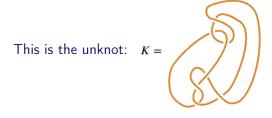
Topology – week 12 Math3061

Daniel Tubbenhauer, University of Sydney

© Semester 2, 2023

Reidemeister moves are powerful but might be tricky



These two knots are equivalent:
$$K = \{K = \{K = 1\}, K' = \{$$

How to show that? Use Reidemeister moves (this is a strongly recommended exercise). But that might be tricky in general, so invariants is what we want.

We used connected sums to construct and classify surfaces We want an analog of connected sums for knots

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

Remarks

▶ # does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

Remarks

▶ # does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

Remarks

- ▶ # does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":
 - ► K#○ ≅ K
 - ► K#L ≅ L#K

We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

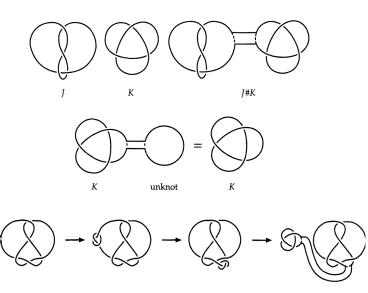
Definition

Given two knots K and L their connected sum is the knot K#L that is obtained by cutting both knots and splicing them together

Remarks

- ▶ # does not depend on the choice of knot projections or where you cut either knot, and it is an "addition" or "multiplication":
 - ► K#O ≅ K
 - $ightharpoonup K\#L\cong L\#K$
 - $ightharpoonup (K\#L)\#M\cong K\#(L\#M)$

Examples of



Proposition

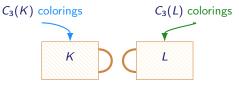
Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$

Proposition

Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$

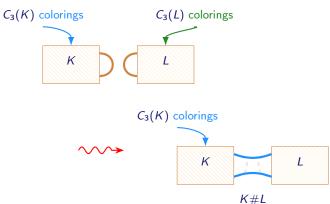
Proposition

Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$



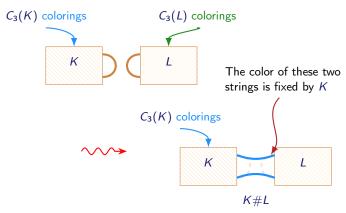
Proposition

Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$



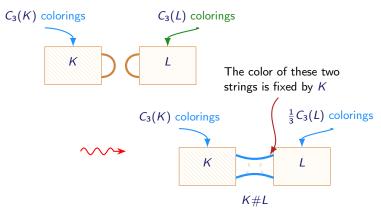
Proposition

Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$



Proposition

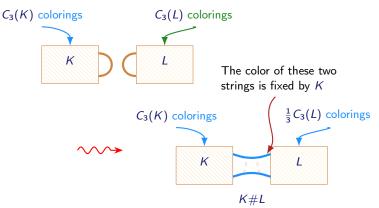
Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$



Proposition

Let K and L be knots. Then $C_3(K\#L) = \frac{1}{3}C_3(K) \cdot C_3(L)$

Proof We need to count the possible colorings of K#L



Since the colors of the connecting strands are fixed, there are only $\frac{1}{3}C_3(L)$ ways to 3-color the strands of L inside K#L

Corollary

There are infinitely many inequivalent knots

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\implies$$
 $C_3(T) = 9 = 3^2 > 3$

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\implies$$
 $C_3(T) = 9 = 3^2 > 3$

$$\implies$$
 if $n \ge 1$ then

$$C_3(\#^k T) = \frac{1}{3}C_3(T) \cdot C_3(\#^{k-1} T)$$

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\implies$$
 $C_3(T) = 9 = 3^2 > 3$

 \implies if $n \ge 1$ then

$$C_3(\#^k T) = \frac{1}{3}C_3(T) \cdot C_3(\#^{k-1} T) = \frac{1}{3} \cdot 9 \cdot C_3(\#^{k-1} T)$$

= $3C_3(\#^{k-1} T)$

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\Rightarrow C_3(T) = 9 = 3^2 > 3$$

$$\Rightarrow \text{ if } n \ge 1 \text{ then}$$

$$C_3(\#^k T) = \frac{1}{3}C_3(T) \cdot C_3(\#^{k-1}T) = \frac{1}{3} \cdot 9 \cdot C_3(\#^{k-1}T)$$

$$= 3C_3(\#^{k-1}T)$$

$$= 3^2C_3(\#^{k-2}T) \cdot \cdot \cdot = 3^{k-1}C_3(T) = 3^{k+1}$$

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\Rightarrow C_3(T) = 9 = 3^2 > 3$$

$$\Rightarrow \text{ if } n \ge 1 \text{ then}$$

$$C_3(\#^k T) = \frac{1}{3}C_3(T) \cdot C_3(\#^{k-1}T) = \frac{1}{3} \cdot 9 \cdot C_3(\#^{k-1}T)$$

$$= 3C_3(\#^{k-1}T)$$

$$= 3^2C_3(\#^{k-2}T) \cdot \cdot \cdot = 3^{k-1}C_3(T) = 3^{k+1}$$

Therefore, the knots T, $\#^2T$, $\#^3T$, ... are all inequivalent because they all have a different number of 3-colorings

Corollary

There are infinitely many inequivalent knots

Proof Since $C_3(K)$ is a knot invariant, it is enough to find an infinite family of knots that have a different number of 3-colorings

Let T be the trefoil knot

$$\Rightarrow C_3(T) = 9 = 3^2 > 3$$

$$\Rightarrow \text{ if } n \ge 1 \text{ then}$$

$$C_3(\#^k T) = \frac{1}{3}C_3(T) \cdot C_3(\#^{k-1}T) = \frac{1}{3} \cdot 9 \cdot C_3(\#^{k-1}T)$$

$$= 3C_3(\#^{k-1}T)$$

$$= 3^2C_3(\#^{k-2}T) \cdot \cdot \cdot = 3^{k-1}C_3(T) = 3^{k+1}$$

Therefore, the knots T, $\#^2T$, $\#^3T$, ... are all inequivalent because they all have a different number of 3-colorings

More generally, the same argument shows that if K is 3-colorable then the knots K, $\#^2K$, $\#^3K$,... are all inequivalent

Definition

The knot K is a composite knot if it has a factorisation K = L # M, where L and M are not the unknot A knot K is prime if it is not composite

Definition

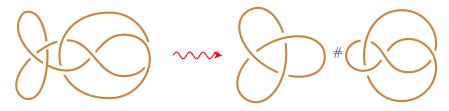
The knot K is a composite knot if it has a factorisation K = L # M, where L and M are not the unknot A knot K is prime if it is not composite

Example

Definition

The knot K is a composite knot if it has a factorisation K = L # M, where L and M are not the unknot A knot K is prime if it is not composite

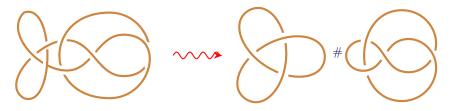
Example



Definition

The knot K is a composite knot if it has a factorisation K = L # M, where L and M are not the unknot A knot K is prime if it is not composite

Example



Remark The definition of prime knots is hard to apply because it is difficult to tell when a knot is not the unknot!

