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Words for surfaces

A polygonal decomposition for a surface that has one face can be
encoded in a word
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A polygonal decomposition for a surface that has one face can be
encoded in a word
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Words for surfaces

A polygonal decomposition for a surface that has one face can be
encoded in a word

adbi feihg

,/"_*?\

c 7

b e
g

» write x for an edge pointing anticlockwise

» write X for an edge pointing clockwise
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Words for surfaces

A polygonal decomposition for a surface that has one face can be
encoded in a word

adbi feihg

//"_*?\

c 7

b e
g

» write x for an edge pointing anticlockwise
» write X for an edge pointing clockwise

» We always read the word in anticlockwise order
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Words for basic surfaces

e SG2—a a
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Words for basic surfaces
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Words for basic surfaces
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Words for basic surfaces
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Words for basic surfaces

e SG2—a a e P2 =2 a eD?2 =2 b
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Words for basic surfaces
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Properties of words

e Words encode orientability
» Orientable: ...a...a...or...
» Non-orientable: ...a...a... or...
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Properties of words

e Words encode orientability
» Orientable: ...a...a...or...
» Non-orientable: ...a...a... or...

..a...
..a...

L

e Words give a compact and easily readable way of describing surfaces

— Topology — week 10



Properties of words

e Words encode orientability
» Orientable: ...a...a...or...
» Non-orientable: ...a...a... or...

..a...
..a...

L

e Words give a compact and easily readable way of describing surfaces

e Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)
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e Words encode orientability
Orientable: ...a...a...or..
Non-orientable: ...a...a... or..

.a...
..a...

L

e Words give a compact and easily readable way of describing surfaces

e Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)

e The word of a surface is well-defined only up to cyclic permutation
and reversing the direction of any edge
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e Words encode orientability
Orientable: ...a...a...or..
Non-orientable: ...a...a... or..

.a...
..a...

ol Ll

e Words give a compact and easily readable way of describing surfaces

e Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)

e The word of a surface is well-defined only up to cyclic permutation
and reversing the direction of any edge

The following words are all words for the torus T:
abab baba abab baba
abab baba abab baba
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e Words encode orientability
Orientable: ...a...a...or...
Non-orientable: ...a...a... or..

.a...
..a...

ol Ll

e Words give a compact and easily readable way of describing surfaces

e Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)

e The word of a surface is well-defined only up to cyclic permutation
and reversing the direction of any edge

The following words are all words for the torus T:
abab baba abab baba
abab baba abab baba

e The word of a surface can be used to give generators and relations

for the first homotopy group of the surface — this generalises
independent cycles and are beyond the scope of this unit
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Standard words for closed orientable surfaces

o Connected sums of tori: #'T
a

=b ab

R
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Standard words for closed orientable surfaces

o Connected sums of tori: #'T
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Standard words for closed orientable surfaces

o Connected sums of tori: #'T

»T=05b b—abab
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Words for closed non-orientable surfaces

e Connected sums of projective plans #°P?

»P2=23 & =aa
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Words for closed non-orientable surfaces

e Connected sums of projective plans #°P?
»P2=a Q —=aa
a ‘
>#2]P’2:a| b=aabb

AN
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Words for closed non-orientable surfaces

e Connected sums of projective plans #°P?

»P2=23 & =aa

r*a
> #7P2 = b=aabb

S
/X

>#3IP’2:< >:aabbcc

b\_b ->/c
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Words for closed non-orientable surfaces

e Connected sums of projective plans #°P?

»P2=23 & =aa

r*a
> #7P2 = b=aabb

S
/X

>#3IP’2:< >:aabbcc
b, C
\o—b—b/

b #PPP=a1a1 23 ... 3 ap
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Standard words for surfaces with boundary

o#]D)2
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Standard words for surfaces with boundary
° :#]D)2
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Standard words for surfaces with boundary

o#]D)2

»D2=2a ba=ab

b2 = sy d
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Standard words for surfaces with boundary
° #]D)2
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Standard words for surfaces with boundary

o#]D)2

» D2=2a ba=ab
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Standard words for surfaces with boundary
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Standard words for surfaces with boundary
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Standard words for surfaces with boundary

o#]D)2
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Standard words for surfaces with boundary

> #°D2
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Standard words for surfaces with boundary

» #°D2 = #°D2 # D2
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Standard words for surfaces with boundary
b #°D? = #2D2 # D2 g{ }# dG
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Standard words for surfaces with boundary
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Standard words for surfaces with boundary
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Standard words for surfaces with boundary

a
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Standard words for surfaces with boundary

12
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Standard words for surfaces with boundary
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Words to surfaces

What standard surface is given by theword ad bcecfdhgeah ?
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Words to surfaces

What standard surface is given by theword ad bcecfdhgeah ?

