: ...a...a... or ... \overline{a} ... \overline{a} ...
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots a \dots$
 - ▶ Non-orientable: ...a...a... or ... \overline{a} ... \overline{a} ...
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

Example The following words are all words for the torus \mathbb{T} : $a \ b \ \overline{a} \ \overline{b}$ $b \ \overline{a} \ \overline{b} a$ $\overline{a} \ \overline{b} a b$ $\overline{b} a b \overline{a} \ \overline{a} \ \overline{b} a b$ $a \ \overline{b} \ \overline{a} \ b$ $\overline{b} \ \overline{a} \ b a$ $\overline{a} \ \overline{b} a b$ $\overline{b} \ \overline{a} \ \overline{b} a b$

- Words encode orientability
 - ▶ Orientable: $\dots a \dots \overline{a} \dots \overline{a} \dots \overline{a} \dots a \dots$
 - ▶ Non-orientable: ...a...a... or ... \overline{a} ... \overline{a} ...
- Words give a compact and easily readable way of describing surfaces
- Words can be read in clockwise or anticlockwise order (we always read in anticlockwise order)
- The word of a surface is well-defined only up to cyclic permutation and reversing the direction of any edge

Example The following words are all words for the torus \mathbb{T} : $a \ b \ \overline{a} \ \overline{b}$ $b \ \overline{a} \ \overline{b} \ a$ $\overline{a} \ \overline{b} \ a \ b$ $\overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{c} \ \overline{$

• The word of a surface can be used to give generators and relations for the first homotopy group of the surface — this generalises independent cycles and are beyond the scope of this unit

$$\mathbf{T} = \mathbf{b} = \mathbf{a} \ \mathbf{b} \ \mathbf{\overline{a}} \ \mathbf{\overline{b}}$$

• Connected sums of projective plans $\#^{p}\mathbb{P}^{2}$

$$\blacktriangleright \mathbb{P}^2 = a a a$$

• Connected sums of projective plans $\#^{p}\mathbb{P}^{2}$

• Connected sums of projective plans $\#^{p}\mathbb{P}^{2}$

• Connected sums of projective plans $\#^p \mathbb{P}^2$

Standard words for surfaces with boundary

Standard words for surfaces with boundary

• $\#^d \mathbb{D}^2$ • $\mathbb{D}^2 = a b$

• $\#^{d}\mathbb{D}^{2}$ • $\mathbb{D}^{2} = a$ • $\#^{2}\mathbb{D}^{2} = a$ • $\#^{2}\mathbb{D}^{2} = a$ • $\#^{c}$ • $\#^{c}$ • $\#^{c}$

• $\#^d \mathbb{D}^2$

• $\#^{d}\mathbb{D}^{2}$ • $\mathbb{D}^{2} = a$ b • $\#^{2}\mathbb{D}^{2} = a$ c f d

• $\#^d \mathbb{D}^2$

• $\#^d \mathbb{D}^2$ $\triangleright \mathbb{D}^2 = a^2$ = a b $f d \cong$ ► $#^2 \mathbb{D}^2$ e, c b. а # \cong \cong $= a e c \overline{e}$

 $\blacktriangleright #^3 \mathbb{D}^2$

 $\blacktriangleright \#^3 \mathbb{D}^2 = \#^2 \mathbb{D}^2 \# \mathbb{D}^2$

$$\blacktriangleright \#^{3}\mathbb{D}^{2} = \#^{2}\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \bigsqcup_{c \to b}^{a} \# d$$

$$\blacktriangleright \#^{3}\mathbb{D}^{2} = \#^{2}\mathbb{D}^{2} \# \mathbb{D}^{2} \cong \oint_{c} \# d \# d \# d$$

- Topology - week 10

Words to surfaces

What standard surface is given by the word $a \ d \ b \ \overline{c} \ e \ \overline{c} \ \overline{f} \ d \ h \ g \ e \ \overline{a} \ h ?$

Words to surfaces

What standard surface is given by the word $a \ d \ b \ \overline{c} \ e \ \overline{c} \ \overline{f} \ d \ h \ g \ e \ \overline{a} \ h ?$

- Topology - week 10

When we looked at graphs we proved the vertex-degree equation:

$$\sum_{v \in V} \deg(v) = 2|E|$$
 for $G = (V, E)$ a graph

When we looked at graphs we proved the vertex-degree equation:

 $\sum_{v \in V} \deg(v) = 2|E|$ for G = (V, E) a graph

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of deg(x) and deg(y) on the left-hand side
- $+2 = 2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$

When we looked at graphs we proved the vertex-degree equation:

 $\sum_{v \in V} \deg(v) = 2|E| \quad \text{for } G = (V, E) \text{ a graph}$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of deg(x) and deg(y) on the left-hand side
- $+2 = 2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$

We want similar formulas for a surface S = (V, E, F) with a polygonal decomposition

Question What is the correct definition of degree in S?

When we looked at graphs we proved the vertex-degree equation:

 $\sum_{v \in V} \deg(v) = 2|E| \quad \text{for } G = (V, E) \text{ a graph}$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of deg(x) and deg(y) on the left-hand side
- $+2 = 2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$

We want similar formulas for a surface S = (V, E, F) with a polygonal decomposition

Question What is the correct definition of degree in S ?

The problem

We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E|?

When we looked at graphs we proved the vertex-degree equation:

 $\sum_{v \in V} \deg(v) = 2|E| \quad \text{for } G = (V, E) \text{ a graph}$

The best way to understand this formula is to note that each edge $\{x, y\} \in E$ contributes 2 to both sides of this equation

- +1 to each of deg(x) and deg(y) on the left-hand side
- $+2 = 2 \cdot 1$ to the right-hand side for the edge $\{x, w\}$

We want similar formulas for a surface S = (V, E, F) with a polygonal decomposition

Question What is the correct definition of degree in S ?

The problem

We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E|?

Answer Yes and no!

- Topology - week 10

Consider the surface with polygonal decomposition

Consider the surface with polygonal decomposition

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

 \implies deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$\implies$$
 deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$\implies$$
 deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Not using identified edges or vertices (i.e. as a graph, ignoring the face) \implies six vertices of degree 2 and six edges, so $12 = 2 \cdot 6$

Consider the surface with polygonal decomposition

Using identified vertices and edges + count with multiplicities

$$\implies$$
 deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

$$\implies$$
 six vertices of degree 2 and six edges, so $12 = 2 \cdot 6$

The vertex-degree equation holds using either identified or non-identified edges and vertices because in both cases the degree of a vertex is defined to be the number of incident edges to the vertex

- Topology - week 10

The surface degree-vertex equation

Proposition

Let S = (V, E, F) be a surface with polygonal decomposition. Then $\sum_{v \in V} \deg(v) = 2|E|$

The surface degree-vertex equation

Proposition

Let
$$S = (V, E, F)$$
 be a surface with polygonal decomposition. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

Proof The proof is the same as before: the edge $\{x, y\}$ contributes +2 to both sides of this equation because edge contributes +1 to deg(x) and +1 to deg(y).

The surface degree-vertex equation

Proposition

Let
$$S = (V, E, F)$$
 be a surface with polygonal decomposition. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

Proof The proof is the same as before: the edge $\{x, y\}$ contributes +2 to both sides of this equation because edge contributes +1 to deg(x) and +1 to deg(y).

Therefore, we have two degree-vertex equations:

- The graph degree-vertex equation where we do not identify edges and vertices in ${\cal S}$
- The surface degree-vertex equation where we do identify edges and vertices in ${\cal S}$

Let S = (V, E, F) be a surface with polygonal decomposition

Let $f \in F$ be a face of S. The degree of f is deg(f) =number of edges (count with multiplicities) incident with f

Let S = (V, E, F) be a surface with polygonal decomposition

Let $f \in F$ be a face of S. The degree of f is deg(f) =number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an *n*-gon

Let S = (V, E, F) be a surface with polygonal decomposition

Let $f \in F$ be a face of S. The degree of f is deg(f) =number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an *n*-gon

Let S = (V, E, F) be a surface with polygonal decomposition Let $f \in F$ be a face of S. The degree of f is $\deg(f) =$ number of edges (count with multiplicities) incident

with f

Examples Suppose that $f \in F$ is an *n*-gon

Notice that faces are never identified in the polygonal decomposition

Let S = (V, E, F) be a surface with polygonal decomposition Let $f \in F$ be a face of S. The degree of f is

 $\deg(f) =$ number of edges (count with multiplicities) incident with f

Examples Suppose that $f \in F$ is an *n*-gon

Notice that faces are never identified in the polygonal decomposition

Question How are $\sum \deg(f)$ and 2|E| related?