Definition

The knot K is a composite knot if it has a factorisation K = L # M, where L and M are not the unknot A knot K is prime if it is not composite

Example

Remark The definition of prime knots is hard to apply because it is difficult to tell when a knot is not the unknot!

In fact, we don't yet know that the figure eight knot is not the unknot!!

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!!

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!! Examples

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but **not** obvious how to compute it !!! Examples

• cross(0) = 0. In fact, cross(K) = 0 if and only if K is the unknot

The crossing number of a knot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but **not** obvious how to compute it !!! Examples

- cross(O) = 0. In fact, cross(K) = 0 if and only if K is the unknot
- $cross(\mathcal{L}) = 3$

The crossing number of a knot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but **not** obvious how to compute it !!! Examples

- $cross(\bigcirc) = 0$. In fact, cross(K) = 0 if and only if K is the unknot
- $cross(\mathcal{S}) = 3$

<u>Lem</u>ma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

The crossing number of a knot

Definition

The crossing number of a projection is the number of crossings you see. The crossing number cross(K) of a knot K is the smallest number of crossings in any knot projection

This is obviously a knot invariant but **not** obvious how to compute it !!! Examples

- cross(O) = 0. In fact, cross(K) = 0 if and only if K is the unknot
- $cross(\mathcal{L}) = 3$

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Remark It is a big open question if cross(K # L) = cross(K) + cross(L)

This is only known to be true for certain types of knots such as alternating knots, which we will meet soon

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Proof Note that K#L has a projection with cross(K) + cross(L) crossings

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Proof Note that K#L has a projection with cross(K) + cross(L) crossings

Corollary

Let K be a knot. Then $K = P_1 \# \dots \# P_n$, for prime knots P_1, \dots, P_n

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Proof Note that K#L has a projection with cross(K) + cross(L) crossings

Corollary

Let K be a knot. Then $K = P_1 \# \dots \# P_n$, for prime knots P_1, \dots, P_n

Proof Immediate by induction on cross(K), the minimal number of crossings in K

Lemma

Let K and L be knots. Then $cross(K\#L) \le cross(K) + cross(L)$

Proof Note that K#L has a projection with cross(K) + cross(L) crossings

Corollary

Let K be a knot. Then $K = P_1 \# \dots \# P_n$, for prime knots P_1, \dots, P_n

Proof Immediate by induction on cross(K), the minimal number of crossings in K

Conversely, we can ask how many prime knots there are

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a - b \in \mathbb{Z}$ \iff same fractional part

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a - b \in \mathbb{Z}$ \iff same fractional part

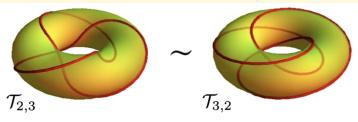
Definition

Then the (p,q)-torus knot $\mathcal{T}_{p,q}$ is the closed path $\{(x,y)\in T\,|\,py\equiv qx\}$ on the standard polygonal decomposition of the torus on the unit square, where $p,q\in\mathbb{N}$ and $\gcd(p,q)=1$

For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a - b \in \mathbb{Z}$ \iff same fractional part

Definition

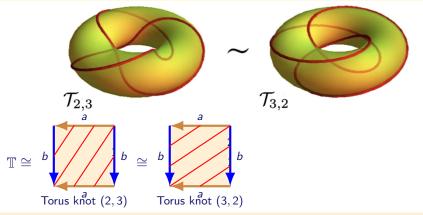
Then the (p,q)-torus knot $\mathcal{T}_{p,q}$ is the closed path $\{(x,y) \in T \mid py \equiv qx\}$ on the standard polygonal decomposition of the torus on the unit square, where $p,q \in \mathbb{N}$ and $\gcd(p,q)=1$



For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a - b \in \mathbb{Z}$ \iff same fractional part

Definition

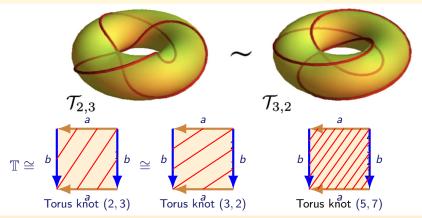
Then the (p,q)-torus knot $\mathcal{T}_{p,q}$ is the closed path $\{(x,y)\in\mathcal{T}\,|\,py\equiv qx\}$ on the standard polygonal decomposition of the torus on the unit square, where $p,q\in\mathbb{N}$ and $\gcd(p,q)=1$



For $a, b \in \mathbb{R}$ write $a \equiv b$ if $a - b \in \mathbb{Z}$ \iff same fractional part

Definition

Then the (p,q)-torus knot $\mathcal{T}_{p,q}$ is the closed path $\{(x,y)\in\mathcal{T}\,|\,py\equiv qx\}$ on the standard polygonal decomposition of the torus on the unit square, where $p,q\in\mathbb{N}$ and $\gcd(p,q)=1$



Theorem

Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

Theorem

Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Theorem

Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots

Proof If p < q then $cross(\mathcal{T}_{p,q}) = (p-1)q$ — true but won't prove

Theorem

Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots

Proof If p < q then $cross(\mathcal{T}_{p,q}) = (p-1)q$ — true but won't prove

 \implies the torus knots $\mathcal{T}_{2,q}$ with q > 2 odd are all inequivalent

Theorem

Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as the connected sum of two smaller knots, each of the smaller knots is the unknot; we sketch the proof momentarily

Corollary

There are an infinite number of prime knots

Proof If
$$p < q$$
 then $cross(\mathcal{T}_{p,q}) = (p-1)q$ — true but won't prove

 \implies the torus knots $\mathcal{T}_{2,q}$ with q>2 odd are all inequivalent

The number of prime knots with *n*-crossings

As is common, knots and their mirror images are only counted once

Torus knots are prime - proof sketch

Proof

For $p,g \ge 2$ let the (p,q)-torus knot K lie on an unknotted torus $T \subset S^3$ and let the 2-sphere S define a decomposition of K. We assume that S and T are in general position, that is, $S \cap T$ consists of finitely many disjoint simple closed curves.