< X
N N

— d=1land x(S)=3-8+1=-4
—  SD2#H#P?
— S=abbccddeeff
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The vertex-degree equation revisited

When we looked at graphs we proved the vertex-degree equation:

Z deg(v) = 2|E| for G = (V,E) a graph
veV
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When we looked at graphs we proved the vertex-degree equation:

Zdeg(v):2\E\ for G = (V,E) a graph
veV
The best way to understand this formula is to note that each
edge {x,y} € E contributes 2 to both sides of this equation

e +1 to each of deg(x) and deg(y) on the left-hand side
e +2 =21 to the right-hand side for the edge {x, w}
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When we looked at graphs we proved the vertex-degree equation:

Zdeg(v):2\E\ for G = (V,E) a graph
veV
The best way to understand this formula is to note that each
edge {x,y} € E contributes 2 to both sides of this equation

e +1 to each of deg(x) and deg(y) on the left-hand side
e +2 =21 to the right-hand side for the edge {x, w}

We want similar formulas for a surface S = (V, E, F) with a
polygonal decomposition

What is the correct definition of degree in S 7
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When we looked at graphs we proved the vertex-degree equation:

Zdeg(v):2\E\ for G = (V,E) a graph
veV
The best way to understand this formula is to note that each
edge {x,y} € E contributes 2 to both sides of this equation

e +1 to each of deg(x) and deg(y) on the left-hand side
e +2 =21 to the right-hand side for the edge {x, w}

We want similar formulas for a surface S = (V, E, F) with a
polygonal decomposition

What is the correct definition of degree in S 7

The problem
We are identifying edges in S and hence implicitly identifying vertices

Do we identify edges and vertices when computing deg(v) and |E|?
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When we looked at graphs we proved the vertex-degree equation:

Zdeg(v):2\E\ for G = (V,E) a graph
veV
The best way to understand this formula is to note that each
edge {x,y} € E contributes 2 to both sides of this equation

e +1 to each of deg(x) and deg(y) on the left-hand side
e +2 =21 to the right-hand side for the edge {x, w}

We want similar formulas for a surface S = (V, E, F) with a
polygonal decomposition

What is the correct definition of degree in S 7

The problem
We are identifying edges in S and hence implicitly identifying vertices

Do we identify edges and vertices when computing deg(v) and |E|?

Yes and no!
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The degree of a vertex

Consider the surface with polygonal decomposition
r‘-a—‘
d b
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The degree of a vertex

Consider the surface with polygonal decomposition
X R X
d b
RO &

o
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The degree of a vertex

Consider the surface with polygonal decomposition
X R X
d b
L%

o

Using identified vertices and edges + count with multiplicities
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The degree of a vertex

Consider the surface with polygonal decomposition
X R X
d b
L%
a C
‘qb—/
X y
Using identified vertices and edges + count with multiplicities

— deg(x) =5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|
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The degree of a vertex

Consider the surface with polygonal decomposition
X R X
d b
L%
a C
‘qb—/
X Yy
Using identified vertices and edges + count with multiplicities
— deg(x) =5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Not using identified edges or vertices (i.e. as a graph, ignoring the face)
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The degree of a vertex

Consider the surface with polygonal decomposition
X R X
d b
L%
a C
‘oqb—/
X Yy
Using identified vertices and edges + count with multiplicities
— deg(x) =5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E|

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

— six vertices of degree 2 and six edges, so 12 =26
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Consider the surface with polygonal decomposition
X R X
d b
SO

a C

o

Yy
Using identified vertices and edges + count with multiplicities
= deg(x) =5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E]|

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

= six vertices of degree 2 and six edges, so 12=12-6

The vertex-degree equation holds using either identified or non-identified
edges and vertices because in both cases the degree of a vertex is defined
to be the number of incident edges to the vertex
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The surface degree-vertex equation

