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4:30pm-5:30pm or by appointment (an informal email
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Web www.dtubbenhauer.com/teaching.html

I apologize in advances for any typos or other errors on these slides!
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Topology
Unit outline

Topology is the study of properties of spaces that are preserved
by continuous deformation

We will study:

Graphs
Surfaces
Knots

These are all “topological” objects and we will study all of them
by using invariants and by approximating them with graphs

In topology we are allowed to bend and stretch
We are not allowed to cut, tear or join surfaces together
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Underlying theme in this unit
In this course we want to understand curves and surfaces but we allow
ourselves to wiggle and stretch the curves and surfaces

Thinking about an arbitrary curve or surface in space is hard, and this is
even before we allow them to be continuously deformed

One of the key ideas that we will use is that we can approximate curves
and surfaces using graphs
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Topological equivalences

≡

Topologically, a square and a circle are the same

≡

Topologically, a cube and a sphere are the same

We will see in more detail why these are the same later

...as well as looking at more exotic surfaces

= ≡ ??
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A torus is the same as a coffee mug

Source https://en.wikipedia.org/wiki/Topology
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Graphs
A (finite) graph is an ordered pair G = (V ,E ), where:

• V is a non-empty finite set of vertices
• E is a finite multiset of edges, which are unordered pairs of vertices

The difference between a set and a multiset is that multisets can have
repeated entries

Examples

• V = {1, 2, 3} and E =
{
{1, 1}, {1, 1}, {1, 1}, {2, 3}

}
• V = {a, b, c , d} and E =

{
{a, a}, {a, b}, {a, b}, {a, c}, {a, d}

}
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Graphs in the plane
Rather than working with the abstract definition of graphs, it is more
intuitive to draw pictures of graphs in the plane

where:
vertices = distinct points in R2, edges = curves between the points

This is called a realization of the graph in R2

Examples

• V = {1, 2, 3} and E =
{
{1, 1}, {1, 1}, {1, 1}, {2, 3}

}
1 2 3 (not connected!)

• V = {a, b, c , d} and E =
{
{a, a}, {a, b}, {a, b}, {a, c}, {a, d}

}

a d

c

b
(connected!)

As shown, we allow loops and duplicate edges
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Warning: drawings can be misleading
Drawings of graphs are useful pictorial aids, but be careful:
There are many ways to draw the same graph so we always need to check
that whatever are doing does not depend on how the graph is drawn!

Here are four different ways to draw the same graph

a d

c

b

a

cd

b

a c

d

b

a

cd

b

c a d

b
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Standard graphs
Path graphs Pn, for n ≥ 1 (also called line graphs)
Vertex set V = {1, 2, . . . , n}
Edge set E =

{
{1, 2}, {2, 3}, . . . , {n − 1, n}

}

1 1 2 1 2 3 1 2 3 4 · · ·

Cyclic graphs Cn, for n ≥ 1
Vertex set V = {1, 2, . . . , n}
Edge set the multiset E =

{
{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}

}

1 1

2
1

23

1

2

3

4

1

2

34

5
· · ·
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Standard graphs...
Complete graphs Kn, for n ≥ 1
Vertex set V = {1, 2, . . . , n}
Edge set E =

{
{i , j}

∣∣ 1 ≤ i < j ≤ n
}

1

1

2
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1
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2

3
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6
1

2

3

45
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2

3

4
5

6

7
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1

2

3

4
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7

8

9
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Standard graphs...
Complete bipartite graphs Kn,m, for n,m ≥ 1
Vertex set V = {1, 2, . . . , n, 1′, 2′, . . . ,m′}
Edge set E =

{
{i , j ′}

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

K2,3

1 2

1′ 2′ 3′

K3,2

1 2 3

1′ 2′
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Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}

1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Directed graphs
We sometimes use directed graphs where we care about
the orientation of the edges.

Formally, a (finite) directed graph is an ordered pair (V ,E ), where:
• V is a finite set of vertices
• E is a finite multiset of directed edges, or ordered pairs of vertices

Examples

• V = {1, 2, 3} and E =
{
(1, 1), (1, 1), (1, 1), (2, 3)

}
1 2 3

• V = {a, b, c , d} and E =
{
(a, a), (a, b), (b, a), (a, c), (a, d)

}

a d

c

b

— Topology – week 7



Subgraphs
A subgraph of a graph G = (V ,E ) is a graph H = (W ,F ) such that

W ⊆ V and F ⊆ E

If (V ,E ) is a graph and W ⊆ V then the full subgraph of (V ,E ) with
vertex set W is the graph (W ,F ) with F =

{
{w ,w ′} ∈ E

∣∣w ,w ′ ∈ W
}

That is, the full subgraph of G = (V ,E ) with vertex set W is the subgraph
of G that contains every edge in G that connects vertices in W .

Example The full subgraph of K6 with vertex set W = {1, 3, 5} is:
1

2

3

4

5

6
1

35

That is, F =
{
{1, 3}, {3, 5}, {5, 1}

}
Clearly, (W ,F ) is “the same” as the cyclic graph C3

...but what does it mean for graphs to be “the same ”?
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Isomorphic graphs
Two graphs G = (V ,E ) and H = (W ,F ) are isomorphic, written G ∼= H,
if there is a bijection f :V −→W such that the induced map on edges,
which sends an edge {v , v ′} ∈ E to {f (v), f (v ′)}, is also a bijection.

Notice that if f :G−→H is a graph isomorphism then:
• if {v , v ′} ∈ E is an edge of G then {f (v), f (v ′)} ∈ F is an edge of H
• Every edge {w ,w ′} ∈ F can be written uniquely as {f (v), f (v ′)}

Examples
• G ∼= H if and only if H ∼= G

• Kn,m
∼= Km,n

• The full subgraph of K6 with vertex set W = {1, 3, 5} has
edge set F =

{
{1, 3}, {3, 5}, {5, 1}

}
1

2

3

4

5

6
1

35

Claim (W ,F ) ∼= C3
For example, define f by

f (1) = 1,
f (3) = 2, and
f (5) = 3
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Subgraphs of complete graphs
Proposition
Let G = (V ,E ) be a graph on n vertices that has no loops and no
duplicated edges. Then G is isomorphic to a subgraph of Kn.

Proof

Write V = {v1, v2, . . . , vn}.
Let N = {1, 2, . . . , n} be the vertex set of Kn and let

En =
{
{i , j}

∣∣ 1 ≤ i < j ≤ n
}

be its edge set.

Define H = (N,EV ) to be the subgraph of Kn with
EV =

{
{i , j}

∣∣ {vi , vj} ∈ E
}
.

Then the map f :N−→V given by f (i) = vi ∈ V is
a graph isomorphism.
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Planar graphs
A planar graph is a graph that can be drawn in the R2 in such a way that
no edges cross.