Such a curve either meets K, is parallel to it or it bounds a disk D on T with $D \cap K = \emptyset$. Choose γ with $D \cap S = \partial D = \gamma$. Then γ divides S into two disks D', D'' such that $D \cup D'$ and $D \cup D''$ are spheres, $(\cup D') \cap (\cup D'') = D$; hence, D' or D'' can be deformed into D by an isotopy of S^3 which leaves K fixed. By a further small deformation we get rid of one intersection of S with T.

Torus knots are prime - proof sketch

Proof Continued

Consider the curves of $S \cap T$ which intersect K. There are one or two curves of this kind since K intersects S in two points only. If there is one curve it has intersection numbers +1 and -1 with K and this implies that it is either isotopic to K or nullhomotopic on T. In the first case K would be the trivial knot. In the second case it bounds a disk D_0 on T and $D_0 \cap T$, plus an arc on S, represents one of the factor knots of K; this factor would be trivial, contradicting the hypothesis.

Torus knots are prime - proof sketch

Proof Continued

The case remains where $S \cap T$ consists of two simple closed curves intersecting K exactly once. These curves are parallel and bound disks in one of the solid tori bounded by T. But this contradicts $p, q \geq 2$

Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K = P_1 \# P_2 \# \dots \# P_n$, for prime knots P_1, \dots, P_n . Moreover, the multiset of prime knots is a knot invariant

Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K = P_1 \# P_2 \# \dots \# P_n$, for prime knots P_1, \dots, P_n . Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later)

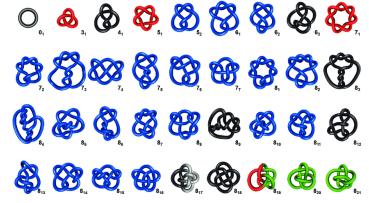
Prime factorisation of knots

Theorem

Suppose that K is not the unknot. Then $K = P_1 \# P_2 \# \dots \# P_n$, for prime knots P_1, \dots, P_n . Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later)

Here is a table of the unknot and the first 36 prime knots:



Question

Is the figure eight knot the unknot?

We need another knot invariant to show that the figure eight knot is not the unknot

Question

Is the figure eight knot the unknot?

We need another knot invariant to show that the figure eight knot is not the unknot

To do this we first need to better understanding 3-colorings

Question

Is the figure eight knot the unknot?

We need another knot invariant to show that the figure eight knot is not the unknot

To do this we first need to better understanding 3-colorings

Rather than colors, lets color the segments with 0, 1 and 2

Question

Is the figure eight knot the unknot?

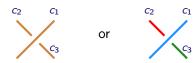
→ We need another knot invariant to show that the figure eight knot is not the unknot.

To do this we first need to better understanding 3-colorings

Rather than colors, lets color the segments with 0, 1 and 2

Question

What can we say about $c_1 + c_2 + c_3$ for a 3-coloring?



Possible colorings and the values of $\mathit{c}_{1}+\mathit{c}_{2}+\mathit{c}_{3}$

Allowed colorings

or

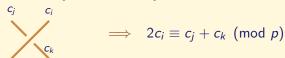
Disallowed colorings

or

or

Definition

Let $p \in \mathbb{N}$. A *p*-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that



Knot colorings with \emph{p} -colors

Definition

Let $p \in \mathbb{N}$. A *p*-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that

$$\Longrightarrow 2c_i \equiv c_j + c_k \pmod{p}$$

Let $C_p(K)$ be the number of *p*-colorings of K.

Definition

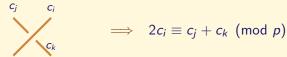
Let $p \in \mathbb{N}$. A *p*-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that

$$\Longrightarrow 2c_i \equiv c_j + c_k \pmod{p}$$

Let $C_p(K)$ be the number of *p*-colorings of K.

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that



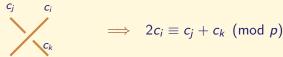
Let $C_p(K)$ be the number of *p*-colorings of K.

A knot is p-colorable if it has a p-coloring that uses at least two colors

• $a \equiv b \pmod{p} = a - b$ is divisible by p. When p = 3 this agrees with the previous definition of 3-coloring

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that

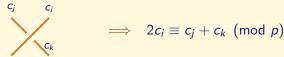


Let $C_p(K)$ be the number of *p*-colorings of K.

- $a \equiv b \pmod{p} = a b$ is divisible by p. When p = 3 this agrees with the previous definition of 3-coloring
 - As with 3-coloring this depends on the choice of knot projection

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that



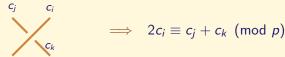
Let $C_p(K)$ be the number of *p*-colorings of K.

- $a \equiv b \pmod{p} = a b$ is divisible by p. When p = 3 this agrees with the previous definition of 3-coloring
 - As with 3-coloring this depends on the choice of knot projection
 - For any p the constant coloring is a p-coloring

$$\implies$$
 $C_p(K) \geq p$

Definition

Let $p \in \mathbb{N}$. A p-coloring of a knot K is a coloring of the segments of K that using colors from $\{0, 1, \dots, p-1\}$ such that



Let $C_p(K)$ be the number of *p*-colorings of K.

- $a \equiv b \pmod{p} = a b$ is divisible by p. When p = 3 this agrees with the previous definition of 3-coloring
 - As with 3-coloring this depends on the choice of knot projection
 - For any p the constant coloring is a p-coloring

$$\Longrightarrow$$
 $C_p(K) \ge p$
 \Longrightarrow K is p -colorable if and only if $C_p(K) > p$

Theorem

Suppose that $p \ge 3$. Then $C_p(K)$ and p-colorability are both knot invariants

Theorem

Suppose that $p \ge 3$. Then $C_p(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_p(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant

Theorem

Suppose that $p \ge 3$. Then $C_p(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_p(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant

p-colorability is a knot invariant since K is p-colorable if and only if $C_p(K) > p$

Theorem

Suppose that $p \ge 3$. Then $C_p(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_p(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant

 \implies p-colorability is a knot invariant since K is p-colorable if and only if $C_p(K) > p$

Similarly, $C_p(K\#L) = \frac{1}{p}C_p(K)C_p(L)$, for knots K and L

Theorem

Suppose that $p \ge 3$. Then $C_p(K)$ and p-colorability are both knot invariants

Proof Repeat the argument used for 3-colorings to show that $C_p(K)$ is unchanged by the Reidemeister moves and hence is a knot invariant

 \longrightarrow p-colorability is a knot invariant since K is p-colorable if and only if $C_p(K) > p$

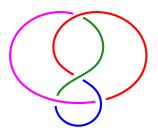
Similarly, $C_p(K\#L) = \frac{1}{p}C_p(K)C_p(L)$, for knots K and L

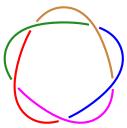
Question

Is there an easy way to tell if a knot is p-colorable?

