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Map coloring assumptions
A map on a surface S is a polygonal subdivision such that:

• All vertices have degree at least 3

• No region (i.e. face or polygon) has a border with itself

• No region contains a hole

• No region is completely surrounded by another

• No internal region has only two borders (i.e. edges)

The last three assumptions are purely for convenience because, in each
case, we can color these maps using the same number of colors
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Recall: Notation for map colorings
The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colorings

Let M = (V ,E ,F ) be a map on a surface S .

Set

• ∂V = 2|E |
|V | , the average vertex-degree

• ∂F = 2|E |
|F | , the average face-degree

By definition, ∂V |V | = 2|E | = ∂F |F |

Moreover,

▶ ∂V ≥ 3 since vertices have degree at least 3

▶ ∂F ≤ |F | − 1 because no region borders itself

▶ If M is a map on a closed surface S , then we proved that
∂F ≤ 6

(
1 − χ(S)

|F |

)
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Maps on surfaces with χ(S) ≤ 0
Lemma
Let M be a map on a closed surface S with χ(S) ≤ 0. Then

∂F ≤ 1
2

(
5 +

√
49 − 24χ(S)

)

Proof Recall that ∂F < |F | since no region bounds itself

∂F < |F | =⇒ |F | ≥ ∂F + 1

Using the corollary from last lecture, and the fact that χ(S) ≤ 0,

∂F ≤ 6
(
1 − χ(S)

|F |

)
≤ 6

(
1 − χ(S)

1+∂F

)
⇐⇒ ∂2

F − 5∂F + 6
(
χ(S)− 1

)
≤ 0

=⇒ ∂F ≤ 1
2

(
5 +

√
49 − 24χ(S)

)
as required

x

y = x2 − 5x + 6(χ− 1)

x = 1
2

(
5 +

√
49 − 24χ(S)

)
x = 1

2

(
5 −

√
49 − 24χ(S)

)
∂F
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Average face degree for the double torus
Example Let S = #2T.

=⇒ ∂F ≤ 1
2

(
5 +

√
49 − χ(S)

)
= 1

2

(
5 +

√
49 − 24(−2)

)
≈ 7.4

The standard polygonal decomposition for S = #2T is

a

b

a

b

c

d

c

d

This has ∂F = 8 !?

This is not a contradiction because we are assuming that no region has a
border with itself, which is never true for a polygonal decomposition that
has only one face
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Heawood’s theorem
Theorem
Suppose that S is a closed surface. Then

C (S) ≤

{
6, if S = S2 or S = P2,
7+
√

49−24χ(S)
2 , otherwise

Proof Let c be the integer part of the right-hand side. Then:

• If S = S2 or S = P2 then ∂F < 6 = c by last week’s discussion

• Otherwise, ∂F ≤ 1
2

(
5+

√
49 − 24χ(S)

)
= c − 1 < c by the last lemma

=⇒ ∂F < c for all S

Claim If M is a map on S then CM(S) ≤ c

We argue by induction on |F |
• If |F | ≤ 6 then M has at most 6 faces, so CM(S) ≤ 6 ≤ c

• Assume now that |F | > 6 and that the claim holds for smaller |F |

Since ∂F < c there is at least one face f with deg(f ) < c
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Proof of Heawood’s theorem...

We are now assuming that |F | > 6 and f is a face with deg(f ) < c

We construct a new map N by shrinking f to a point x :

f x

This gives a new map N on S with |F | − 1 faces
=⇒ CN(S) ≤ c by induction

Since deg(f ) < c we need at most c − 1 colors around x :

x

As we used at most c − 1 colors around x , we can color the map M
with c colors =⇒ CM(S) ≤ c =⇒ C (S) ≤ c
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Chromatic numbers
Heawood’s theorem gives an upper bound for the chromatic number C (S)

This estimate is exactly right except when S = S2 or S = K

Surface Heawood’s bound real C (S)

S2 6 4
K 7 6

S ̸= S2,K c =
⌊

7+
√

49−24χ(S)
2

⌋
c

Remarks

1 To prove this for S ̸= S2,K it is necessary to construct maps that
require this many colors and show no more colors are ever needed