This gives a planar embedding of the graph

Examples
• Graphs can have planar embeddings and other non-planar realizations

• Every path graph Pn is planar

• Every cyclic graph Cn is planar

1 2 3 4

1

2

34

5
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Complete graphs are rarely planar

• K1 1

• K2 1 2

• K3

1

23

• K4

1

2

3

4

• K5

1

2

34

5

• K6

1

2

3

4

5

6
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Graph embeddings in R3

Theorem
Every graph can be embedded (i.e. without edge crossings) in R3

Moral Graphs are “low dimensional” objects

Proof First, loops and duplicate edges are easy to treat, so we ignore
them. Next, use a book embedding:

A 3-page embedding of K5:

In general, one can embed Kn into a book with ⌈n/2⌉ pages. Since every
graph is a subgraph of some Kn, so we are done since books ⊂ R3
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The degree of a vertex
Let G = (V ,E ) be a graph. The degree of a vertex v ∈ V is

deg(v) = #
{

number of edges in E that have v as an endpoint
}

Examples

• 1 2 3 deg(1)=3

•
a d

c

b
deg(a)=5

• Pn 1 2 3 4 5 6 deg(4)=2
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Degrees of vertices in standard graphs; examples

• Cn

1

2

3

4

5

6

deg(4)=2

• Kn

1

2

3

4

5

6

deg(4)=5

• Kn,m

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′
deg(4)=5
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The handshaking lemma
Proposition (Vertex-degree equation = handshaking lemma)
Let G = (V ,E ) be a finite graph. Then∑

v∈V
deg(v) = 2|E |

Proof If I shake your hand, then you shake mine: every edges is adjacent
to two vertices, hence each edges contributes twice
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The handshaking lemma
Proposition (Vertex-degree equation = handshaking lemma)
Let G = (V ,E ) be a finite graph. Then∑

v∈V
deg(v) = 2|E |

Proof

Strictly speaking, we would use induction on |E |:
There is nothing to show if there is no edge, and if |E | > 0 remove any edge
e use induction for E ′ = E \ {e}, and add e using the previous observation
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The Euler characteristic of a graph
Let G = (V ,E ) be a graph. The Euler characteristic of G is the integer

χ(G ) = |V | − |E |

Moral
χ(G ) = #(degree 0 components of G )−#(degree 1 components of G )
Examples

• 1 2 3 χ(G ) = −1

•
a d

c

b
χ(G ) = −1

• Pn 1 2 3 4 5 6 χ(G ) = 1
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The Euler characteristic of standard graphs

• Cn

1

2

3

4

5

6

χ(G ) = 0

• Kn

1

2

3

4

5

6

χ(G ) = n − 1
2n(n − 1) = −1

2n(n − 3)

• Kn,m

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′

χ(G ) = n +m − nm
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Subdividing graphs
Let G = (V ,E ). A subdivision of G is any graph Ġ that is obtained
from G by successively replacing V with V ∪ {u}, for u /∈ V ,
and E with E ∪

{
{v , u}, {u,w}

}
\
{
{v ,w}

}
, for an edge {v ,w} ∈ E

That is, we successively replace an edge v w with v u w

Examples

• 1 2 3 7→ 1 2 3 4

• 1 2 3 7→
1

2

2 3

• 1 7→ 1 2 3 4
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Subdivision and Euler characteristic
Proposition

Let Ġ be a subdivision of G . Then χ(Ġ ) = χ(G )

Proof

The operation

v w 7→ v u w

clearly increases V and E by one, so their difference does not change.
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Paths in graphs
Let G = (V ,E ) be a graph and v ,w ∈ V . A path in G of length n
from v to w is a sequence of vertices v = v0, v1, . . . , vn = w such
that {vi , vi+1} ∈ E , for 0 ≤ i < n.

That is, the path looks like v0 v1 v2 . . . vn

Example
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Connectivity in graphs
Observations

• Every vertex is a path of length 0

• A path can pass through any edge zero or more times

• A path can go through any vertex zero or more times

• A path P = (v = v0 → v2 → · · · → vn = w) of length n in a graph
is the same as a graph homomorphism (not nes. an iso) f :Pn+1−→G
with f (i) = vi−1, for 1 ≤ i ≤ n + 1

A graph is connected if there is a path between any two vertices

The connected components of a graph G are the maximal connected
subgraphs of G . That is, H = (W ,F ) is a connected component of
G = (V ,E ) if H is
connected and {v ,w} ∈ F whenever {v ,w} ∈ E and w ∈ W

Example

1 2 3 Not connected, two connected components
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Connected examples
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Connected examples

• A fully “disconnected” graph:
1

2

3

4
56

7

8

9
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Circuits
A circuit or cycle in G is a path from any vertex to itself

Example
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Observations about circuits
Observations

• Every vertex is a circuit of length 0

• A circuit can pass through any edge zero or more times

• A circuit can go through any vertex zero or more times

• A circuit P = (v = v0 → v2 → · · · → vn = v) of length n in a graph
is the same as a graph homomorphism (not nes. an iso) f :Cn−→G
with f (i) = vi , for 0 ≤ i ≤ n

• “Inefficient circuits” backtrack over the same edges and vertices

• We will soon see that the Euler characteristic is closed related
to the number of “reduced” circuits in a graph
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Contractible circuits
A circuit v = v0 → v1 → · · · → vn = v is contractible if it contains two
consecutive repeated edges {vi , vi+1} = {vi+1, vi+2}, for some
0 ≤ i ≤ n − 2
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Reduced circuits
A circuit is reduced if it is not contractible

Notice that every circuit v = v0 → v1 → · · · → vn = v can be replaced
with a reduced circuit by successively deleting the repeated edges

vi → vi+1 → vi+2 = vi .

Observations

• Reduced circuits are “efficient” in the sense that they do not backtrack

• A reduced circuit of length n is not necessarily isomorphic to the
cycle graph Cn+1 because it could, for example, be a figure 8 graph
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Leaves and trees
A non-trivial circuit is a reduced circuit of length n > 0

A tree is a connected graph that has no non-trivial circuits

Examples

• Saturated hydrocarbons

H
C HH

H

Methane

H
C C H

H

H
H

H

Ethane

H
C C C H

H

H

H

H
H

H

Propane

H
C C C C H

H

H

H

H

H

H
H

H

Butane

• A tournament tree
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A catalog of small (connected) trees
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Trees have leaves
If T is a tree then a leaf in T is any vertex of degree 1

Theorem
Let T be a tree with at least one edge. Then T has at least two leaves.

Remark This result provides an inductive tool for proving facts about trees
because removing a leaf gives a tree with one less edge and vertex

Proof Take a longest reduced path P in T , then both endpoints of P are
leaves

Why? Say the endpoints are v and w . WLOG suppose v is not a leaf; then
v has at least two neighbors and one of them is not in P . (Otherwise we
would have a circuit.) Thus one can make P longer. Contradiction
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The Euler characteristic of a tree
Theorem
Suppose that T is a tree. Then χ(T ) = 1

Proof Argue by induction on the number of edges |E |
For |E | small use the previous table.

Otherwise, remove one leave (which exists by the previous statement). The
resulting tree has χ(T ) = 1, and adding the leave back increases V and E
by one, so χ remains constant
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Number of edges and vertices in a tree
Corollary
Suppose that T = (V ,E ) is a tree. Then |V | = |E |+ 1.

Proof By the previous statement
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Spanning trees
Proposition
Suppose that G = (V ,E ) is a connected graph.
Then G has a subgraph T = (V ,F ) (same vertices) that is a tree

Proof We remove edges to break circuits

(Formally, use induction on the number of nontrivial circuits of G )

A spanning tree of G is any subgraph T of G that is a tree and has
the same set of vertices as G

Example
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Spanning trees continued
Proposition
Suppose that G = (V ,E ) is a connected graph.
Then G has a spanning tree T = (V ,F ) (same vertices )

Proof Remove edges from nontrivial circuit of G to break them; the result
is a spanning tree

(Formally, use induction on the number of nontrivial circuit of G )
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An upper bound on χ(G )

Corollary
Suppose that G is a connected graph. Then χ(G ) ≤ 1 with equality if and
only if G is a tree.