Let S = (V,E,F) be a surface with polygonal decomposition. Then

S deg(v) = 2/E|

veVv
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Proposition

Let S = (V,E,F) be a surface with polygonal decomposition. Then

3 deg(v) = 2/E]

veVv

Proof The proof is the same as before: the edge {x, y} contributes 42 to
both sides of this equation because edge contributes +1 to deg(x)
and +1 to deg(y).
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Let S = (V,E,F) be a surface with polygonal decomposition. Then
S deg(v) = 2/E|
veV

Proof The proof is the same as before: the edge {x, y} contributes 42 to
both sides of this equation because edge contributes +1 to deg(x)
and +1 to deg(y).
Therefore, we have two degree-vertex equations:
e The graph degree-vertex equation where we do not identify edges
and vertices in S

e The surface degree-vertex equation where we do identify edges
and vertices in S

— Topology — week 10



The degree of a face

Let S = (V, E,F) be a surface with polygonal decomposition

Let f € F be a face of S. The degree of f is
deg(f) =number of edges (count with multiplicities) incident
with f
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The degree of a face

Let S = (V, E,F) be a surface with polygonal decomposition

Let f € F be a face of S. The degree of f is
deg(f) =number of edges (count with multiplicities) incident
with f

Examples Suppose that f € F is an n-gon

— Topology — week 10



The degree of a face

Let S = (V, E,F) be a surface with polygonal decomposition

Let f € F be a face of S. The degree of f is
deg(f) =number of edges (count with multiplicities) incident
with f

Examples Suppose that f € F is an n-gon

— deg(f)=n

— Topology — week 10



Let S = (V, E, F) be a surface with polygonal decomposition

Let f € F be a face of S. The degree of f is
deg(f) =number of edges (count with multiplicities) incident

with
Suppose that f € F is an n-gon
g * L ]
[ [ ]
[ ]
— deg(f)=n
[} [ ]
o L ]
® L J

Notice that faces are never identified in the polygonal decomposition
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Let S = (V, E, F) be a surface with polygonal decomposition

Let f € F be a face of S. The degree of f is
deg(f) =number of edges (count with multiplicities) incident

with
Suppose that f € F is an n-gon
] * L ]
[ L ]
[ ] [ ]
— deg(f)=n
[} [ ]
o L
L4 (]

Notice that faces are never identified in the polygonal decomposition

How are Zdeg(f) and 2|E| related?
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In all cases deg(face) = 4 as there are 4 non-identified edges

e Sphere e Projective plane e Disk
71 % T" _4
S22~ b a P2~ b b
ZL—b—*y X*—a—bly L —J
e Torus e Klein bottle
X

=
) N

e Annulus e Mdbius band
3% X

M = r_aj

ol

=
[12

o
e

K

112

A

12

}w:
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The face-degree equation

Recall that for any graph G = (V/, E) we proved that ) ., deg(v) = 2|E]
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The face-degree equation

Recall that for any graph G = (V/, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon
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Recall that for any graph G = (V, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V,E,F) be a closed surface (no boundary). Then
Z deg(f) = 2|E

feF

7
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Recall that for any graph G = (V, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V,E,F) be a closed surface (no boundary). Then
Z deg(f) = 2|E

feF

7

Proof By definition, deg(f) = n if f is an n-gon
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Recall that for any graph G = (V, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V,E,F) be a closed surface (no boundary). Then
Z deg(f) = 2|E

feF

7

Proof By definition, deg(f) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation
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Recall that for any graph G = (V, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V,E,F) be a closed surface (no boundary). Then
Z deg(f) = 2|E

feF

7

Proof By definition, deg(f) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

— ) deg(f) =2|E|
feF
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Recall that for any graph G = (V, E) we proved that ) ., deg(v) = 2|E]
Let (V, E, F) be a polygonal decomposition
The degree of a face f € F is deg(f) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V,E,F) be a closed surface (no boundary). Then
Z deg(f) = 2|E

feF

7

Proof By definition, deg(f) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

— ) deg(f) =2|E|
feF
Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition
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Dual surfaces

Let S=(V,E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct
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Dual surfaces

Let S=(V,E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
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Dual surfaces

Let S=(V,E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
e the vertex set of S* is V* = F, the set of faces of S
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Let S = (V, E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
e the vertex set of S* is V* = F, the set of faces of S

e there is an edge between two vertices f and ' of S* if the
faces f and f’ in S are separated by an edge
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Let S = (V, E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
e the vertex set of S* is V* = F, the set of faces of S

e there is an edge between two vertices f and ' of S* if the
faces f and f’ in S are separated by an edge