— Topology – week 10

Face degrees of basic surfaces

In all cases deg(face) = 4 as there are 4 non-identified edges

- Topology - week 10

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)

Let S = (V, E, F) be a closed surface (no boundary). Then $\sum_{f \in F} \deg(f) = 2|E|,$

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)

Let
$$S = (V, E, F)$$
 be a closed surface (no boundary). Then

$$\sum_{f \in F} \deg(f) = 2|E|,$$

Proof By definition, deg(f) = n if f is an *n*-gon

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)

Let
$$S = (V, E, F)$$
 be a closed surface (no boundary). Then

$$\sum_{f \in F} \deg(f) = 2|E|,$$

Proof By definition, deg(f) = n if f is an *n*-gon

Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)

Let
$$S = (V, E, F)$$
 be a closed surface (no boundary). Then

$$\sum_{f \in F} \deg(f) = 2|E|,$$

Proof By definition, deg(f) = n if f is an *n*-gon

Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

$$\implies \sum_{f \in F} \deg(f) = 2|E|$$

Recall that for any graph G = (V, E) we proved that $\sum_{v \in V} \deg(v) = 2|E|$

Let (V, E, F) be a polygonal decomposition

The degree of a face $f \in F$ is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)

Let
$$S = (V, E, F)$$
 be a closed surface (no boundary). Then

$$\sum_{f \in F} \deg(f) = 2|E|,$$

Proof By definition, deg(f) = n if f is an *n*-gon

Since S is a closed surface, every edge meets two faces (potentially the same face), so it contributes +2 to both sides of this equation

$$\implies \sum_{f \in F} \deg(f) = 2|E|$$

Remark To use this formula we need to know the number of identified edges in the polygonal decomposition

- Topology - week 10

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

• the vertex set of S^* is $V^* = F$, the set of faces of S

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

- the vertex set of S^* is $V^* = F$, the set of faces of S
- there is an edge between two vertices f and f' of S* if the faces f and f' in S are separated by an edge

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

- the vertex set of S^* is $V^* = F$, the set of faces of S
- there is an edge between two vertices f and f' of S* if the faces f and f' in S are separated by an edge
 - \implies the faces of S^* are the vertices of S

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

- the vertex set of S^* is $V^* = F$, the set of faces of S
- there is an edge between two vertices f and f' of S* if the faces f and f' in S are separated by an edge
 - \implies the faces of S^* are the vertices of S

Examples

Let S = (V, E, F) be a closed surface with a polygonal decomposition such that the vertices around each polygon are distinct

The dual surface S^* has polygonal decomposition (V^*, E^*, F^*) , where

- the vertex set of S^* is $V^* = F$, the set of faces of S
- there is an edge between two vertices f and f' of S* if the faces f and f' in S are separated by an edge

$$\implies$$
 the faces of S^* are the vertices of S

Examples

 \implies the dual surface to the cube is the octahedron

Taking the dual of a surface swaps the vertices and faces

Taking the dual of a surface swaps the vertices and faces

 \implies if $v \in V$ then $v \in F^*$ and $\deg_S(v) = \deg_{S^*}(v)$

Taking the dual of a surface swaps the vertices and faces

- \implies if $v \in V$ then $v \in F^*$ and $\deg_S(v) = \deg_{S^*}(v)$
- \implies the vertex-degree equation for S is the same as the face-degree equation for S^*

Taking the dual of a surface swaps the vertices and faces

- \implies if $v \in V$ then $v \in F^*$ and $\deg_S(v) = \deg_{S^*}(v)$
- \implies the vertex-degree equation for S is the same as the face-degree equation for S^*

Example

We will see better examples when we look at Platonic solids

Kepler's Harmonices Mundi

diverfis combinata classibus: Ma res, Cubus & Dodecaëdron ex primarijs; fœminæ, Octoëdron & Icofiëdron ex fecundarijs;qui-

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p:[0,1] \longrightarrow S$ such that p(0) = x and p(1) = y