Examples of p-colorings

Are the following knots 4-colorable, 5-colorable, ... ?

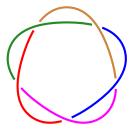




Examples of p-colorings

Are the following knots 4-colorable, 5-colorable, ... ?





We need a better way to determine if a knot is p-colorable!

Use linear algebra!

Corollary

The trefoil knot is not the unknot

Corollary

The trefoil knot is not the unknot

Proof The trefoil is 3-colorable and the unknot is not

Corollary

The trefoil knot is not the unknot

Proof The trefoil is 3-colorable and the unknot is not

Corollary

The trefoil knot is not equivalent to the figure eight knot

Corollary

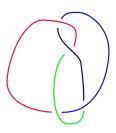
The trefoil knot is not the unknot

Proof The trefoil is 3-colorable and the unknot is not

Corollary

The trefoil knot is not equivalent to the figure eight knot

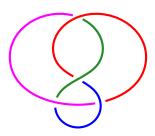
Proof The trefoil is 3-colorable and the figure eight knot is not



The trefoil knot in comparison

Colorful linear algebra

Consider the figure eight knot.



Colorful linear algebra

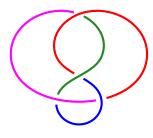
Consider the figure eight knot.

Label the segments c_1, c_2, c_3, c_4 in traveling order around the knot

Consider the figure eight knot.

Label the segments c_1, c_2, c_3, c_4 in traveling order around the knot

⇒ We require:



In matrix form this becomes $M_K C \equiv 0 \pmod{p}$, where

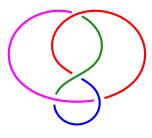
$$M_{K} = \begin{bmatrix} 2 & 0 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix} \quad \text{and } \underline{C} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix}$$

and
$$\underline{C} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$

Colorful linear algebra

Consider the figure eight knot.

Label the segments c_1, c_2, c_3, c_4 in traveling order around the knot



In matrix form this becomes $M_K \underline{C} \equiv \underline{0} \pmod{p}$, where

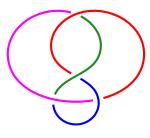
$$M_{K} = \begin{bmatrix} 2 & 0 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix} \quad \text{and } \underline{C} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix}$$

That is,
$$\underline{C}$$
 is a p -coloring $\iff M_K \underline{C} \equiv 0 \pmod{p}$

Colorful linear algebra

Consider the figure eight knot.

Label the segments c_1, c_2, c_3, c_4 in traveling order around the knot



In matrix form this becomes $M_K \underline{C} \equiv \underline{0} \pmod{p}$, where

$$M_{K} = \begin{bmatrix} 2 & 0 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix} \quad \text{and } \underline{C} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix}$$

That is, \underline{C} is a p-coloring $\iff M_K \underline{C} \equiv 0 \pmod{p}$

We have reduced finding c_1, \ldots, c_4 to linear algebra!

Let K be knot projection with n crossings.

Let K be knot projection with n crossings.

Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has *n* segments.

Let K be knot projection with n crossings.

 \implies Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_1, \ldots, c_n and let the crossings be x_1, \ldots, x_n

Let K be knot projection with n crossings.

 \implies Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_1, \ldots, c_n and let the crossings be x_1, \ldots, x_n

The knot matrix of K is the matrix $M_K = (m_{ij})$, where m_{ij} is the sum of the contributions of the jth segment of color c_j to the jth crossing x_i with

 $\begin{cases} +2, & \text{for over-crossings} \\ -1, & \text{for under-crossings} \end{cases}$

Let K be knot projection with n crossings.

 \implies Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_1, \ldots, c_n and let the crossings be x_1, \ldots, x_n

The knot matrix of K is the matrix $M_K = (m_{ij})$, where m_{ij} is the sum of the contributions of the jth segment of color c_j to the ith crossing x_i with

$$\begin{cases} +2, & \text{for over-crossings} \\ -1, & \text{for under-crossings} \end{cases}$$

⇒ crossings label rows and segments label columns

Let K be knot projection with n crossings.

 \implies Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

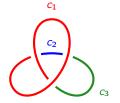
Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_1, \ldots, c_n and let the crossings be x_1, \ldots, x_n

The knot matrix of K is the matrix $M_K = (m_{ij})$, where m_{ij} is the sum of the contributions of the jth segment of color c_j to the ith crossing x_i with

$$\begin{cases} +2, & \text{for over-crossings} \\ -1, & \text{for under-crossings} \end{cases}$$

⇒ crossings label rows and segments label columns

An atypical example



$$M_{K} = \begin{bmatrix} c_{1} & c_{2} & c_{3} \\ 2-1 & -1 & 0 \\ 2 & -1 & -1 \\ 2-1 & 0 & -1 \end{bmatrix}$$

Let K be knot projection with n crossings.

 \implies Each segment starts and ends at a crossing, and each crossing has two under-crossings, so the knot projection has n segments.

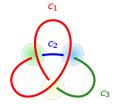
Traveling around the knot in an anti-clockwise direction let the colors of the segments be c_1, \ldots, c_n and let the crossings be x_1, \ldots, x_n

The knot matrix of K is the matrix $M_K = (m_{ij})$, where m_{ij} is the sum of the contributions of the jth segment of color c_j to the ith crossing x_i with

$$\begin{cases} +2, & \text{for over-crossings} \\ -1, & \text{for under-crossings} \end{cases}$$

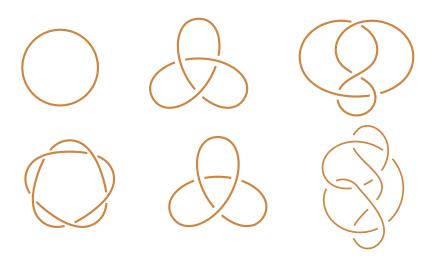
⇒ crossings label rows and segments label columns

An atypical example



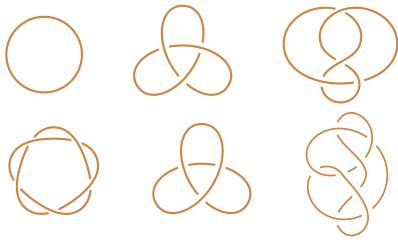
$$M_{K} = \begin{bmatrix} c_{1} & c_{2} & c_{3} \\ 2-1 & -1 & 0 \\ 2 & -1 & -1 \\ 2-1 & 0 & -1 \end{bmatrix}$$