— the faces of S* are the vertices of S
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Let S = (V, E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
e the vertex set of S* is V* = F, the set of faces of S

e there is an edge between two vertices f and ' of S* if the
faces f and f’ in S are separated by an edge

— the faces of S* are the vertices of S
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Let S = (V, E,F) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S* has polygonal decomposition (V*, E*, F*), where
e the vertex set of S* is V* = F, the set of faces of S

e there is an edge between two vertices f and ' of S* if the
faces f and f’ in S are separated by an edge

— the faces of S* are the vertices of S

Examples
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The dual of the cube
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The dual of the cube
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The dual of the cube
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The dual of the cube

— the dual surface to the cube is the octahedron
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Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces
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Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces

= if v € V then v € F* and degg(v) = degs-(v)
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Dual surfaces and the degree equations

Taking the dual of a surface swaps the vertices and faces
= if v € V then v € F* and degg(v) = degs-(v)

— the vertex-degree equation for S is the same as
the face-degree equation for S*
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Taking the dual of a surface swaps the vertices and faces
— if v € V then v € F* and degg(v) = degs-(v)

— the vertex-degree equation for S is the same as
the face-degree equation for S*

Example

T

52 — b '02 a
.

p4 b 4
We will see better examples when we look at Platonic solids

— Topology — week 10



LT LT ey

%  diverfiscombinata claflibus: Ma:
_ % res, Cubus & Dodecaédron ex
\ ™. ptimarijs; foeming; Otoédfon

S e & eofigdron ex fecunidarijsiqui-

— Topology — week 10



Graphs on surfaces

Recall that a graph G is planar if it can be drawn
in R? without edge crossings
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Graphs on surfaces

Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on Sis a
continuous map p:[0,1] — S such that p(0) = x and p(1) =y
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Graphs on surfaces

Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on Sis a
continuous map p:[0,1] — S such that p(0) = x and p(1) =y

Let Z2(S) be the set of all paths on S

— Topology — week 10



Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on Sis a
continuous map p: [0, 1] — S such that p(0) = x and p(1) =y
Let Z(S) be the set of all paths on S

If S is any surface and G = (V/, E) is a graph then an
embedding of G in S is a pair of maps

f:V—S and p:E— Z(S)
such that:
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Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on Sis a
continuous map p: [0, 1] — S such that p(0) = x and p(1) =y

Let Z(S) be the set of all paths on S

If S is any surface and G = (V/, E) is a graph then an
embedding of G in S is a pair of maps

f:V—S and p:E— Z(S)
such that:

e The map f is injective
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Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on Sis a
continuous map p: [0, 1] — S such that p(0) = x and p(1) =y
Let Z(S) be the set of all paths on S
If S is any surface and G = (V/, E) is a graph then an
embedding of G in S is a pair of maps
f:V—S and p:E— Z(S)

such that:

e The map f is injective

o If e ={v,w} € E then p(e) € Z(S) is an injective path

from f(v) to f(w)
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Recall that a graph G is planar if it can be drawn
in R? without edge crossings

Let S be a surface and x,y € S. A path from xto y on S is a
continuous map p: [0, 1] — S such that p(0) = x and p(1) =y
Let Z(S) be the set of all paths on S
If S is any surface and G = (V/, E) is a graph then an
embedding of G in S is a pair of maps
f:V—S and p:E— Z(S)
such that:
e The map f is injective
o If e ={v,w} € E then p(e) € Z(S) is an injective path
from f(v) to f(w)
o If e, € E then the paths F(e) and F(¢€’) can intersect only at
the images of their endpoints
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Planar graphs

Let G be a (finite) graph. Then the following are equivalent.

@ here is an embedding of G in R? (= the graph is planar)
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Planar graphs

Let G be a (finite) graph. Then the following are equivalent.

@ There is an embedding of G in R? (= the graph is planar)
) There is an embedding of G in D?
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Planar graphs

Let G be a (finite) graph. Then the following are equivalent.

@ There is an embedding of G in R? (= the graph is planar)
@ There is an embedding of G in D?
o There is an embedding of G in S?
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Let G be a (finite) graph. Then the following are equivalent.

@ There is an embedding of G in R* (= the graph is planar)
) There is an embedding of G in D?
o There is an embedding of G in S?
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Let G be a (finite) graph. Then the following are equivalent.