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p: [0, 1] \longrightarrow S$ such that p(0) = x and p(1) = y

Let $\mathscr{P}(S)$ be the set of all paths on S

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p: [0, 1] \longrightarrow S$ such that p(0) = x and p(1) = y

Let $\mathscr{P}(S)$ be the set of all paths on S

If S is any surface and G = (V, E) is a graph then an embedding of G in S is a pair of maps

 $f: V \longrightarrow S$ and $p: E \longrightarrow \mathscr{P}(S)$

such that:

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p: [0, 1] \longrightarrow S$ such that p(0) = x and p(1) = y

Let $\mathscr{P}(S)$ be the set of all paths on S

If S is any surface and G = (V, E) is a graph then an embedding of G in S is a pair of maps

 $f: V \longrightarrow S$ and $p: E \longrightarrow \mathscr{P}(S)$

such that:

• The map *f* is injective

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p: [0, 1] \longrightarrow S$ such that p(0) = x and p(1) = y

Let $\mathscr{P}(S)$ be the set of all paths on S

If S is any surface and G = (V, E) is a graph then an embedding of G in S is a pair of maps

 $f: V \longrightarrow S$ and $p: E \longrightarrow \mathscr{P}(S)$

such that:

- The map *f* is injective
- If e = {v, w} ∈ E then p(e) ∈ 𝒫(S) is an injective path from f(v) to f(w)

Recall that a graph G is planar if it can be drawn in \mathbb{R}^2 without edge crossings

Let S be a surface and $x, y \in S$. A path from x to y on S is a continuous map $p: [0, 1] \longrightarrow S$ such that p(0) = x and p(1) = y

Let $\mathscr{P}(S)$ be the set of all paths on S

If S is any surface and G = (V, E) is a graph then an embedding of G in S is a pair of maps

 $f: V \longrightarrow S$ and $p: E \longrightarrow \mathscr{P}(S)$

such that:

- The map *f* is injective
- If e = {v, w} ∈ E then p(e) ∈ 𝒫(S) is an injective path from f(v) to f(w)
- If e, e' ∈ E then the paths F(e) and F(e') can intersect only at the images of their endpoints

Theorem

Let G be a (finite) graph. Then the following are equivalent.

• There is an embedding of G in \mathbb{R}^2 (= the graph is planar)

Theorem

Let G be a (finite) graph. Then the following are equivalent. There is an embedding of G in \mathbb{R}^2 (= the graph is planar) There is an embedding of G in \mathbb{D}^2

Theorem

Let G be a (finite) graph. Then the following are equivalent.

- **1** There is an embedding of G in \mathbb{R}^2 (= the graph is planar)
- $_{m Q}$ There is an embedding of G in \mathbb{D}^2

 $_{3}$ There is an embedding of G in S^{2}

Theorem

Let G be a (finite) graph. Then the following are equivalent.

- **1** There is an embedding of G in \mathbb{R}^2 (= the graph is planar)
- $_{m O}$ There is an embedding of G in \mathbb{D}^2

³ There is an embedding of G in S^2

Theorem

Let G be a (finite) graph. Then the following are equivalent. There is an embedding of G in \mathbb{R}^2 (= the graph is planar) There is an embedding of G in \mathbb{D}^2

There is an embedding of G in S^2

Proof Stereographic projection! (Move G away from ∞ .)

Suppose that G has an embedding on a surface S

Identify G with its image in S

Suppose that G has an embedding on a surface S

Identify G with its image in S

The faces of G are the connected components of $S \setminus G$

Suppose that G has an embedding on a surface S

Identify G with its image in S

The faces of G are the connected components of $S \setminus G$

Example Taking $S = \mathbb{D}^2$ and $G = K_4$ gives four faces:

Suppose that G has an embedding on a surface S

Identify G with its image in S

The faces of G are the connected components of $S \setminus G$

Example Taking $S = \mathbb{D}^2$ and $G = K_4$ gives four faces:

– Topology – week 10

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Proof Since G is connected, and S^2 does not have a boundary, $S^2 \setminus G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Proof Since G is connected, and S^2 does not have a boundary, $S^2 \setminus G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Proof Since G is connected, and S^2 does not have a boundary, $S^2 \setminus G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G