We mainly consider colorings of alternating knots



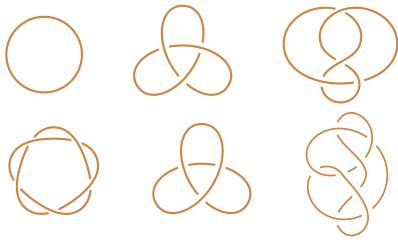
We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction



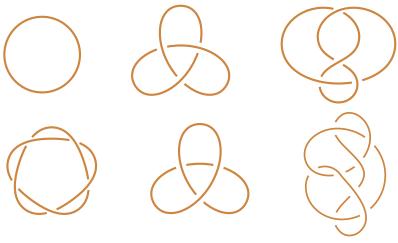
We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction



We mainly consider colorings of alternating knots

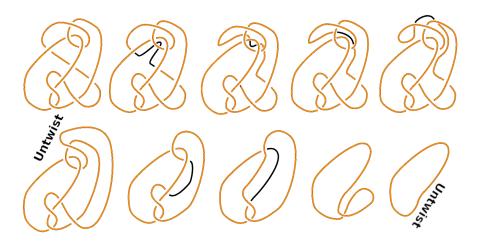
A knot projection is alternating if the crossings alternate between over and under crossings as you travel around the knot in an anti-clockwise direction



⇒ Being alternating is not a knot invariant

Alternating knots – careful with projections

The unknot is alternating, but it can have non-alternating projections:



Similarly, for other knots

If K is an alternating knot then:

every segment starts as an under-string, becomes an over-string and finishes as an under-string

- every segment starts as an under-string, becomes an over-string and finishes as an under-string
- \implies when read in traveling order the segments and crossings alternate as $c_1, x_2, c_2, x_2, \dots, c_n, x_n$

- every segment starts as an under-string, becomes an over-string and finishes as an under-string
- \implies when read in traveling order the segments and crossings alternate as $c_1, x_2, c_2, x_2, \ldots, c_n, x_n$
- \implies if K is alternating and no segment meets itself then each row of M_K will contain one 2 and two -1's

- every segment starts as an under-string, becomes an over-string and finishes as an under-string
- \implies when read in traveling order the segments and crossings alternate as $c_1, x_2, c_2, x_2, \ldots, c_n, x_n$
- \implies if K is alternating and no segment meets itself then each row of M_K will contain one 2 and two -1's
- \implies if K is alternating the row and column sums of M_K are all 0

If K is an alternating knot then:

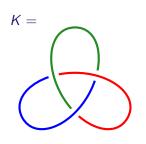
- every segment starts as an under-string, becomes an over-string and finishes as an under-string
- \implies when read in traveling order the segments and crossings alternate as $c_1, x_2, c_2, x_2, \ldots, c_n, x_n$
- \implies if K is alternating and no segment meets itself then each row of M_K will contain one 2 and two -1's
- \implies if K is alternating the row and column sums of M_K are all 0

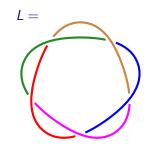
We will mainly consider colorings of alternating knots

Knot matrix examples

$$M_{\mathcal{K}} = \left(egin{array}{cccc} 2 & -1 & -1 \ -1 & 2 & -1 \ -1 & -1 & 2 \end{array}
ight)$$

$$M_L = \begin{pmatrix} 2 & 0 & 0 & -1 & -1 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & -1 & 2 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$





Lemma

Let K be an alternating knot.

 $_{f 0}$ The row and column sums of M_K are all 0

Lemma

Let K be an alternating knot.

- The row and column sums of M_K are all 0
- $M_K \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \underline{0}$

Lemma

Let K be an alternating knot.

- 1 The row and column sums of M_K are all 0
- $M_{\mathcal{K}}\begin{bmatrix}1\\\vdots\\1\end{bmatrix}=\underline{0}$
- $det M_K = 0$

Lemma

Let K be an alternating knot.

1 The row and column sums of M_K are all 0

$$M_K \begin{bmatrix} 1 \\ \vdots \\ i \end{bmatrix} = \underline{0}$$

 $det M_K = 0$

Proof

(1) Since the knot is alternating every colored strand contributes 2 once and -1 twice (see below) and dually from crossings

$$M_L = \begin{pmatrix} 2 & 0 & 0 & -1 & -1 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & -1 & 2 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$



Proof Continued

- (2) By (1), the respective vector is an eigenvector with eigenvalue zero
- (3) By (2) there is an zero eigenvector, so the kernel is nontrivial

Minors of a matrix

The (r, c)-minor of an $n \times n$ matrix M is the $(n-1) \times (n-1)$ -matrix M_{rc} obtained by deleting row r and column c from M)

$$M = \begin{bmatrix} a_{11} & \cdots & a_{1c} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rc} & \cdots & a_{rn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nc} & \cdots & a_{nn} \end{bmatrix}$$

Minors of a matrix

The (r, c)-minor of an $n \times n$ matrix M is the $(n-1) \times (n-1)$ -matrix M_{rc} obtained by deleting row r and column c from M)

$$M = \begin{bmatrix} a_{11} & \cdots & a_{1c} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rc} & \cdots & a_{rn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nc} & \cdots & a_{nn} \end{bmatrix}$$