Proof By the previous statements G has more edges than any of its
spanning trees, hence, χ(span tree) = 1 implies the corollary

Corollary
Let G be a connected graph. The number of independent cycles
(defined via example on the next slide)
in G is 1 − χ(G )

Proof By the previous statements
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Independent cycles
Examples

1

2

3

4 χ = 1, no independent cycles

1

2

3

4 χ = −1, two independent cycles

We have {{1, 2}, {2, 3}, {3, 4}, {1, 4}} =
{{1, 2}, {2, 4}, {1, 4}}+ {{2, 3}, {3, 4}, {2, 4}} mod2

Remark It is possible to construct a vector space of “cycles” that has
dimension 1 − χ(G ), which shows that the number of independent
cycles makes sense. This is beyond the scope of this course.
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Eulerian circuits and graphs
A Eulerian circuit is a circuit that passes through every edge exactly once

A graph is Eulerian if it has a Eulerian circuit

Example

Warning Eulerian graphs do not need to be connected because they
may have vertices of degree 0!
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Finding Eulerian circuits
In 1736 Euler asked when graphs have Eulerian circuits (without having
this terminology)

The motivation was that they wanted to know if it was possible to walk
around the city of Königsberg crossing each bridge exactly once

In answering this question Euler laid the foundations of graph theory
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Classifying Eulerian graphs
Theorem
Let G = (V ,E ) be a connected graph. Then G is Eulerian if and only if
every vertex has even degree

Proof

Assume that there is at least one vertex v of odd degree. Since we want to
visit every edge exactly once we will eventually get stuck in v or another
vertex of odd degree while trying to create an Eulerian cycle. Hence, G can
not have an Eulerian cycle
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Classifying Eulerian graphs

Proof continued

Conversely, if every vertex has even degree, then G is not a tree so contains
some circuit C . If C is an Euler circuit we are done, and if not remove all
edges of C from G . The resulting (potentially disconnected) graph G ′ has
still even degrees for all of its vertices but fewer edges than G

So we can argue by induction on the number of edges (the base case has
no edges and is thus clear), and inductively we can assume that the
connected components of G ′ have Euler circuits C1, . . . ,Cn
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Classifying Eulerian graphs

Proof continued

We piece C and C1, . . . ,Cn together into an Euler cycle: we walk along C
and whenever we hit a vertex of Ci we take a detour over Ci
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Eulerian paths
A Eulerian path is a path that is not a circuit and which passes through
every edge exactly once

Corollary
Let G = (V ,E ) be a connected graph that is not Eulerian. Then G has a
Eulerian path if and only if it has exactly two vertices of odd degree

Proof

Only vertices of odd degree can be a start or an end vertex, so we need
precisely two of them (all other must be of even degree by the same
argument as before)
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Eulerian paths

Proof continued

Conversely, if v and w are the two vertices of even degree, then we put an
additional edge e between them. We get a graph G ′ = G ∪ {e} and the
previous theorem gives us an Euler circuit C in G ′. Then C \ {e} is an
Euler path
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What about Königsberg?

There is no Eulerian circuit since all vertices have odd degree

There is no Eulerian path since all vertices have odd degree

Solution: Destroy bridge e ;-)
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Topological equivalence
Let X ⊆ Rm and Y ⊆ Rn, for m, n ≥ 1

Definition
A homeomorphism f :X −→Y is a continuous map that has a continuous
inverse g :Y −→X . The spaces X and Y are homeomorphic if there is a
homeomorphism f :X −→Y

Remarks

• Homeomorphism is the higher dim analog of isomorphism for graphs
We treat two spaces as being “equal” if they are homeomorphic

• The maps f and g are both bijections with continuous inverses

• We have X ∼= X

• If X ∼= Y , then Y ∼= X

• If X ∼= Y and Y ∼= Z , then X ∼= Z
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Examples of homeomorphisms

Proposition
If a < b and c < d , then [a, b] ∼= [c , d ]

Proof

Define maps f : [a, b]−→ [c , d ]; x 7→ c + d−c
b−a (x − a)

g : [c , d ]−→ [a, b]; x 7→ a+ b−a
d−c (x − c)

Exercise Show that (a, b) ∼= (c , d) and (a, b] ∼= (c, d ]

!!!∼=

[a, b) ∼= [c , d)

Proposition
If a < b, then (a, b) ∼= R
Proof It is enough to show that (−π

2 ,
π
2 )

∼= R
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Examples of homeomorphisms
Proof continued

Homeomorphisms are given by f (x) = tan(x) and g(x) = tan−1(x)

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

-5 5

-1.5

-1.0

-0.5

0.5

1.0

1.5

— Topology – week 8



Examples of homeomorphisms...

Proposition

∼= = S1

We show that ∼=

Proof

The square is
{
(x , y)

∣∣ |x |+ |y | = 1
}

and S1 =
{
(x , y)

∣∣ x2 + y2 = 1
}

Define: f : −→S1; (x , y) 7→
(

x√
x2+y2

, y√
x2+y2

)
g : S1−→ ; (x , y) 7→

(
x

|x |+|y | ,
y

|x |+|y |
)

Note that ̸∼=

For free we see that the square and disk are homeomorphic:

Corollary

∼= ∼=
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Stereographic projection in two dimensions
Think of the north pole of the circle S1 as ∞
Stereographic projection gives a homeomorphism π : S1 \ {∞} → R:

∞

x
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Stereographic projection in three dimensions
Think of the north pole of the circle S2 as ∞
Stereographic projection gives a homeomorphism π : S2 \ {∞} → R2:
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Stereographic projection in three dimensions
Think of the north pole of the circle S2 as ∞
Stereographic projection gives a homeomorphism π : S2 \ {∞} → R2:
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Maps
Stereographic projection is used to draw maps:

Other projections are also used such as gnomonic projections, conic
projections and the Mercator projection, which is a cylindrical projection

Now that we have seen homeomorphisms we are ready to define surfaces
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Surfaces — informal definition
Definition
A surface is a subset of Rn that, locally, is homeomorphic to the graph of
the function f :R2−→R3 given by f (x , y) = z / alternatively to a disc

Here “locally” means that we can find a “local neighborhood” of every point
where the function looks like the plane f (x , y) = z / a disc

Examples

• A standard xyz-plane in R3
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Surfaces — examples...
• Non-standard planes in R3

y

z

x

• Curved surfaces in R3
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Surfaces — examples...

• A disk D2

• An annulus A

∼=

Strictly speaking, these are not surfaces according to our definition because
they have a boundary, whereas planes in R2 do not have boundaries.

Our rigorous definition of a surface will allow surfaces with boundaries
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Surfaces — examples...
• A sphere S2

• A torus T
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Surfaces — real world examples...
• A sphere S2 ∼= soccer ball

• A torus T ∼= swim ring
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Surfaces — real world example...
• Here is a surface with boundary:

The patches are examples of neighborhoods which are discs
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Surfaces — examples...
• The real projective plane P2 = S2/antipode

We will see other ways to describe P2 later
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Surfaces — examples...
• A Möbius band, or Möbius strip, M

• A Klein bottle K, also Klein surface

This is a three dimensional “shadow” of a four dimensional object

— Topology – week 8



Surfaces — examples...
• A Möbius band, or Möbius strip, M

• A Klein bottle K, also Klein surface

This is a three dimensional “shadow” of a four dimensional object

— Topology – week 8



Surfaces — examples...
• A Möbius band, or Möbius strip, M

• A Klein bottle K, also Klein surface

This is a three dimensional “shadow” of a four dimensional object
— Topology – week 8



Surfaces — non-examples
• This is not a surface because of the cusp at the origin

• This is not a surface because the indicated point has not a disc neighborhood
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Identification spaces
A partition of a surface S ⊆ Rm is a collection X1, . . . ,Xr of subsets of S
such that S = X1 ∪ X2 ∪ · · · ∪ Xr

The space S is an identification space for Y ⊆ Rn if there exists a
continuous surjective map f :S−→Y