 \implies there are two faces adjacent to every edge in G

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Proof Since G is connected, and S^2 does not have a boundary, $S^2 \setminus G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G

- \implies there are two faces adjacent to every edge in G
- \implies the embedding of G in S^2 induces a polygonal decomposition on S^2

Theorem

Let G be a connected planar graph without leaves. Then G gives a polygonal decomposition of S^2 where the polygons correspond to the non-trivial cycles in G

Proof Since G is connected, and S^2 does not have a boundary, $S^2 \setminus G$ is a disjoint union of a finite number of regions each of which is bounded by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge is included in a non-trivial cycle in G

- \implies there are two faces adjacent to every edge in G
- \implies the embedding of G in S^2 induces a polygonal decomposition on S^2

Remark The argument cheats slightly because we are implicitly assuming that the edges are "nice" curves. This allows us to side-step issues connected with the Jordan curve theorem

Planar graphs and Euler characteristic

Theorem

Let G = (V, E) be a connected planar graph with face set F. Then 2 = |V| - |E| + |F|

Planar graphs and Euler characteristic

Theorem

Let G = (V, E) be a connected planar graph with face set F. Then 2 = |V| - |E| + |F|

Proof Use the previous theorem or argue by induction on |E|

Planar graphs and Euler characteristic

Theorem

Let G = (V, E) be a connected planar graph with face set F. Then 2 = |V| - |E| + |F|

Proof Use the previous theorem or argue by induction on |E|

Case 1 G is a tree

Combine |V| - |E| = 1 (previous lectures) and that there is only one face

Case 2 G is not a tree

By $\chi(S^2) = 2$ and the previous theorem

Planarity of K_5

Proposition

Planarity of K_5

Proposition

Proof Assume that K_5 is planar with |F| faces

We have |V| = 5 and |E| = 10, so $2 = |V| - |E| + |F| \implies |F| = 7$

Let's count the number of faces in this polygonal decomposition differently

- The faces correspond to cycles in K_5
- Every face has at least 3 edges, so by the degree-face equation

$$\implies 2|E| = \sum_{f \in F} \deg(f) \ge 3|F|$$

 $\implies 2|E| = 20 \ge 21 = 3|F| \qquad \text{$$\frac{1}{2}$}$

Hence, the complete graph K_5 is not planar

Planarity of complete graphs

Corollary

The complete graph K_n is planar if and only if $1 \le n \le 4$

Planarity of complete graphs

Corollary

The complete graph K_n is planar if and only if $1 \le n \le 4$

Proof

 K_5 sits in K_n for $n \ge 5$, and the previous theorem applies

Planarity of bipartite graphs

Proposition

The bipartite graph $K_{3,3} =$

Planarity of bipartite graphs

Proposition

The bipartite graph $K_{3,3} = 123$ is not planar

Proof Tutorials

Planarity of bipartite graphs

Proposition

The bipartite graph $K_{3,3} = 123$ is not planar

Proof Tutorials

Theorem (Kuratowski)

Let G be a graph. Then G if planar if and only if it has no subgraph isomorphic to a subdivision of K_5 or $K_{3,3}$

The proof is out of the scope of this unit!

- Topology - week 10

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular *n*-gons of the same shape and size such that the same number of polygons meet at every vertex

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular *n*-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	lsosahedron
n	3	4	3	5	3
V	4	8	6	20	12
E	6	12	12	30	30
F	4	6	8	12	20

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular *n*-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	lsosahedron
n	3	4	3	5	3
V	4	8	6	20	12
E	6	12	12	30	30
F	4	6	8	12	20

Questions

• Are there any others?

A Platonic solid is a surface that has a polygonal decomposition that is constructed using regular *n*-gons of the same shape and size such that the same number of polygons meet at every vertex

Examples

	Tetrahedron	Cube	Octahedron	Dodecahedron	Isosahedron
n	3	4	3	5	3
V	4	8	6	20	12
E	6	12	12	30	30
F	4	6	8	12	20

Questions

• Are there any others?

• Can we understand them as polygonal decompositions of the sphere?