$$M_{rc} = \begin{bmatrix} a_{11} & \cdots & a_{1c} & \cdots & a_{1n} \\ \vdots & \cdots & & \vdots & \vdots \\ a_{r1} & \cdots & a_{rc} & \cdots & a_{rn} \\ \vdots & \cdots & & \vdots & \vdots \\ a_{n1} & \cdots & a_{nc} & \cdots & a_{nn} \end{bmatrix}$$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |\det(M_K)_{11}|$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums. Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M+\mathbb{I}) = \det \begin{bmatrix} \frac{m_{11}+1}{m_{21}+1} & \frac{m_{1n}+1}{m_{22}+1} & \cdots & \frac{m_{1n}+1}{m_{1n}+1} \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1}+1 & m_{n2}+1 & \cdots & m_{nn}+1 \end{bmatrix}$$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums. Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I}) = \det \begin{bmatrix} m_{11} + 1 & m_{12} + 1 & \cdots & m_{1n} + 1 \\ m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1} + 1 & m_{n2} + 1 & \cdots & m_{nn} + 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} n + \sum_{i} m_{i1} & n + \sum_{i} m_{i2} & \cdots & n + \sum_{i} m_{in} \\ m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1} + 1 & m_{n2} + 1 & m_{nn} + 1 \end{bmatrix}$$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I}) = \det \begin{bmatrix} n + \sum_{i} m_{i1} & n + \sum_{i} m_{i2} & \cdots & n + \sum_{i} m_{in} \\ m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1} + 1 & m_{n2} + 1 & \cdots & m_{nn} + 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} n & n & \cdots & n \\ m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1} + 1 & m_{n2} + 1 & m_{nn} + 1 \end{bmatrix}$$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I}) = \det \begin{bmatrix} m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} + 1 & m_{n2} + 1 & m_{nn} + 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} n^2 & n & \cdots & n \\ n + \sum_i m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \vdots & \ddots & \vdots \\ n + \sum_i m_{n1} + 1 & m_{n2} + 1 & m_{nn} + 1 \end{bmatrix}$$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I})$$
 = $\det \begin{bmatrix} n^2 & n & \cdots & n \\ n + \sum_i m_{21} + 1 & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ n + \sum_i m_{n1} + 1 & m_{n2} + 1 & \cdots & m_{nn} + 1 \end{bmatrix}$ = $\det \begin{bmatrix} n^2 & n & \cdots & n \\ n & m_{22} + 1 & \cdots & m_{1n} + 1 \\ \vdots & \ddots & \ddots & \vdots \\ n & m_{n2} + 1 & m_{nn} + 1 \end{bmatrix}$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I})$$
 = $\det\begin{bmatrix} n^2 & n & \cdots & n \\ n & m_{22}+1 & \cdots & m_{1n}+1 \\ \vdots & \vdots & \ddots & \vdots \\ n & m_{n2}+1 & \cdots & m_{1n}+1 \end{bmatrix}$
= $n^2 \det\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & m_{22}+1 & \cdots & m_{1n}+1 \\ \vdots & \ddots & \ddots & \vdots \\ 1 & m_{n2}+1 & \cdots & m_{nn}+1 \end{bmatrix}$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I})$$
 = $n^2 \det \begin{bmatrix} \frac{1}{1} & \frac{1}{m_{22}+1} & \cdots & \frac{1}{m_{1n}+1} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{1}{1} & m_{n2}+1 & \cdots & m_{nn}+1 \end{bmatrix}$ = $n^2 \det \begin{bmatrix} \frac{1}{0} & \frac{1}{m_{22}} & \cdots & \frac{1}{m_{nn}} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & m_{n2} & \cdots & m_{nn} \end{bmatrix}$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then $\det M_{rc} = \pm \det M_{11}$, for $1 \le r, c \le n$

Then
$$\det(M + \mathbb{I})$$
 = $n^2 \det \begin{bmatrix} \frac{1}{1} & \frac{1}{m_{22}+1} & \cdots & \frac{1}{m_{1n}+1} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & m_{n2}+1 & m_{nn}+1 \end{bmatrix}$
= $n^2 \det \begin{bmatrix} \frac{1}{0} & \frac{1}{m_{22}} & \cdots & \frac{1}{m_{1n}} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & m_{n2} & m_{nn} \end{bmatrix}$
= $n^2 \det M_{11}$

Definition

Let K be a knot. The knot determinant of K is $det(K) = |det(M_K)_{11}|$

Lemma

Let $M = (m_{rc})$ be an $n \times n$ matrix with zero row and column sums.

Then
$$\det M_{rc} = \pm \det M_{11}$$
, for $1 \le r, c \le n$

Proof Let \mathbb{I} be the $n \times n$ -matrix with every entry equal to 1

Then
$$\det(M + \mathbb{I})$$
 = $n^2 \det \begin{bmatrix} \frac{1}{1} & \frac{1}{m_{22}+1} & \cdots & \frac{1}{m_{1n}+1} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{1}{1} & m_{n2}+1 & \cdots & m_{nn}+1 \end{bmatrix}$ = $n^2 \det \begin{bmatrix} \frac{1}{0} & \frac{1}{m_{22}} & \cdots & m_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{1}{0} & m_{n2} & \cdots & m_{nn} \end{bmatrix}$

By the same argument, if $1 \le r, c \le n$ then $\det(M+\mathbb{I}) = (-1)^{r+c} n^2 \det M_{rc}$

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Theorem

Let K be an alternating knot and $p \ge 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant det(K)

Proof

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Theorem

Let K be an alternating knot and $p \ge 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant $\det(K)$

Proof

By definition, K is p-colorable if and only if there exist c_1, \ldots, c_n such that $M_K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \equiv \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \pmod{p}$.

Now
$$\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is a 0-eigenvector of M_K

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Theorem

Let K be an alternating knot and $p \ge 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant det(K)

Proof

By definition, K is p-colorable if and only if there exist c_1, \ldots, c_n such that $M_K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \equiv \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \pmod{p}$.

Now $\begin{bmatrix} 1 \\ \vdots \\ i \end{bmatrix}$ is a 0-eigenvector of M_K , so if $d \in \mathbb{Z}$ then

$$M_K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = M_K \begin{bmatrix} c_1+1 \\ \vdots \\ c_2+1 \end{bmatrix}$$

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Theorem

Let K be an alternating knot and $p \ge 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant det(K)

Proof

By definition, K is p-colorable if and only if there exist c_1, \ldots, c_n such that $M_K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \equiv \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \pmod{p}$.

Now $\begin{bmatrix} 1 \\ \vdots \\ i \end{bmatrix}$ is a 0-eigenvector of M_K , so if $d \in \mathbb{Z}$ then

$$M_{K}\begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} = M_{K}\begin{bmatrix} c_{1}+1 \\ \vdots \\ c_{n}+1 \end{bmatrix} = M_{K}\begin{bmatrix} c_{1}+2 \\ \vdots \\ c_{n}+2 \end{bmatrix}$$

Definition

Let K be an alternating knot. The knot determinant of a knot K is $det(K) = |det(M_K)_{11}|$ — can take any minor of M_K

Theorem

Let K be an alternating knot and $p \ge 3$ be a prime. Then K is p-colorable if and only if p divides the knot determinant det(K)

Proof

By definition, K is p-colorable if and only if there exist c_1, \ldots, c_n such that $M_K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \equiv \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \pmod{p}$.