@ There is an embedding of G in R? (= the graph is planar)
) There is an embedding of G in D?
o There is an embedding of G in S?

Stereographic projection! (Move G away from cc.)

— Topology — week 10



Faces of embedded graphs

Suppose that G has an embedding on a surface S

Identify G with its image in S
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Faces of embedded graphs
Suppose that G has an embedding on a surface S
Identify G with its image in S

The faces of G are the connected components of S\ G
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Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S

The faces of G are the connected components of S\ G
Example Taking S = D? and G = K; gives four faces:

Ky = =
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Faces of embedded graphs

Suppose that G has an embedding on a surface S
Identify G with its image in S

The faces of G are the connected components of S\ G
Example Taking S = D? and G = K; gives four faces:

NI
AR
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Planar graphs and polygonal decompositions

Theorem

Let G be a connected planar graph without leaves.

Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G
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Theorem

Let G be a connected planar graph without leaves.

Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S? does not have a boundary, S\ G

is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G.
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Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S? does not have a boundary, S\ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G
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Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S? does not have a boundary, S\ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G

= there are two faces adjacent to every edge in G
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Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S? does not have a boundary, S\ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G

= there are two faces adjacent to every edge in G

— the embedding of G in 52 induces a polygonal
decomposition on 5?2
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Theorem

Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S?> where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S? does not have a boundary, 5\ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G.

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G

— there are two faces adjacent to every edge in G
— the embedding of G in 52 induces a polygonal
decomposition on 5?2
Remark The argument cheats slightly because we are implicitly assuming

that the edges are “nice” curves. This allows us to side-step issues
connected with the Jordan curve theorem
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Planar graphs and Euler characteristic

Let G = (V, E) be a connected planar graph with face set F.
Then 2 = |V|— |E| + |F]|
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Planar graphs and Euler characteristic

Theorem

Let G = (V, E) be a connected planar graph with face set F.
Then 2 = |V|— |E| + |F]|

Proof Use the previous theorem or argue by induction on |E]|
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Theorem

Let G = (V, E) be a connected planar graph with face set F.

Then 2 = |V|— |E| + |F]

Proof Use the previous theorem or argue by induction on |E]|

Case 1 G is a tree

Combine |V| — |E| = 1 (previous lectures) and that there is only one face
Case 2 G is not a tree

By x(S5?) = 2 and the previous theorem
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Planarity of Kj

Proposition

The complete graph Ks = is not planar
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Proposition

®
o e
The complete graph Ks = \ / is not planar
@ 9

Proof Assume that Ks is planar with |F| faces
We have |V|=5and |[E|=10,s02=|V|— |E|+ |F| = |F|=7

Let's count the number of faces in this polygonal decomposition differently

e The faces correspond to cycles in Ks

e Every face has at least 3 edges, so by the degree-face equation
= 2|E| =) ;cpdeg(f) > 3|F|
— 2|E| =20>21=3|F]| 'y

Hence, the complete graph Ks is not planar
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Planarity of complete graphs

Corollary

The complete graph K, is planar if and only if 1 < n < 4
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Planarity of complete graphs

Corollary
The complete graph K, is planar if and only if 1 < n < 4
Proof

Ks sits in K, for n > 5, and the previous theorem applies
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Planarity of bipartite graphs

Proposition

The bipartite graph K33 = is not planar
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Planarity of bipartite graphs

Proposition

The bipartite graph K33 = is not planar

Proof Tutorials
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Proposition

Di<

N

Let G be a graph. Then G if planar if and only if it has no subgraph
isomorphic to a subdivision of Ks or K33

The bipartite graph K33 = is not planar

Proof Tutorials

Theorem (Kuratowski)

The proof is out of the scope of this unit!
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Platonic solids

A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex
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A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex

Examples

Tetrahedron Cube Octahedron Dodecahedron Isosahedron

Y meé

n 3 4 3 5 3
V| 4 8 6 20 12
IE| 6 12 12 30 30
IF| 4 6 8 12 20
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A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex

Examples

Tetrahedron Cube Octahedron Dodecahedron Isosahedron

Y meé

n 3 4 3 5 3

\% 4 8 6 20 12

|E| 6 12 12 30 30

|F| 4 6 8 12 20
Questions

e Are there any others?
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A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex

Examples

Tetrahedron Cube Octahedron Dodecahedron Isosahedron

&N @

n 3 4 3 5 3

\% 4 8 6 20 12

|E| 6 12 12 30 30

|F| 4 6 8 12 20
Questions

e Are there any others?

e Can we understand them as polygonal decompositions of the sphere?
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Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex
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Vertices, edges and faces of Platonic solids

Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are |V/| vertices, |E| edges and |F| faces
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces

= each vertex has degree p and each face degree n
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
= each vertex has degree p and each face degree n

= p|V| = 2|E| by the vertex-degree equation
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
= each vertex has degree p and each face degree n
= p|V| = 2|E| by the vertex-degree equation

= 2|E| = n|F| by the face-degree equation
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
= each vertex has degree p and each face degree n
= p|V| = 2|E| by the vertex-degree equation

= 2|E| = n|F| by the face-degree equation

— 2= \(S?) = V|- |E|+|F
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
= each vertex has degree p and each face degree n
= p|V| = 2|E| by the vertex-degree equation
= 2|E| = n|F| by the face-degree equation

_ (G2 _ _ 2| 2/E]
— 2=x(57)=|VI-|E[+|Fl==7—[El+ =
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
= each vertex has degree p and each face degree n
= p|V| = 2|E| by the vertex-degree equation
= 2|E| = n|F| by the face-degree equation

_ 2y _ _ 2lE] 2|E|
— 2=x(57)=|VI-|E[+|Fl==7—[El+ =
1

1 1 _ 1,1
— §+E*p+n
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
each vertex has degree p and each face degree n
p|V| = 2|E| by the vertex-degree equation
2|E| = n|F| by the face-degree equation

_ (G2 _ _2|E 2/E]
2 =x(8?) = |V| - |E| + |F| = 2El — |E| + 2H

I A
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

E| edges and |F| faces
each vertex has degree p and each face degree n
p|V| = 2|E| by the vertex-degree equation
2|E| = n|F| by the face-degree equation

_ (G2 _ _2|E 2/E]
2 =x(8?) = |V| - |E| + |F| = 2El — |E| + 2H

I A
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

N

—

E| edges and |F| faces
each vertex has degree p and each face degree n
p|V| = 2|E| by the vertex-degree equation
2|E| = n|F| by the face-degree equation

_ (G2 _ _2|E 2/E]
2 =x(8?) = |V| - |E| + |F| = 2El — |E| + 2H

We require p >3, n >3 and |E| > 2
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Let P be a polygonal decomposition of S? obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are | V| vertices,

N

—

E| edges and |F| faces
each vertex has degree p and each face degree n
p|V| = 2|E| by the vertex-degree equation
2|E| = n|F| by the face-degree equation

_ (G2 _ _2|E 2/E]
2 =x(8?) = |V| - |E| + |F| = 2El — |E| + 2H

We require p >3, n >3 and |E| > 2

The equations above give:

-1
2|E 2|E
El=(3+5-3) . IVI=2 and|F| = 2
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The complete list of Platonic solids is:

1 1 _ (1 1
p n E+E e_(ﬁ_'_E_

2—: Platonic solid

3
3
3
4
5

w w o1~ W
Flo0 BN Giloo (5~ wino

6
12
30
12
30

Do v=% (-
4

6

20 12

6 8

12 20

Tetrahedron
Cube
Dodecahedron
Octahedron

Isosahedron
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The complete list of Platonic solids is:

p n %+% e:(%+%—%)_l v =2 f:z—: Platonic solid

P
3 3 % 6 4 4 Tetrahedron
34 % 12 8 6 Cube

3 5 1% 30 20 12 Dodecahedron
4 3 % 12 6 8 Octahedron
5 3 % 30 12 20 Isosahedron

Proof Since%+%>%and p,n23wegetn<6since%+%:%
Case-by-case we then get the above values for p, n as the only possible
values for Platonic solids.