Note Y = f (X1) ∪ f (X2) ∪ · · · ∪ f (Xr ) and that the map f implicitly
identifies the points in f (Xi1) ∩ · · · ∩ f (Xis ), for 1 ≤ i1, . . . , is ≤ r

This makes is possible to understand Y in terms of, often, easier
spaces X1, . . . ,Xr , which we think of as covering Y like a patchwork quilt
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Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A =

cut a
=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a

=

a

a

b c

— Topology – week 8



Identification space for a cylinder

cut

a

a

b c

That is, the cylinder is the identification space obtained by identifying the
top and bottom edges of a suitably sized rectangle

A = cut a
=

a

a

b c

— Topology – week 8



Identification space for a torus

cut

a

a

b b

So, the torus T is obtained by identifying the top and bottom, and
the left and right, edges of a rectangle
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a
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b b
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Identification space for a sphere

cut aa

b c

b

c
b

b

c

c

The sphere S2 is obtained by identifying adjacent sides of a rectangle,
or a 2-gon (a polygon with two sides)
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Identification space for the projective plane P2

cut

=
b

a

a squash

a

a

b

=

a

a

c

c
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Identification space for a Möbius strip

cut

— Topology – week 8



Identification space for a Klein bottle
The Klein bottle is defined to be the identification space

K =

b

b

a a

Glue b

Push

It is not clear how we to do the last step in R3 and, in fact, we can’t!
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Polygons in Rn

We have seen that all of our “standard surfaces” can be viewed as
identification spaces using rectangles

A polygon is an embedding of the cyclic graph Cm into R2, together with
its face, such that such that the vertices of Cm map to distinct points
in R2 and the images of the edges do not intersect in R2

=⇒ The image of Cn in R2 is homeomorphic to the closed disc D2

C2 C3 C4 C5 C6

· · ·

Remarks
• The image of Cm in R2 is an m-gon, or a polygon with m sides

• Polygons are surfaces in R2. They are different from cyclic graphs
because they have vertices, edges and one face

• The graph C2 has only one edge. When working with surfaces we
think of C2 as having two edges so that its image in R2 is a 2-gon
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Surfaces and polygonal decompositions
Definition
A surface S is an identification space in Rn that is obtained by gluing
together polygons along their edges in such a way that at most two edges
meet along any edge
The polygons give a polygonal decomposition of the surface S

Remarks

• A surface is an identification space where we identify pairs of edges
in polygons. Informally, a surface is a patchwork quilt of polygons

• This essentially agrees with our earlier definition of surfaces because
every polygon is homeomorphic to a closed disc D2 so, locally,
surfaces look like planes / like discs

• A surface can have many seemingly different polygonal decompositions

• A surface with a polygonal decomposition has vertices, edges and faces
• We sometimes write S = (V ,E ,F ), where V is the vertex set,

edge set E , and face set F
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Identifying edges in polygonal decompositions
Whenever we draw polygonal decompositions we will usually:

• Label all of the edges with letters: a, b, c , . . .

• Use the same color for edges that have the same label

• Fix a direction of every edge (this is important!)

Remarks

• Identifying edges implicitly identifies vertices

• Colouring the edges is not strictly necessary but makes it easier
to see how the edges are identified in the polygonal decomposition

• You do not need to color the edges in your work, but you can
if you want to

• It is important to give the correct orientation, or direction, for the
paired edges because changing the direction of a paired edge will usually
change the surface

• When doing surgery always double check that you do not
accidentally change the orientation of an edge
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Examples of polygonal decompositions
We have already seen that:

• Annulus A ∼=

a

b

a

c

• Sphere

S2 ∼= a a ∼=

a

b

b

a

• Torus T ∼=

a

b

a

b

• Projective plane

P2 ∼= a a ∼=

a

b

a

b

• Möbius strip M ∼=

a

b

a

c

• Klein bottle K ∼=

a

b

a

b
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Important facts about polygonal decompositions
• Every polygon is homeomorphic to a closed disk D2

• At most two polygons meet in any edge, so

is not polygonal decomposition of a surface

• Any polygonal decomposition can be replaced with one that
only uses 3-gons:

=⇒ Iterating this process, shows that any surface has infinitely many
different polygonal decompositions!
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Important facts about polygonal decompositions...
• Every connected surface has a polygonal decomposition with

one polygon — with identified edges
(A polygonal surface is connected if the underlying graph is connected)

• We have to check that what we are doing does not depend on the
choice of polygonal decomposition
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Surgery: cutting and gluing
Surgery is our main tool for working with surfaces: it allows us
to change a polygonal decomposition by cutting and gluing

T ∼=

a

b

a

b =

a

b

a

bc

∼=

∼=

a
d

d

b
c

c

a

b

∼=

a
d

d

b
c

c

a

b

e
∼=

a
d

e

c
a

c

e

d

b =

a
d

e

c
a

c

e

d

f

∼=

a
d

e
f

e

d
f

c

a

c

We want an easy way to identify surfaces from polygonal decompositions
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Example surface
Exercise Can we describe the following surface?

a

e

f

g

d

h

i f

g

b

i

a

c

e

=

a
e

f

g

d

h
a

c

e

f

g

b

i

Answer Not yet! First we need more language and technology.
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Free and paired edges and the boundary
Let S be a surface with a polygonal decomposition

• An edge is free if it occurs only once in the polygonal decomposition

• An edge is paired if it occurs twice

• The boundary of S is the union of the free edges

• A boundary circle is a cycle in the polygonal decomposition
in which every edge is free

We will show that boundary of S is a disjoint union of boundary circles

Example

D2 = ∼= a b ∼=

a

b

c

d ∼=

a
b

f

f
c

d

e

e
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Example boundary circles...
• Sphere

S2 ∼= a a ∼=

a

b

b

a

• Torus T ∼=

a

b

a

b

• Projective plane

P2 ∼= a a ∼=

a

b

a

b

• Klein bottle K ∼=

a

b

a

b

All edges paired =⇒ no boundary

• Annulus A ∼=

a

b

a

c • Möbius M ∼=

a

b

a

c
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Example boundary circles...
Exercise What is the boundary of the surface?

a
e

f

g

d

h
a

c

e

f

g

b

Free edges: b, c , d , h

Key observation
Paired edges imply
that some vertices are
equal
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Example boundary circles...
Exercise What is the boundary of the surface?

a
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w
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Key observation
Paired edges imply
that some vertices are
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The Euler characteristic of a surface
Let S = (V ,E ,F ) be a surface with a polygonal decomposition

Definition
The Euler characteristic of S is χ(S) = |V | − |E |+ |F |

Remarks

• The Euler characteristic χ(S) = |V | − |E |+ |F | of S is a
higher dimensional generalization of the Euler characteristic
of a graph G = (V ,E ), which is χ(G ) = |V | − |E |

• The definition of χ(S) appears to depend on the choice of polygonal
decomposition (V ,E ,F ) of S . In fact, we will soon see that χ(S) is
independent of this choice
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• The definition of χ(S) appears to depend on the choice of polygonal
decomposition (V ,E ,F ) of S . In fact, we will soon see that χ(S) is
independent of this choice
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Euler characteristic of basic surfaces.
• Sphere

S2 ∼= a a ∼=

a

b

b

a , χ = 2

• Torus T ∼=

a

b

a

b , χ = 0

• Projective plane

P2 ∼= a a ∼=

a

b

a

b , χ = 1

• Klein bottle

K ∼=

a

b

a

b , χ = 0

• Annulus A ∼=

a

b

a

c , χ = 0 • Möbius M ∼=

a

b

a

c , χ = 0
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Euler characteristic example
Example What is the Euler characteristic of the surface:

S =

a
e

f

g

d

h
a

c

e

f

g

b
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Euler characteristic example
Example What is the Euler characteristic of the surface:

S =

a
e

f

g

d

h
a

c

e

f

g

b

yx

x

w

w

v

x y

x

x

w

w

=⇒ χ(S) = −3
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Example What is the Euler characteristic of the surface:
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e
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Subdivision of a surface
Let S be a surface with a polygonal decomposition

A subdivision of S is any polygonal decomposition that is obtained from S
by successively applying the following operations:

• Subdividing an edge by adding a new vertex
x z x y z

• Subdividing a face by adding a new edge

Remarks

• The subdivision of a subdivision of S is a subdivision of S

• If Ṡ has a polygonal decomposition that is a subdivision of
a polygonal decomposition of S then S ∼= Ṡ
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Subdividing and Euler characteristic
Proposition

Let Ṡ be a subdivision of S . Then χ(S) = χ(Ṡ)

Proof It is enough to check this for the two subdivision operations:

• Subdividing an edge:
x z x y z

• Subdividing a face:

Both operations preserve χ
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Subdividing and boundary circles
Proposition

Let Ṡ be a subdivision of S . Then S and Ṡ have the same number of
boundary circles

Proof It is enough to check this for the two subdivision operations:

• Subdividing an edge:
x z x y z

• Subdividing a face:
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Common subdivisions
Theorem
Let S be a surface and suppose that S has polygonal decomposition
P1 = (V1,E1,F1) and P2 = (V2,E2,F2). Then S has a polygonal
decomposition (V ,E ,F ) that is a common subdivision of P1 and P2

Proof Merge the two subdivisions
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Common subdivisions
Theorem
Let S be a surface and suppose that S has polygonal decomposition
P1 = (V1,E1,F1) and P2 = (V2,E2,F2). Then S has a polygonal
decomposition (V ,E ,F ) that is a common subdivision of P1 and P2

Proof Merge the two subdivisions — adding extra vertices as necessary
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Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof

Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S)

= χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P)

= χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Two invariants
Corollary
Suppose that S and T are homeomorphic surfaces that have polygonal
decompositions. Then χ(S) = χ(T ) and S and T have the same
number of boundary circles.

Proof Since S ∼= T there is a continuous map f : S−→T
with a continuous inverse g :T −→S

Observe that if P is a polygonal decomposition of S then f (P) is a
polygonal decomposition of T . Similarly, if Q is a polygonal subdivision
of T then g(T ) is a polygonal decomposition of S

By the theorem we can assume that S and T have the same polygonal
decomposition in the sense that P = g(Q) and Q = f (P)

=⇒ χ(S) = χP(S) = χf (P) = χQ(T ) = χ(T ).

Similarly, S and T have the same number of boundary circles

— Topology – week 8



Why are invariants useful?

Question
Let S and T be surfaces. Is S ∼= T?

To show that S and T are homeomorphic is, in principle, easy: we find a
continuous map f :S−→T with a continuous inverse g :T −→S

Showing that S ̸∼= T is harder as we need to show that no such maps exist

Using invariants makes this easier because S ∼= T only if χ(S) = χ(T )
and if S and T have the same number of boundary circles

=⇒ if χ(S) ̸= χ(T ), or if S and T have a different number
of boundary circles, then S ̸∼= T

Exercise Using what we know so far, deduce that the surfaces

S2, A, D2, K, M, P2

are pairwise non-homeomorphic (see Tutorial 9)
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Classifying surfaces using invariants
We have seen that homeomorphic surfaces must have:

• The same Euler characteristic

• The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they
are not enough to distinguish between all surfaces

Example

a

b

a

b

x

x

x

x

̸∼=

a

a

b

b

x

x

x

x

T

— Topology – week 9



Classifying surfaces using invariants
We have seen that homeomorphic surfaces must have:

• The same Euler characteristic

• The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they
are not enough to distinguish between all surfaces

Example

a

b

a

b

x

x

x

x

̸∼=

a

a

b

b

x

x

x

x

T

— Topology – week 9



Classifying surfaces using invariants
We have seen that homeomorphic surfaces must have:

• The same Euler characteristic

• The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they
are not enough to distinguish between all surfaces

Example

a

b

a

b

x

x

x

x

̸∼=

a

a

b

b

x

x

x

x

T ?

— Topology – week 9



Classifying surfaces using invariants
We have seen that homeomorphic surfaces must have:

• The same Euler characteristic

• The same number of boundary circles

These two invariants are both easy to compute but, by themselves, they
are not enough to distinguish between all surfaces

Example

a

b

a

b

x

x

x

x

̸∼=

a

a

b

b

x

x

x

x

T ?

— Topology – week 9



Orientability
Definition
A surface S is non-orientable if it contains a Möbius strip M
If S does not contain a Möbius strip it is orientable

Remarks

• Even though this looks hard to apply we will see it isn’t

• Clearly, M is non-orientable, but there are no other “easy” examples

M =

a

b

a

c

• Are S2, A, D2, T, P2, K, . . . orientable or non-orientable?

• Can a surface be orientable and non-orientable for different
polygonal decompositions? (That would be bad!)
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M =

a

b

a

c

• Are S2, A, D2, T, P2, K, . . . orientable or non-orientable?

• Can a surface be orientable and non-orientable for different
polygonal decompositions? (That would be bad!)
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The Klein bottle K

K =

=

= =

= =
M
M

=⇒ The Klein bottle K is non-orientable!

. . . although it might be more accurate to say that the Klein bottle
is a Möbius strip without boundary
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The projective plane P2

P2 =

=

= =
D2

M
D2

=⇒ The projective plane P2 is non-orientable

. . . or maybe P2 and not K
is a Möbius strip without boundary?
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What does orientability mean?
Orientability is a generalisation of direction to higher dimensions

• One dimension R
right

• Two dimensions R2

anticlockwise rotation

clockwise rotation

• Three dimensions R3 ???

• Higher dimensions Rn, for n ≥ 3 ???
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Direction in higher dimensions
To generalise direction, choose an ordered basis B = {b1, b2, . . . , bn} of Rn

The order of the basis elements is the key to understanding direction

We can compare B to the standard basis E = {e1, e2, . . . , en} of column
vectors by computing the sign of the determinant

det(B) = det

 ...
...

...
b1 b2 ... bn
...

...
...

 sign(B) = ±1

• One dimension R

e1b1

sign(B) = −1
b1

sign(B) = +1
e1

• Two dimensions R2

e1

e2
b1 b2

sign(B) = −1

e1

e2
b2 b1

sign(B) = +1
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Direction on the Möbius strip
Pick a point m ∈ M on the Möbius strip and an ordered basis
B = {b1, b2, b3} positioned at m with b3 = b1 × b2 pointing outwards

Now imagine m, and the coordinate axes moving, continuously around the
Möbius strip so that the xyz-coordinate axes around M

Initially, b3 is pointing outwards but after one rotation it is pointing inwards

The vector b3 is always normal to the surface of the Möbius strip. The
direction of b3 can change from pointing outside to inside because the
Möbius strip is a surface with a boundary that only has one side
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Direction on the Klein bottle K

We can do the same experiment with the
Klein bottle and we see the same
phenomenon: the vector b3 changes from
pointing outside to pointing inside the
surface

This time is slightly different because K is a
surface without boundary

=⇒ The Klein bottle K does not have
an inside and an outside !!