2 It is easy to see that C (S2) ≥ 4 but it is really hard to show
that C (S2) = 4: the first proofs of the Four color theorem used
complicated reductions and then exceedingly long brute force
computer calculations

3 If S = S2 then χ(S2) = 2 so 7+
√

49−24χ(S)
2 = 4 !?
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Why is C (S2) ≥ 4 easy to see? Well:
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Coloring the torus

Heawood’s estimate for the torus is C (T) ≤ 7+
√

49−24χ(T)
2 ≤ 7

Here is a map on the torus that requires 7 colors

Hence, C (T) = 7 (see the tutorials)
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Hexagons on the torus
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Coloring the projective plane
Heawood’s estimate for the projective plane P2 is

C (P2) ≤ 7+
√

49−24χ(P2)
2 ≤ 6

Here is a map on P2 that requires 6 colors:

Hence, C (P2) = 6
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Coloring the Klein bottle
Heawood’s estimate for the Klein bottle is

C (K) ≤ 7+
√

49−24χ(K)

2 ≤ 7

In fact, Franklin (1930) proved that C (K) = 6

Using these maps you can show that C (K) ≥ 6
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The four color theorem
Theorem
Every map on D2 can be colored using four colors.
That is, C (D2) = C (R2) = C (S2) = 4

Remark All known proofs have a computational component

There were several incorrect proofs published before Appel and Haken
proved this result. One of the incorrect proofs was due to Kempe and 11
years later Heawood found a counterexample to their proof. In doing this,
Heawood gave their upper bound for the chromatic number C (S) of any
closed surface and he gave a conjecture for coloring surfaces and graphs,
which was finally proved in 1968 by Ringel and Young.

At the same time, Heawood proved the Five color theorem

Theorem
Every map on D2 can be colored with five colors

By stereographic projection, it is enough to show that C (S2) ≤ 5
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Proof of Heawood’s Five color Theorem
Let M = (V ,E ,F ) be a map on S2. We argue by induction on |F |

If |F | ≤ 5 then we can color M with |F | colors, starting the induction

Suppose then that |F | > 5. Recall that we have proved ∂F < 6

=⇒ M has a face f with deg(f ) ≤ 5

As we did in the proof of Heawood’s theorem, construct a new map N by
shrinking f to a point:

f x

By induction the new map N is 5-colorable

As in the proof of Heawood’s theorem, the idea is now to modify the
5-coloring on N to give a 5-coloring on M. This time the proof is
more complicated and there are several cases to consider
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Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x

M

x

N

M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable
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Proof of the Five color Theorem . . . . . . . . . . . . 3
Case 3: deg(f ) = 5 and all of the colors in N around x are different

A
B

C

D
E

M

Label the regions A–E as shown.

Consider the polygonal decomposition P contained in N that has these five
faces together with all of the regions in N that have the same colors as the
faces A and C

A
B

C

D
E

M
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Proof of the Five color Theorem . . . . . . . . . . . . 4
Case 3a: The regions A and C are not connected in P

A
B

C

D
E

M

=⇒ Swapping the colors A and C in the connected component of P
that contains A gives a new map N ′ with a valid coloring

A
B

C

D
E

M
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=⇒ We are back in Case 2, so M is 5-colorable
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Knots
Intuitive definition A knot is a piece of string with the ends tied together

Definition
A knot is the image of an injective continuous map from S1 into R3,
where S1 = { (x , y) ∈ R2 | x2 + y2 = 1 } is the unit circle in R2

Equivalently, a knot is a closed path in R3 that has no self-intersections

Examples

Unknot Trefoil Reverse trefoil Heart knot

Knot theory is a beautiful mathematical subject with applications in
mathematics, computer science, computer chip design, biology, . . .
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More knots
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Basic question in knot theory
Question
When is a knot the unknot?

Unknot

Another unknot

It is difficult to tell if
a knot is the unknot
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When are two knots the same?
• Can we tell when two knots are equal?

• What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?

No! Every knot is homeomorphic to S1

=⇒ Homeomorphism is not the right equivalence relation for knots!