To prove existence we need to actually construct them
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Proof Continued Their construction is well-known:




Dual tetrahedron = tetrahedron

There is a symmetry in the Platonic solids given by (p, n) <+ (n, p). This
corresponds to taking the dual surface
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Cube and octahedron
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Dodecahedron and icosahedron
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Here are two dodecahedral decompositions of 52
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Soccer ball

Example A ball is made by gluing together triangles and octagons so that
each octagon is connected to four non-touching triangles. Determine the
number of octagons and triangles used
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A ball is made by gluing together triangles and octagons so that
each octagon is connected to four non-touching triangles. Determine the
number of octagons and triangles used

Let there be |V/| vertices, |E| edges and |F| faces
Write |F| = o + t, where 0o = #octagons and t = #triangles
— 2=|V|—|E|+o0+t
We have:
e vertex-degree equation: 3|V| = 2|E|
o face-degree equation: 2|E| = 3t + 8o
e Every octagon meets 4 triangles,
— 3t=40 — 2|E|=120
— 2=0(4-6+1+%)=%
—> o=6andt=28
— |E|=36and |V|=24
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As with the Platonic solids, we have only shown that if such a surfaces

exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!
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As with the Platonic solids, we have only shown that if such a surfaces

exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!

In fact, this surface does exist and it can be constructed by cutting
triangular corners off a cube

S
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Coloring maps

Question

How many different colors do you need to color a map so that
adjacent countries have different colors?
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Coloring maps

Question

How many different colors do you need to color a map so that
adjacent countries have different colors?

A map is a polygonal decomposition. The answer to this question involves

the same ideas we used to understand Platonic solids
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Chromatic number of (connected — assumed from now on) surfaces

Let P =(V, E, F) be a polygonal decomposition of a surface S
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Chromatic number of (connected — assumed from now on) surfaces
Let P =(V, E, F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge
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Chromatic number of (connected — assumed from now on) surfaces
Let P =(V, E, F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors
Definition

The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

Examples
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

Cp(D?) =2
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Enan

Examples

Cp(D?) =2
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

Cp(D?) =2 Cp(D*) =3
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

— |

Cp(D?) =2 Cp(D*) =3
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

Cp(D?) =2 Cp(D?) =3 Cp(D?) =4
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Let P = (V, E,F) be a polygonal decomposition of a surface S
Polygons in P are adjacent if they are separated by an edge

Let Cp(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C(S) = max{ Cp(S) | P is a “map” on S}

We still need to say what a map in in terms of polygonal decompositions

That is, C(S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

— C(D?) >4
Cp(D?) =2 Cp(D?) =3 Cp(D?) =4

For maps of the world we are most interested in C(D?) = C(5?)
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Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:
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Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:

e All vertices have degree at least 3

— Topology — week 10



Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:
e All vertices have degree at least 3

e No region (i.e. face or polygon) has a border with itself

=
= N\N\>
>
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Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:
e All vertices have degree at least 3

e No region (i.e. face or polygon) has a border with itself

==° N\N\>

e No region contains a hole

TRV
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Map colouring assumptions

A map on a surface S is a polygonal decomposition such that:
e All vertices have degree at least 3

e No region (i.e. face or polygon) has a border with itself

==° N\N\>

e No region contains a hole
C D AN
e No region is completely surrounded by another

S I R VoV =
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A map on a surface S is a polygonal decomposition such that:
e All vertices have degree at least 3

e No region (i.e. face or polygon) has a border with itself
s ANN\>
e No region contains a hole
ANN\>

e No region is completely surrounded by another

ANN\>

e No internal region has only two borders (i.e. edges)

ANN\>
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A map on a surface S is a polygonal decomposition such that:
e All vertices have degree at least 3
e No region (i.e. face or polygon) has a border with itself
-7 N>
e No region contains a hole

ANN\>

e No region is completely surrounded by another

ANN\>

e No internal region has only two borders (i.e. edges)
N>

These assumptions are purely for convenience because, in each

case, we can colour these maps using the same number of colours
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Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings
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Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E,F) be a map on a surface S. Set
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Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E,F) be a map on a surface S. Set

e Jy = %, the average vertex-degree
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Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E,F) be a map on a surface S. Set

e Jy = 2||v||' the average vertex-degree
e O = 2||,ff_|| the average face-degree
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Understanding map colourings

The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E,F) be a map on a surface S. Set

e Jy = %, the average vertex-degree

e JF = 2||TE|| the average face-degree

By definition, dy/|V/| = 2|E| = Of|F]|
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The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E.F) be a map on a surface S. Set

o Jy = 2“‘5“ the average vertex-degree

2‘|FE|| the average face-degree

By definition, dy|V| = 2|E| = Of|F]|

Moreover,

.aF:

Ov > 3 since vertices have degree at least 3
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The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E.F) be a map on a surface S. Set

o Jy = 2“‘5“ the average vertex-degree

2‘|FE|| the average face-degree

By definition, dy|V| = 2|E| = Of|F]|

Moreover,

.aF:

Ov > 3 since vertices have degree at least 3

O < |F| —1 as no region borders itself
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The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V,E.F) be a map on a surface S. Set
e Jy = 2“\5“ the average vertex-degree

e OF = 2‘|FE|| the average face-degree
By definition, dy|V| = 2|E| = Of|F]|
Moreover,
Ov > 3 since vertices have degree at least 3

O < |F| —1 as no region borders itself

For a Platonic solid that is made from n-gons with p polygons
meeting at each vertex we have Oy = p and O = n
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Bounding the face degree

Lemma

Suppose that M is a map on a closed surface S. Then

o =(1-)/ (i -4)
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Bounding the face degree

Suppose that M is a map on a closed surface S. Then

o =(1-)/ (i -4)

Proof This is a simple calculation with the Euler characteristic:
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Bounding the face degree

Suppose that M is a map on a closed surface S. Then
Ay
F= [F] 2 9y
Proof This is a simple calculation with the Euler characteristic:
F|o, F|
X(S) = VI - |E] + |F| = 525 — 15 + |F|
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Bounding the face degree

Suppose that M is a map on a closed surface S. Then
Ay
F= [F] 2 9y
Proof This is a simple calculation with the Euler characteristic:
F|o, F|
X(S) = VI - |E] + |F| = 525 — 15 + |F|
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Lemma

Suppose that M is a map on a closed surface S. Then
_ x($) 1_ 1
or=(1-32)/(3-4)

Proof This is a simple calculation with the Euler characteristic:
FIo, FId,
X(8) = V|~ |El + |F| = 150F — 5% +|F

Corollary

Let M be a map on a closed surface S. Then O < 6(1 - X|(TS|))
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Lemma

Suppose that M is a map on a closed surface S. Then
_ x($) 1_ 1
or=(1-32)/(3-4)

Proof This is a simple calculation with the Euler characteristic:
FIo, FId,
X(8) = V|~ |El + |F| = 150F — 5% +|F

Corollary

Let M be a map on a closed surface S. Then O < 6(1 - X|(TS|))
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Lemma

Suppose that M is a map on a closed surface S. Then
_ x($) 1_ 1
or=(1-32)/(3-4)

Proof This is a simple calculation with the Euler characteristic:
FIo, FId,
X(8) = V|~ |El + |F| = 150F — 5% +|F

Corollary

Let M be a map on a closed surface S. Then O < 6(1 - X|(TS|))

Proof By assumption, 9y > 3
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Lemma
Suppose that M is a map on a closed surface S. Then

/G

Proof This is a simple calculation with the Euler characteristic:
FIo, FId,
X(8) = V|~ |El + |F| = 150F — 5% +|F

Proof By assumption, 9y >3 = 1-— 5 > I-1=1
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Lemma
Suppose that M is a map on a closed surface S. Then

/G

Proof This is a simple calculation with the Euler characteristic:
FIo, FId,
X(8) = V|~ |E| + |F| = 150F — 2 1 |F)

Proof By assumption, 9y >3 = 1-— 5 > I-1=1
= O < 6(1 - %) as required
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Maps on sphere and projective planes

Corollary

Let M be a map on S? or P?. Then O < 6
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Maps on sphere and projective planes

Corollary

Let M be a map on S? or P?. Then O < 6

Proof By the last corollary, O < 6< - %)

Hence the result follows since x(S?) =2 and x(P?) =1
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Corollary

Let M be a map on S? or P?. Then O < 6

Proof By the last corollary, 0 < 6<1 - %)

Hence the result follows since x(S?) =2 and x(P?) =1

Remarks

A Platonic solid constructed out of n-gons is a special type of map
on S2. As O = n this reproves the fact that Platonic solids only
exist when 3 < n<5
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Corollary
Let M be a map on S? or P?. Then O < 6

Proof By the last corollary, 0 < 6<1 - %)

Hence the result follows since x(S?) =2 and x(P?) =1

Remarks

A Platonic solid constructed out of n-gons is a special type of map
on S2. As O = n this reproves the fact that Platonic solids only
exist when 3 < n<5

If the average face degree Jr < 6 then there must be at least
one face f with deg(f) <5

This observation will be important when we prove the Five color
theorem (not quite the four color theorem)
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