Now $\begin{bmatrix} 1 \\ \vdots \\ \vdots \end{bmatrix}$ is a 0-eigenvector of M_K , so if $d \in \mathbb{Z}$ then

$$M_{K}\begin{bmatrix}c_{1}\\\vdots\\c_{n}\end{bmatrix}=M_{K}\begin{bmatrix}c_{1}+1\\\vdots\\c_{n}+1\end{bmatrix}=M_{K}\begin{bmatrix}c_{1}+2\\\vdots\\c_{n}+2\end{bmatrix}=\cdots=M_{K}\begin{bmatrix}c_{1}+d\\\vdots\\c_{n}+d\end{bmatrix}$$

Proof Continued

 \implies We can assume that $c_1=0$ by taking $d=-c_1$

Hence, K is p-colorable if and only if and only if there exist c_2, \ldots, c_n such that

$$M_K \begin{bmatrix} 0 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \equiv 0 \pmod{p}$$

Proof Continued

 \implies We can assume that $c_1=0$ by taking $d=-c_1$

Hence, K is p-colorable if and only if and only if there exist c_2, \ldots, c_n such that

$$M_{\mathcal{K}} \begin{bmatrix} 0 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \equiv 0 \pmod{p} \quad \Longleftrightarrow \quad (M_{\mathcal{K}})_{11} \begin{bmatrix} c_2 \\ \vdots \\ c_n \end{bmatrix} \equiv 0 \pmod{p}$$

Proof Continued

 \implies We can assume that $c_1=0$ by taking $d=-c_1$

Hence, K is p-colorable if and only if and only if there exist c_2, \ldots, c_n such that

$$M_{K} \begin{bmatrix} 0 \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \equiv 0 \pmod{p} \iff (M_{K})_{11} \begin{bmatrix} c_{2} \\ \vdots \\ c_{n} \end{bmatrix} \equiv 0 \pmod{p}$$
$$\iff \det(K) \neq 0 \pmod{p}$$

The knot	determinant	/3
Remarks		

The knot	determinant		/3
----------	-------------	--	----

The Reidemeister moves show that the knot matrix M_K is not a knot invariant but $\det(K) = |\det(M_K)_{11}|$ is a knot invariant

- The Reidemeister moves show that the knot matrix M_K is not a knot invariant but $det(K) = |det(M_K)_{11}|$ is a knot invariant
- $\textbf{ If } K \text{ and } L \text{ are knots then } \det(K \# L) = \det(K) \det(L)$

- The Reidemeister moves show that the knot matrix M_K is not a knot invariant but $det(K) = |det(M_K)_{11}|$ is a knot invariant
- If K and L are knots then $\det(K\#L) = \det(K) \det(L)$ if $\det(K\#L) = p$ is prime, then either $\det(K) = p$ or $\det(L) = p$

- The Reidemeister moves show that the knot matrix M_K is not a knot invariant but $\det(K) = |\det(M_K)_{11}|$ is a knot invariant
 - If K and L are knots then $\det(K\#L) = \det(K) \det(L)$ \implies if $\det(K\#L) = p$ is prime, then either $\det(K) = p$ or $\det(L) = p$
- \bullet If K is not alternating then the row sums of M_K are still 0.

- The Reidemeister moves show that the knot matrix M_K is not a knot invariant but $\det(K) = |\det(M_K)_{11}|$ is a knot invariant
 - If K and L are knots then $\det(K\#L) = \det(K) \det(L)$ \implies if $\det(K\#L) = p$ is prime, then either $\det(K) = p$ or $\det(L) = p$
- 3 If K is not alternating then the row sums of M_K are still 0. Therefore, the argument used to prove the theorem shows that K is p-colorable if and only if p divides $(M_K)_{rc}$, for some r, c.

Colorability of the figure eight knot

Summary of how to determine p-colorability

 $oldsymbol{0}$ Label the segments in traveling order

Colorability of the figure eight knot

Summary of how to determine *p*-colorability

- Label the segments in traveling order
- $_{\hbox{\scriptsize 2}}$ Compute the entries of the knot matrix M_{K}

Colorability of the figure eight knot

Summary of how to determine *p*-colorability

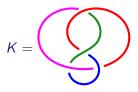
- Label the segments in traveling order
- **2** Compute the entries of the knot matrix M_K
- $oldsymbol{\circ}$ Compute the knot determinant $\det(K) = |\det(M_K)_{11}|$

Colorability of the figure eight knot

Summary of how to determine *p*-colorability

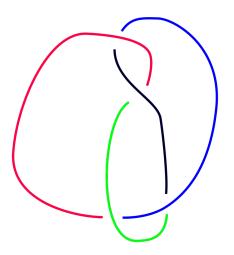
- Label the segments in traveling order
- 2 Compute the entries of the knot matrix M_K
- $_{f 3}$ Compute the knot determinant $\det(K) = |\det(M_K)_{11}|$
- \bullet Check if p divides det(K)

$$M_{\mathcal{K}} = \left(\begin{array}{cccc} 2 & -1 & -1 & 0 \\ -1 & 0 & 2 & -1 \\ -1 & -1 & 0 & 2 \\ 0 & 2 & -1 & -1 \end{array} \right)$$



The determinant is five, so the figure eight knot is five-colorable (and only five colorable)

Colorability of the figure eight knot – part 2



Thus, the figure eight knot is not trivial (it has strictly more than five 5-colorings) and also not the trefoil knot

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface

Remark In general, a Seifert surface is not unique

Definition

A Seifert surface for a knot K is an orientable surface that has K as its boundary

Theorem

Every knot has a Seifert surface

Remark In general, a Seifert surface is not unique

We will prove this result by giving an algorithm for constructing a Seifert surface for any knot

Proof Real world version

Take a knot, build out of wire, and put it into soap

The minimal surface you get is a Seifert surface

Proof Math version

Step 1 Pick an orientation of the knot That is, fix a direction to travel around the knot

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles

Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

Proof Math version

Step 1 Pick an orientation of the knot

That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles

Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

Proof Math version

Step 1 Pick an orientation of the knot

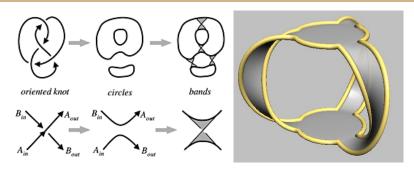
That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and outgoing strings; the knot is then a disjoint union of Seifert circles

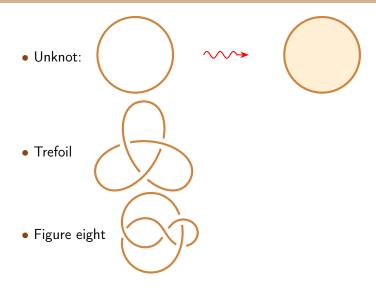
Step 3 Imagine the Seifert circles as being at different heights and glue a disk onto each one of the Seifert circles

Step 4 Now each crossing in K, glue on a twisted strip that has the crossing as a boundary

The platform constructior



• Unknot:

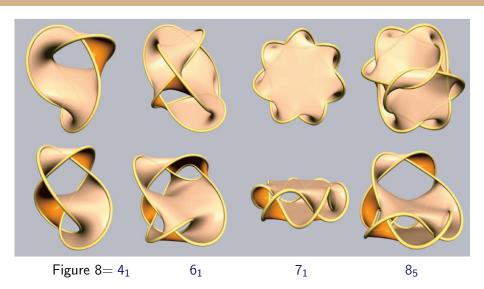


• Unknot:

Trefoil

• Figure eight

More examples of Seifert surfaces



Let S be a Seifert surface of a knot K

Let S be a Seifert surface of a knot K

 \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3

Let S be a Seifert surface of a knot K

 \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3

$$\implies$$
 $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \geq 0$

Let S be a Seifert surface of a knot K

 \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3

$$\Longrightarrow$$
 $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \ge 0$

Definition

The genus of
$$K$$
 is $g(K) = \min \left\{ \frac{1-\chi(S)}{2} \mid S \text{ a Seifert surface of } K \right\}$

Remark Used to prove uniqueness of factorization of prime knots

Let S be a Seifert surface of a knot K

 \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3

$$\Longrightarrow$$
 $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \ge 0$

Definition

The genus of
$$K$$
 is $g(K) = \min \left\{ \frac{1-\chi(S)}{2} \mid S \text{ a Seifert surface of } K \right\}$

Remark Used to prove uniqueness of factorization of prime knots

Let S be a Seifert surface of a knot K

- \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3
- \implies $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K) = \min \left\{ \frac{1-\chi(S)}{2} \mid S \text{ a Seifert surface of } K \right\}$

Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

• $K = \bigcirc \implies g(K) = 0$ as $S \cong \mathbb{D}^2$ and g cannot be smaller, so just checking this one diagram \bigcirc is sufficient

Let S be a Seifert surface of a knot K

- \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3
- \implies $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of
$$K$$
 is $g(K) = \min \left\{ \frac{1 - \chi(S)}{2} \mid S \text{ a Seifert surface of } K \right\}$

Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

• $K = \bigcirc \implies g(K) = 0$ as $S \cong \mathbb{D}^2$ and g cannot be smaller, so just checking this one diagram \bigcirc is sufficient

Fact
$$g(K) = 0 \iff K = \bigcirc$$

Let S be a Seifert surface of a knot K

- \implies S is orientable + has one boundary circle since it embeds in \mathbb{R}^3
- \implies $S \cong \mathbb{D}^2 \# \#^t \mathbb{T}$, where $t = \frac{1-\chi(S)}{2} \geq 0$

Definition

The genus of K is $g(K) = \min \left\{ \frac{1 - \chi(S)}{2} \mid S \text{ a Seifert surface of } K \right\}$

Remark Used to prove uniqueness of factorization of prime knots Example (with proof!)

• $K = \bigcirc$ \implies g(K) = 0 as $S \cong \mathbb{D}^2$ and g cannot be smaller, so just checking this one diagram O is sufficient

Fact
$$g(K) = 0 \iff K = \bigcirc$$

Problem K is the trefoil: ... not very clear how to calculate g(K)!

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.

Then
$$\chi(S) = s - c$$
 and $g(K) \le \frac{1+c-s}{2}$

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.

Then
$$\chi(S) = s - c$$
 and $g(K) \le \frac{1+c-s}{2}$

Proof Recall from tutorials that $\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$

Write $S = A \cup B$, where A the union of the Seifert circles and B the union of the twists in S

$$\implies A \cap B$$
 is a union of c pairs

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.

Then
$$\chi(S) = s - c$$
 and $g(K) \le \frac{1+c-s}{2}$

Proof Recall from tutorials that $\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$

Write $S = A \cup B$, where A the union of the Seifert circles and B the union of the twists in S

$$\implies A \cap B$$
 is a union of c pairs

$$\Rightarrow \chi(S) = \chi(A) + \chi(B) - \chi(A \cap B) = s + c - 2c = s - c$$

Proposition

Let S be the Seifert surface with s Seifert circles that is constructed from a knot projection for a knot K with c crossings.

Then
$$\chi(S) = s - c$$
 and $g(K) \le \frac{1+c-s}{2}$

Proof Recall from tutorials that $\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$

Write $S = A \cup B$, where A the union of the Seifert circles and B the union of the twists in S

$$\implies A \cap B$$
 is a union of c pairs

$$\Rightarrow \chi(S) = \chi(A) + \chi(B) - \chi(A \cap B) = s + c - 2c = s - c$$

Hence,
$$g(K) \le \frac{1-\chi(S)}{2} = \frac{1+c-s}{2}$$

Genus of trefoil and figure eight knots

If K has c crossings and s Seifert circles then $g(K) \leq \frac{1+c-s}{2}$



Genus of alternating knots

Bad news: It can happen that $g(K) < \frac{1-\chi(S)}{2}$!!

Genus of alternating knots

Bad news: It can happen that $g(K) < \frac{1-\chi(S)}{2}$!!

The good news is that there is no bad news for alternating knots

Theorem

Let S be the Seifert surface constructed from an alternating knot projection of K. Then $g(K) = \frac{1-\chi(S)}{2}$

Proof Nontrivial and omitted!

Knot genus is additive

Theorem

Let K and L be knots. Then g(K#L) = g(K) + g(L)

Start of proof It is not hard to see that $S_{K\#L} \cong S_K \#_{\text{strip}} S_L$ (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K\#L) \leq g(K) + g(L)$. The reverse implication is much harder!

Knot genus is additive

Theorem

Let K and L be knots. Then g(K#L) = g(K) + g(L)

Start of proof It is not hard to see that $S_{K\#L} \cong S_K \#_{\text{strip}} S_L$ (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K\#L) \leq g(K) + g(L)$. The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are non-trivial because both knots have genus $1\,$

Knot genus is additive

Theorem

Let K and L be knots. Then g(K#L) = g(K) + g(L)

Start of proof It is not hard to see that $S_{K\#L} \cong S_K \#_{\text{strip}} S_L$ (connected sum along a strip connecting the surfaces and boundary cycles). This implies that $g(K\#L) \leq g(K) + g(L)$. The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are non-trivial because both knots have genus $1\,$

Corollary

Let K and L be knots, which are not the unknot. Then $K \not\cong (K \# L) \# M$ for any knot M

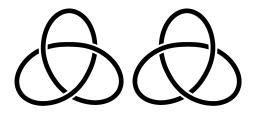
Proof If such a knot M existed then

$$g(K) = g((K\#L)\#M) = g(K) + g(L) + g(M)$$

$$\implies g(M) = -g(L) < 0 \qquad \text{if} \qquad \text{if}$$

Left = right-handed trefoil? No idea...

No method we have seen distinguishes these two fellows:



But that has to wait for another time...

A few take away pictures