In contrast, orientable surfaces without
boundary like S2 and T do have an inside
and an outside

Warning: this is a drawing of K in R3 but it is not the actual Klein bottle!
Similarly, the pictures of the sphere S2 in R3 are not really the sphere!
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Alternative description

Alternatively, think of an orientation as a consistent of a coordinate system
for each point:
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Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

S

ω

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

S

ω

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S S

ω

1

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S S

ω

1

0

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S S

ω

1

0

2

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S S

ω

1

0

2

2

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S S

ω

1

0

2

2
3

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S

Set Vin = { x ∈ R3 | x /∈ S and s(x) is odd }
Vout = { x ∈ R3 | s(x) is even }

S

ω

1

0

2

2
3

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S

Set Vin = { x ∈ R3 | x /∈ S and s(x) is odd }
Vout = { x ∈ R3 | s(x) is even }

=⇒ R3 = S ∪ Vin ∪ Vout (disjoint union)

S

ω

1

0

2

2
3

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces
Theorem
Suppose that S is a connected surface without boundary that
embeds in R3. Then S is orientable.

Proof Embed S in R3 and pick a point ω a “long” way from S

For each point x ∈ R3 draw a line from ω
to x and define s(x) to be the number of times
this line crosses the boundary of S

Set Vin = { x ∈ R3 | x /∈ S and s(x) is odd }
Vout = { x ∈ R3 | s(x) is even }

=⇒ R3 = S ∪ Vin ∪ Vout (disjoint union)

S

ω

1

0

2

2
3

Notice that since S is a closed surface it does not have boundary, so the
“circle” in the picture, which contains a point x with s(x) = 2, should be
interpreted as a tube through the surface

— Topology – week 9



Orientable surfaces...
Now suppose that S is non-orientable, so that it contains a Möbius strip M

Pick a point m ∈ S that is on this Möbius strip and fix an ordered basis
{b1, b2, b3} with b1 and b2 tangential to m and b3 = b1 × b2.

Replacing b3 with −b3, if necessary, we assume that b3 points out of S

Now move m, and B = {b1, b2, b3}, continuously around S

=⇒ det(B) changes continuously as m moves around S

By moving m around the Möbius strip in M, we can move m to a point
where b3 now points inside S

=⇒ By continuity, at some point b3 must have been in the plane
spanned by b1 and b2

=⇒ det(B) = 0    since B is linearly independent!

Corollary
Let S be a non-orientable closed surface. Then S does not embed in R3.
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Pick a point m ∈ S that is on this Möbius strip and fix an ordered basis
{b1, b2, b3} with b1 and b2 tangential to m and b3 = b1 × b2.

Replacing b3 with −b3, if necessary, we assume that b3 points out of S

Now move m, and B = {b1, b2, b3}, continuously around S

=⇒ det(B) changes continuously as m moves around S

By moving m around the Möbius strip in M, we can move m to a point
where b3 now points inside S
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You can’t fill a liquid into the Klein bottle

Strictly speaking the liquid is neither in- nor outside
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Jordan curve theorem
This argument used to prove theorem can be made rigorous for surfaces
with finite polygonal decompositions but for “general surfaces” it is difficult
to prove that R3 = S ∪ Vin ∪ Vout.

The corresponding result for curves in R2 is known as the Jordan Curve
Theorem, which says that any closed curve C in R2 gives rise to a
decomposition R2 = C ∪ Vin ∪ Vout (disjoint union)

This is really hard to prove!

To appreciate why this is a nontrivial result consider:

The left is easy, but can you tell for the right what is “in” or “out”?
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Jordan curve theorem - 2
The main meat is that one needs to deal with “crazy” curves:
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Embedding the projective plane in R4

The projective plane P2 is non-orientable, so it does not embed in R3

By definition, the projective plane is defined by identifying antipodal
points on the sphere S2:

P2 =
{
(x , y , z) ∈ R3

∣∣ x2 + y2 + z2 = 1
}/

(x , y , z) ∼ (−x ,−y ,−z)

We can embed P2 into R4 using the continuous map:

(x , y , z) 7→ (xy , xz , yz , y2 − z2)

It is not hard to check that this is a well-defined injective function

=⇒ P2 is homeomorphic to the image of this map in R4

Remark

We will soon see that every non-orientable surface can be constructed
using projective planes, so this implies that every non-orientable surface
embeds in R4

In contrast, every orientable surface embeds in R3
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Connected sums
We need a way to build new surfaces from old surfaces

The boundary of a surface is the union of its boundary circles, or
free edges. The interior of a surface is anything not on the boundary

Definition
The connected sum of surfaces S and T is the surface S #Tobtained by

1 cutting disks DS and DT out of the interiors of S and T , respectively

2 identifying the boundary circles of DS and DT
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Connected sums
We need a way to build new surfaces from old surfaces

The boundary of a surface is the union of its boundary circles, or
free edges. The interior of a surface is anything not on the boundary

Definition
The connected sum of surfaces S and T is the surface S #Tobtained by

1 cutting disks DS and DT out of the interiors of S and T , respectively

2 identifying the boundary circles of DS and DT

S T

DS DT

Identifying DS and DT is the same as connecting them with a cylinder
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Connected sums with spheres
• What is S2 # S2 ?

DS DT ∼= DS DT

∼= DS DT ∼=

Hence, S2 #S2 ∼= S2

• If T is any surface then T # S2 ∼= T

This follows by exactly the same calculation!

So S2 is the unit under the operation #
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Connected sums with disks
• What is D2 #D2 ?

DS DT

∼= DS DT

∼= DS DT ∼= ∼= A

Hence, D2 #D2 ∼= A, which is the annulus or cylinder

• If T is any surface then T #D2 puts a puncture, or hole, in T

This follows by exactly the same calculation!

=⇒ T #D2 # . . .#D2︸ ︷︷ ︸
d times

= T ##dD2 is equal to T with d

punctures or, equivalently, T with d additional boundary circles
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Connected sums with tori
• What is T#T ?

DS DT

∼=

The double torus
T#T = #2T

Similarly, there are triple tori #3T

. . . and, more generally, t-tori #tT
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We already know t-tori
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Properties of connected sums
• S #T is independent of the location of the disks DS and DT

S T

DS DT

As long as DS stays in the interior of S , and DT in the interior
of T , the surface S #T is unchanged up to homeomorphism

• S #T ∼= T # S

S T

DS
DT ∼=

S
T

DSDT
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Associativity of connected sums...
• S #

(
T #U

) ∼= (
S #T

)
#U

S

T U

D1
D2

D2 D3

∼=
S

T U

D3
D4

D1 D2

In these diagrams, D1 and D2 are cut first and then D3 and D4

=⇒ # is a “surface addition or multiplication”
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Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks

— Topology – week 9



Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

DS
DT

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks

— Topology – week 9



Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

a

b

c

a

b

c

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks

— Topology – week 9



Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

a

b

c

a

b

c

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks

— Topology – week 9



Connected sums of Euler characteristic
Theorem
Let S and T be surfaces with polygonal decompositions. Then

χ(S #T ) = χ(S) + χ(T )− 2

Proof

S

T

a

b

c

a

b

c

=⇒ χ(S #T ) =
(
χ(S)− (3 − 3 + 1)

)
+
(
χ(T )− (3 − 3 + 1)

)

Moral The −2 comes from cutting out two disks
— Topology – week 9



Examples
• If S is any surface then S ∼= S # S2

=⇒ χ(S) = χ(S) + χ(S2)︸ ︷︷ ︸
=2

−2 = χ(S)

• A ∼= D2 #D2 =⇒ χ(A) = χ(D2) + χ(D2)− 2 = 1 + 1 − 2 = 0

• χ(T#T#T) = (χ(T) + χ(T)− 2) + χ(T)− 2 = −4

— Topology – week 9



Connected sums and polygonal decompositions

T#T =

a

b

a

b #

c

d

c

d

=

a

b

e

a

b c

d

e

c

d

=

a
b

d

c
d

c

a

b

e

=⇒ For surfaces without a boundary you can cut the disks anywhere!
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Connected sums with projective planes
• What is P2 #P2?