Definition
Two knots K and L are equivalent, and we write K ∼= L, if there exists a
continuous map, or ambient isotopy, f :R3 × [0, 1]−→R3 such that

1 for each t ∈ [0, 1] the map R3 → R3; x 7→ f (x , t) is a homeomorphism

2 if x ∈ K then f (x , 0) = x , and

3 there is a homeomorphism K → L given by x 7→ f (x , 1)

Intuitively, f continuously deforms K = f (K , 0) into the knot L = f (K , 1)

In practice, we will never use this definition but you should see it
A knot K is trivial if it is equivalent to the unknot otherwise it is non-trivial
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Different notions of “equal”
Objects Graphs Surfaces Knots

Equivalence Isomorphism of graphs Homeomorphism Equivalence of knots

In other words, graphs, surfaces and knots should never be directly
compared – they are different beasts
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Polygonal knots
A polygonal knot is a finite union of (straight) line segments in R3 that is
homeomorphic to S1

just like the polygonal decompositions of surfaces, polygonal
knots reduce the study of knots to combinatorics

Examples

Unknot
Trefoil

Figure eight

Remark Two polygonal knots K and L are equivalent if they have a
common subdivision
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Only polygonal knots
From now on all knots are polygonal knots and we drop the adjective
polygonal

This is not a huge restriction: anything you can draw is polygonal. Any
“finite thing” is a polygonal knot, but “limits” are not so we ignore them

Good (but the limit is not):

Not good:
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Polygonal knots avoid pathologies

These are not polygonal knots:

— Topology – week 11



Knot projections
Question What do our drawings of knots actually mean?

A knot projection is a drawing of a knot in R2 such that:

• crossings only involve two string segments, or connected components

• over and under crossings indicate relative string placement

Warning!
Knot projections are a convenient way of drawing knots but they involve a
choice of projection

=⇒ Knot projections can be misleading so we have to check that
our constructions are independent of the choice of knot projection
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Projections = shadows
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The trefoil knot times nine
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Reidemeister’s theorem
Theorem
Two knot diagrams represent the same knot if and only if they are related
by a (finite) sequence of moves of the following three types

Here the 0th move is usually used silently

We won’t prove Reidemeister’s theorem in this lecture - the proof is a bit
technical and uses the definition of equivalence of knots

The point: Reidemeister’s theorem reduces topology to combinatorics of
diagrams
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The Reidemeister moves on one slide
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The knotty trefoil
Question
Is the trefoil knot equivalent to the unknot?

It seems clear that these two knots are different but, so far, we have not
seen an easy way to distinguish between them
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Knot colorings
Definition
A coloring of a knot (projection) is the assignment of colors to the different
segments,or connected components, so that at each crossing all segments
have either the same color or they all have different colors and at least two
colors are used

or

=⇒ If a knot (projection) is 3-colorable then it has a coloring that
uses exactly 3 colors

Let C3(K ) be the number of different colorings of K using 3 colors

Remark

• A knot can always be colored using a single color,
so C3(K ) ≥ 3 for all knots K

• As soon as more than one color is used we must use all three
colors, so K is 3 colorable if and only if C3(K ) > 3
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Three colorings
As the unknot has no crossings, it has only one segment that must always
be colored using the same color

=⇒ C3(Unknot) = 3 and the Unknot is not 3-colorable

Which of the following are knots are 3-colorable?
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coloring the trefoil knot
Question What is C3(T ) if T is the trefoil knot?

Claim C3(T ) = 9 since the components of T can be colored independently
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Three colorability
Theorem
The integer C3(K ) is a knot invariant
That is, C3(K ) depends only on K , up to ambient isotopy, and it is
independent of the choice of knot projection

Corollary
Being 3-colorable is a knot invariant

The corollary follows because K is 3-colorable if and only if C3(K ) > 3

To prove the theorem it suffices to check that C3(K ) is invariant under the
three Reidemeister moves

• Twisting ↔ and ↔

• Looping ↔ and ↔
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Three colorability . . . . . . . . . . . . . . . . . . . 2
• Braiding

↔ and ↔

↔ and ↔

↔ and ↔

↔ and ↔

Key point For each Reidemeister move there is a unique way to complete
any coloring given the existing colors of the segments going in and out
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