— Topology – week 10

Let *P* be a polygonal decomposition of S^2 obtained by gluing together (regular) *n*-gons so that *p* polygon meet at each vertex

Let *P* be a polygonal decomposition of S^2 obtained by gluing together (regular) *n*-gons so that *p* polygon meet at each vertex Suppose there are |V| vertices, |E| edges and |F| faces

 \implies each vertex has degree p and each face degree n

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- $\implies 2 = \chi(S^2) = |V| |E| + |F|$

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- \implies 2 = $\chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{n}$

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- \implies 2 = $\chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{n}$
- $\implies \quad \frac{1}{2} + \frac{1}{|E|} = \frac{1}{p} + \frac{1}{n}$

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- \implies 2 = $\chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{n}$
- $\implies \quad \frac{1}{2} + \frac{1}{|E|} = \frac{1}{p} + \frac{1}{n}$
- $\implies \frac{1}{p} + \frac{1}{n} = \frac{1}{2} + \frac{1}{|E|}$

Let *P* be a polygonal decomposition of S^2 obtained by gluing together (regular) *n*-gons so that *p* polygon meet at each vertex Suppose there are |V| vertices, |E| edges and |F| faces

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- \implies 2 = $\chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{p}$

$$\implies \quad \frac{1}{2} + \frac{1}{|E|} = \frac{1}{p} + \frac{1}{n}$$

 $\implies \quad \frac{1}{p} + \frac{1}{n} = \frac{1}{2} + \frac{1}{|E|} > \frac{1}{2}$

Let *P* be a polygonal decomposition of S^2 obtained by gluing together (regular) *n*-gons so that *p* polygon meet at each vertex Suppose there are |V| vertices, |E| edges and |F| faces

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- \implies 2 = $\chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{n}$

$$\implies \quad \frac{1}{2} + \frac{1}{|E|} = \frac{1}{p} + \frac{1}{n}$$

 $\implies \quad \frac{1}{p} + \frac{1}{n} = \frac{1}{2} + \frac{1}{|E|} > \frac{1}{2}$

We require $p \ge 3$, $n \ge 3$ and $|E| \ge 2$

Let *P* be a polygonal decomposition of S^2 obtained by gluing together (regular) *n*-gons so that *p* polygon meet at each vertex Suppose there are |V| vertices, |E| edges and |F| faces

- \implies each vertex has degree p and each face degree n
- $\implies p|V| = 2|E|$ by the vertex-degree equation
- \implies 2|E| = n|F| by the face-degree equation
- $\implies 2 = \chi(S^2) = |V| |E| + |F| = \frac{2|E|}{p} |E| + \frac{2|E|}{n}$

$$\implies \quad \frac{1}{2} + \frac{1}{|E|} = \frac{1}{p} + \frac{1}{n}$$

 $\implies \quad \frac{1}{p} + \frac{1}{n} = \frac{1}{2} + \frac{1}{|E|} > \frac{1}{2}$

We require $p \ge 3$, $n \ge 3$ and $|E| \ge 2$

The equations above give:

$$|E| = \left(rac{1}{p} + rac{1}{n} - rac{1}{2}
ight)^{-1}$$
, $|V| = rac{2|E|}{p}$ and $|F| = rac{2|E|}{n}$

- Topology - week 10

Classification of Platonic solids

Theorem

The complete list of Platonic solids is:

р	n	$\frac{1}{p} + \frac{1}{n}$	$e = \left(\frac{1}{p} + \frac{1}{n} - \frac{1}{2}\right)^{-1}$	$v = \frac{2e}{p}$	$f = \frac{2e}{n}$	Platonic solid
3	3	$\frac{2}{3}$	6	4	4	Tetrahedron
3	4	$\frac{7}{12}$	12	8	6	Cube
3	5	$\frac{8}{15}$	30	20	12	Dodecahedron
4	3	$\frac{7}{12}$	12	6	8	Octahedron
5	3	$\frac{8}{15}$	30	12	20	Isosahedron

Classification of Platonic solids

Theorem

The complete list of Platonic solids is:

р	n	$\frac{1}{p} + \frac{1}{n}$	$e = \left(\frac{1}{p} + \frac{1}{n} - \frac{1}{2}\right)^{-1}$	$v = \frac{2e}{p}$	$f = \frac{2e}{n}$	Platonic solid
3	3	$\frac{2}{3}$	6	4	4	Tetrahedron
3	4	$\frac{7}{12}$	12	8	6	Cube
3	5	$\frac{8}{15}$	30	20	12	Dodecahedron
4	3	$\frac{7}{12}$	12	6	8	Octahedron
5	3	$\frac{8}{15}$	30	12	20	Isosahedron

Proof Since $\frac{1}{p} + \frac{1}{n} > \frac{1}{2}$ and $p, n \ge 3$ we get n < 6 since $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ Case-by-case we then get the above values for p, n as the only possible values for Platonic solids.