P2 #P2 ∼= a a # b b

∼=

∼=

∼=

a

a

b

bc ∼=

a

a

b

b

Similarly, #3P2 ∼=

a
a

b
b

c

c

, #4P2 ∼=

a
a

b

b
c

c

d

d

, . . .
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Connected sums and polygonal decompositions...

D2 #D2 ∼= a

b

c # d

e

f

∼= a

b

cg # d

e

fh

=

a

b

g

g

c

#

d

e

h

h

f

=

a
b

g
i

g

c
d

e

h
i

h

f

=

a
b

g

h

f
d

e

h

g

c

i

=⇒ For surfaces with a boundary, you can cut into the interior,
if necessary, to form the connected sum
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Surgery
We have already seen that it is possible to change one polygonal
decomposition into another using surgery

There are two basic operations:

• Adding and removing edges:

a
=

a
a

• Cutting and gluing

a = a a

Perhaps surprisingly, these two operations and subdivision
are all that we need
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Surgery on the Möbius strip
Lemma

M ∼= D2 #P2 (= a punctured projective plane)

Proof

M =

a

b

c

b ∼=

a

b

c

bd ∼=

a

c

d

db

∼= e

d

d where e = ac

∼= D2 #P2

=⇒ A Möbius strip is a punctured projective plane

=⇒ Every non-orientable surface contains the projective plane
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Surgery on the Klein bottle
Lemma

K ∼= P2 #P2 ∼= #2P2

Proof

K =

a

b

a

b =

a

b

a

bc
=

a

a

c

cb

∼= c c # a a

∼= P2 #P2
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Surgery on a torus and projective plane
Theorem

T#P2 ∼= K#P2

Proof

T#P2 =

a

b

a

b # c c ∼=

∼=

a
b

d
b

a

d
c ∼=

a
b

d
b

a

d

e
∼=

a
d

e
e

a

d
b

∼= e e #

a

d

a

d ∼= P2 #K
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Projective planes dominate
On the last slide we saw that T#P2 ∼= K#P2

=⇒ T#P2 ∼= #3P2 since K ∼= #2P2

suggests that the connected sum of any surface with a
projective plane is non-orientable

Warning Connected sums do not cancel since T ̸∼= K
Why? T embeds in R3 but K does not!
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Oriented and unoriented edges

Compare: P2 = a a and T =

a

b

a

b

Paired edges on a polygon are oriented if they point in opposite directions
and unoriented if they point in the same direction

a

a

Oriented Unoriented

Oriented edges can be folded together without twisting whereas unoriented
edges can only be brought together if the surface is twisted
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Classification of connected surfaces
Theorem
Let S be a connected surface. Then there exist non-negative integers d , p
and t such that

1 S ∼= S2 ##dD2 ##pP2 ##tT

2 the boundary of S is the disjoint union of d circles

3 S is orientable if and only if p = 0
Moreover, we can assume that pt = 0, in which case S is uniquely
determined up to homeomorphism by (d , p, t)

Remark If d + p + t ̸= 0 we can omit the sphere S2

Proof We argue by induction on the number of edges in a polygonal
decomposition of S with one face to first prove 1

Base case: If S has one edge then either

S = a a

∼= S2

or S = b b

∼= P2

=⇒ The theorem is true in this case
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Proof of the classification theorem
Now suppose that S has at least two edges and that the theorem is true
whenever all surfaces that have a polygonal decomposition with one face
and fewer edges

If S has only free edges then S ∼= D2 and the theorem holds

Hence, we can assume that S has at least one paired edge

Case I: S has an unoriented edge

∼=
b

b
a

∼= P2 #

=⇒ S ∼= P2 #T

By induction, T ∼= S2 ##dD2 ##pP2 ##tT since T has fewer edges

=⇒ S ∼= S2 ##dD2 ##p+1P2 ##tT as required
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Proof of the classification theorem...
Case II: All paired edges in S are oriented

If S has adjacent oriented edges then

S ∼=
a

a

∼= a ∼= T

=⇒ S ∼= T ∼= S2 ##dD2 ##pP2 ##tT by induction

Hence, we can assume that the paired edges are not adjacent

Similarly, we can assume that S does not have any adjacent free edges
as such edges can be replaced with a single free edge

Fix an (oriented) paired edge a such that the number of edges between
the two copies of a is minimal
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Proof of the classification theorem...
Case IIa: All edges on one side of a are free

=⇒ S ∼=

a
b

a ∼= D2 #

a
a

∼= D2 #T

By induction, T ∼= S2 ##dD2 ##pP2 ##tT

=⇒ S ∼= D2 #T ∼= S2 ##d+1D2 ##pP2 ##tT

Hence, we can assume that there are paired edges on both sides of a
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Proof of the classification theorem...
Case IIb: There are paired edges on both sides of a

The number of edges between the ends of a is minimal, so

=⇒ S ∼= ∼=

∼=

dc
d

c a ∼= T# ∼= T#U

By induction, U ∼= S2 ##dD2 ##pP2 ##tT

=⇒ S ∼= D2 #U ∼= S2 ##dD2 ##pP2 ##t+1T
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Proof of the classification theorem...
We have now proved that every surface can be written in the form

S ∼= S2 ##dD2 ##pP2 ##tT
for non-negative integers d , p and t

The proof so far shows that d is the number of boundary circles

Next, note that if p > 0 then P2 is contained in S

=⇒ S is non-orientable if p ̸= 0

On the other hand, S ∼= S2 ##dD2 ##tT ↪→ R3 is orientable if p = 0

=⇒ S is orientable if and only if p = 0

We have now proved 1 , 2 and 3 from the theorem!

Next, observe that if p ̸= 0 and t ̸= 0 then S contains P2 #T ∼= #3P2

=⇒ #tT#P2 ∼= #t−1T##3P2 ∼= . . . ∼= #2t+1P2

=⇒ Hence, we can assume t = 0 if p ̸= 0

That is, we can assume pt = 0 — equivalently, p = 0 or t = 0
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On the other hand, S ∼= S2 ##dD2 ##tT ↪→ R3 is orientable if p = 0

=⇒ S is orientable if and only if p = 0

We have now proved 1 , 2 and 3 from the theorem!

Next, observe that if p ̸= 0 and t ̸= 0 then S contains P2 #T ∼= #3P2

=⇒ #tT#P2 ∼= #t−1T##3P2 ∼= . . . ∼= #2t+1P2

=⇒ Hence, we can assume t = 0 if p ̸= 0

That is, we can assume pt = 0 — equivalently, p = 0 or t = 0
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Proof of the classification theorem...
It remains to prove if S ∼= S2 ##dD2 ##pP2 ##tT with tp = 0 then S
is uniquely determined up to homeomorphism by (d , p, t)

Let T = S2 ##eD2 ##qP2 ##sT, with sq ̸= 0

=⇒ We need to show that S ∼= T if and only if (d , p, t) = (e, q, s)

If (d , p, t) = (e, q, s) there is nothing to prove, so suppose S ∼= T

• d = e as homeomorphism preserve boundary circles

• p ̸= 0 ⇔ q ̸= 0 as homeomorphisms preserve orientability

• Homeomorphisms preserve Euler characteristic. By tutorial 9,

▶ χ(S2 ##aD2 ##bP2) = 2 − a− b

▶ χ(S2 ##aD2 ##cT) = 2 − a− 2c

=⇒ (d , p, t) = (e, q, s) since χ(S) = χ(T )

All parts of the classification theorem are now proved!!