To prove existence we need to actually construct them

Classification of Platonic solids

Proof Continued Their construction is well-known:

Dual tetrahedron = tetrahedron

There is a symmetry in the Platonic solids given by $(p, n) \leftrightarrow (n, p)$. This corresponds to taking the dual surface

Cube and octahedron

Dodecahedron and icosahedron

Platonic soccer balls

Here are two dodecahedral decompositions of S^2

Soccer ball

Example A ball is made by gluing together triangles and octagons so that each octagon is connected to four non-touching triangles. Determine the number of octagons and triangles used

Soccer ball

Example A ball is made by gluing together triangles and octagons so that each octagon is connected to four non-touching triangles. Determine the number of octagons and triangles used

Let there be |V| vertices, |E| edges and |F| faces

Write |F| = o + t, where o = #octagons and t = #triangles

 \implies 2 = |V| - |E| + o + t

We have:

- vertex-degree equation: 3|V| = 2|E|
- face-degree equation: 2|E| = 3t + 8o
- Every octagon meets 4 triangles,

$$\implies 3t = 4o \implies 2|E| = 12o$$

$$\implies 2 = o(4 - 6 + 1 + \frac{4}{3}) = \frac{o}{3}$$

$$\implies o = 6 \text{ and } t = 8$$

$$\implies |E| = 36 \text{ and } |V| = 24$$

The octacube

As with the Platonic solids, we have only shown that if such a surfaces exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but we have not shown that such a surface exists!

The octacube

As with the Platonic solids, we have only shown that if such a surfaces exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but we have not shown that such a surface exists!

In fact, this surface does exist and it can be constructed by cutting triangular corners off a cube

Coloring maps

Question

How many different colors do you need to color a map so that adjacent countries have different colors?

Coloring maps

Question

How many different colors do you need to color a map so that adjacent countries have different colors?

A map is a polygonal decomposition. The answer to this question involves the same ideas we used to understand Platonic solids

- Topology – week 10

Let P = (V, E, F) be a polygonal decomposition of a surface S

Let P = (V, E, F) be a polygonal decomposition of a surface S Polygons in P are adjacent if they are separated by an edge

Let P = (V, E, F) be a polygonal decomposition of a surface SPolygons in P are adjacent if they are separated by an edge Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Let P = (V, E, F) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let $C_P(S)$ be the minimum number of colours needed to colour the polygons in P such that adjacent polygons have different colors

Definition

The chromatic number of S is $C(S) = \max\{ C_P(S) | P \text{ is a "map" on } S \}$

We still need to say what a map in in terms of polygonal decompositions That is, C(S) is the smallest number of colors that we need to be able to color any polygonal decomposition, or "map", on S

Examples

- Topology - week 10

A map on a surface S is a polygonal decomposition such that:

A map on a surface S is a polygonal decomposition such that:

• All vertices have degree at least 3

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

• No region contains a hole

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

• No region contains a hole

• No region is completely surrounded by another

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

• No region contains a hole

A map on a surface S is a polygonal decomposition such that:

- All vertices have degree at least 3
- No region (i.e. face or polygon) has a border with itself

These assumptions are purely for convenience because, in each case, we can colour these maps using the same number of colours

[—] Topology – week 10

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

• $\partial_V = \frac{2|E|}{|V|}$, the average vertex-degree

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

- $\partial_V = \frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_F = \frac{2|E|}{|F|}$, the average face-degree

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

- $\partial_V = \frac{2|E|}{|V|}$, the average vertex-degree
- $\partial_F = \frac{2|E|}{|F|}$, the average face-degree

By definition, $\partial_V |V| = 2|E| = \partial_F |F|$

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

•
$$\partial_V = \frac{2|E|}{|V|}$$
, the average vertex-degree

•
$$\partial_F = \frac{2|E|}{|F|}$$
, the average face-degree

By definition, $\partial_V |V| = 2|E| = \partial_F |F|$

Moreover,

▶
$$\partial_V \ge 3$$
 since vertices have degree at least 3

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

•
$$\partial_V = \frac{2|E|}{|V|}$$
, the average vertex-degree

•
$$\partial_F = \frac{2|E|}{|F|}$$
, the average face-degree

By definition, $\partial_V |V| = 2|E| = \partial_F |F|$

Moreover,

- ▶ $\partial_V \ge 3$ since vertices have degree at least 3
- ▶ $\partial_F \leq |F| 1$ as no region borders itself

Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex and degree-face equations to understand colourings

Let M = (V, E, F) be a map on a surface S. Set

•
$$\partial_V = \frac{2|E|}{|V|}$$
, the average vertex-degree

•
$$\partial_F = \frac{2|E|}{|F|}$$
, the average face-degree

By definition, $\partial_V |V| = 2|E| = \partial_F |F|$

Moreover,

▶
$$\partial_V \ge 3$$
 since vertices have degree at least 3

▶ $\partial_F \leq |F| - 1$ as no region borders itself

Remark For a Platonic solid that is made from *n*-gons with *p* polygons meeting at each vertex we have $\partial_V = p$ and $\partial_F = n$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic: $\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$ $\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Corollary

Let M be a map on a closed surface S. Then $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Corollary

Let M be a map on a closed surface S. Then $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Corollary

Let M be a map on a closed surface S. Then $\partial_F \leq 6 \left(1 - \frac{\chi(S)}{|F|}\right)$

Proof By assumption, $\partial_V \geq 3$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Corollary

Let *M* be a map on a closed surface *S*. Then $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$ Proof By assumption, $\partial_V \geq 3 \implies \frac{1}{2} - \frac{1}{\partial_V} \geq \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$

Lemma

Suppose that M is a map on a closed surface S. Then
$$\partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Proof This is a simple calculation with the Euler characteristic:

$$\chi(S) = |V| - |E| + |F| = \frac{|F|\partial_F}{\partial_V} - \frac{|F|\partial_F}{2} + |F|$$

$$\implies \frac{\chi(S)}{|F|} = \frac{\partial_F}{\partial_V} - \frac{\partial_F}{2} + 1$$

$$\implies \partial_F = \left(1 - \frac{\chi(S)}{|F|}\right) / \left(\frac{1}{2} - \frac{1}{\partial_V}\right)$$

Corollary

Let M be a map on a closed surface S. Then $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$ Proof By assumption, $\partial_V \geq 3 \implies \frac{1}{2} - \frac{1}{\partial_V} \geq \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$ $\implies \partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$ as required

Topology – week 10

Corollary

Let M be a map on S^2 or \mathbb{P}^2 . Then $\partial_F < 6$

Corollary

Let *M* be a map on S^2 or \mathbb{P}^2 . Then $\partial_F < 6$

Proof By the last corollary, $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$

Hence the result follows since $\chi(S^2) = 2$ and $\chi(\mathbb{P}^2) = 1$

Corollary

Let *M* be a map on S^2 or \mathbb{P}^2 . Then $\partial_F < 6$

Proof By the last corollary, $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$

Hence the result follows since $\chi(S^2)=2$ and $\chi(\mathbb{P}^2)=1$

Remarks

A Platonic solid constructed out of *n*-gons is a special type of map on S^2 . As $\partial_F = n$ this reproves the fact that Platonic solids only exist when $3 \le n \le 5$

Corollary

Let *M* be a map on S^2 or \mathbb{P}^2 . Then $\partial_F < 6$

Proof By the last corollary, $\partial_F \leq 6\left(1 - \frac{\chi(S)}{|F|}\right)$

Hence the result follows since $\chi(S^2)=2$ and $\chi(\mathbb{P}^2)=1$

Remarks

• A Platonic solid constructed out of *n*-gons is a special type of map on S^2 . As $\partial_F = n$ this reproves the fact that Platonic solids only exist when $3 \le n \le 5$

 If the average face degree ∂_F < 6 then there must be at least one face f with deg(f) ≤ 5 This observation will be important when we prove the Five color theorem (not quite the four color theorem)