Hence, we now know all surfaces up to homeomorphism!
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Orientability
Corollary
A surface S is non-orientable if and only if its polygonal decomposition
contains an unoriented edge

Proof Any unoriented edge gives a Möbius band inside S :

Conversely, S = S2 ##dD2 ##tT embeds in R3, so it is orientable.
Hence, a polygonal decomposition of S can only contain oriented edges

It is now not hard to find an explicit polygonal decomposition of
S = S2 ##dD2 ##tT

and check that surgery cannot create unoriented edges in S
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Standard forms
Theorem
Let S be a connected surface. Then there exist non-negative integers d , p
and t with pt = 0 such that

1 S ∼= S2 ##dD2 ##pP2 ##tT

2 the boundary of S is the disjoint union of d circles

3 S is orientable if and only if p = 0

The surface S is in standard form when written as
S ∼= S2 ##dD2 ##pP2 ##tT

with pt = 0 — that is, p = 0 or t = 0

• The standard form uniquely identifies S

• S is orientable if and only if p = 0

• S has d boundary circles

• S has Euler characteristic χ(S) = 2 − d − p − 2t (tutorials!)

The standard form of a surface that is not connected has each component
in standard form
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Corollary of classification
Corollary
A connected surface is uniquely determined, up to homeomorphism by

1 the number of boundary circles

2 its orientability

3 its Euler characteristic

Proof Write S ∼= S2 ##dD2 ##pP2 ##tT in standard form with tp = 0

=⇒ χ(S) = 2 − d − p − 2t

Hence, the standard form uniquely determines the number of boundary
circles, orientability and Euler characteristic of S

Conversely, these three characteristics of S determine (d , p, t)
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Spheres with punctures
• S2 ##dD2 is a sphere with d punctures

S2 #D2 =

S2 ##2D2 =

S2 ##3D2 =

S2 ##4D2 =

S2 ##5D2 =

S2 ##6D2 =

More generally, S ##dD2 is S with d punctures
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A spheres with zero and one puncture
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Spheres with handles
• S2 ##tT is a sphere with t handles

S2 #T ∼= T ∼= ∼=

S2 ##2T ∼= #2T ∼= ∼=

S2 ##3T ∼= ∼=

Continuing like this constructs a sphere with t-handles #tT
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Handle decomposition
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

— Topology – week 9
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##3
P2 ∼=

— Topology – week 9

https://en.wikipedia.org/wiki/Cross-cap


Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##4
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##5
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Sphere with cross-caps
• S2 ##pP2 is a sphere with p cross-caps

A cross-cap is what you get when you sew a Möbius strip onto the sphere

This shape lives in R4, so difficult to visualize but Wikipedia draws it as:

In R3 this surface self-intersects. We draw surfaces with cross caps as:

S2 ##6
P2 ∼=
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What do standard surfaces look like?
We can combine the pictures above to draw all of the standard surfaces:

#8D2 ##7T ∼=

#6D2 ##9P2 ∼=

#3D2 ##2T##3P2 ∼= ∼=
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Putting a surface in standard form
Given a polygonal decomposition for a surface we can put it in standard
form by:

• Find all of the vertices (identified edges implicitly identify vertices)

• Count the number d of boundary circles

• S is orientable (p = 0) if all edges are oriented otherwise
it is non-orientable (t = 0)

• Compute χ(S) = 2 − d − p − 2t to determine the missing
variable, which is t if S is orientable and or p if non-orientable
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Example 1
What is the surface with the below polygonal decomposition?

a
e

f

g

d

h
a

c

e

f

g

b

yx

x

z

z

v

x y

x

x

z

z

a c e f g b a e f g dh (overline=opposite direction)

=⇒ This is #1D2 ##0T##4P2
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Example 2
What is the standard form of the surface with polygonal decomposition?

a

b

c

d

a

b

c

d
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b
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Words for surfaces
A polygonal decomposition for a surface that has one face can be
encoded in a word

a d b e d c b g e f e i h g

▶ write x for an edge pointing anticlockwise

▶ write x for an edge pointing clockwise

▶ We always read the word in anticlockwise order
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Words for basic surfaces

• S2 = a a

• P2 = a a • D2 = a b

= a a = a a = a b

• A =

a

b

c

b

= a b c b

• T =

a

b

a

b

= a b a b

• M =

a

b

c

b

= a b c b

• K =

a

b

a

b

= a b a b
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Properties of words
• Words encode orientability

▶ Orientable: . . . a . . . a . . . or . . . a . . . a . . .
▶ Non-orientable: . . . a . . . a . . . or . . . a . . . a . . .

• Words give a compact and easily readable way of describing surfaces

• Words can be read in clockwise or anticlockwise order
(we always read in anticlockwise order)

• The word of a surface is well-defined only up to cyclic permutation
and reversing the direction of any edge

Example The following words are all words for the torus T:
a b a b b a b a a b a b b a b a
a b a b b a b a a b a b b a b a

• The word of a surface can be used to give generators and relations
for the first homotopy group of the surface — this generalises
independent cycles and are beyond the scope of this unit
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Standard words for closed orientable surfaces
• Connected sums of tori: #tT

▶ T =

a

b

a

b = a b a b

▶ #2T =

a
b

a

b
c

d

c

d

= a b a b c d c d

▶ #3T =

ab

a

b

c

d c d

e

f

e

f

= a b a b c d c d e f e f

▶ . . . #tT = a1 b1 a1 b1 a2 b2 a2 b2 . . . at btat bt
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Words for closed non-orientable surfaces
• Connected sums of projective plans #pP2

▶ P2 = a a = a a

▶ #2P2 =

a

a

b

b = a a b b

▶ #3P2 =

a

a

b

b

c

c

= a a b b c c

▶ . . . #pP2 = a1 a1 a2 a2 . . . ap ap
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Standard words for surfaces with boundary
• #dD2
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▶ #2D2 = ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a b # c d

∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a b # c d
?∼=

a

b

c

d

∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a be c df

∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a be c df ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a be c df ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g

∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary
• #dD2

▶ D2 = a b = a b

▶ #2D2 = a be c df ∼=

a

e

g

e

b

#

c

f

g

f

d

∼=

a
e

f

d
c

f

e

b
g ∼=

a

e

c

e = a e c e

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2

= #2D2 #D2 ∼=

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2

∼=

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

b # d e

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

bf # d eg

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

bf # d eg

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

bf # d eg

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

bf # d eg

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Standard words for surfaces with boundary

▶ #3D2 = #2D2 #D2 ∼=

a

b

c

bf # d eg

∼=

a
b

c

f

g
e

d

g

f

b

i

∼=

a

b

c

f

e

f

b

= a b c f e f b

▶ #dD2 = a1 b1 a2 b2 . . . bd−1ad bd−1 . . . b2 b1

— Topology – week 10



Words to surfaces
What standard surface is given by the word a d b c e c f d h g e a h ?

a

d

b

c

e

c
f

d

h

g

e

a

h
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Words to surfaces
What standard surface is given by the word a d b c e c f d h g e a h ?

a

d

b

c

e

c
f

d

h

g

e

a

h

x
xy

y

x

x

x

y

y

y

z

z

z

Free edges

x b y

x g z

y f z

=⇒ d = 1 and χ(S) = 3 − 8 + 1 = −4

=⇒ S ∼= D2 ##5P2

=⇒ S = a b b c c d d e e f f
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The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}
We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!

— Topology – week 10



The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}

We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!

— Topology – week 10



The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}
We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!

— Topology – week 10



The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}
We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!

— Topology – week 10



The vertex-degree equation revisited
When we looked at graphs we proved the vertex-degree equation:∑

v∈V
deg(v) = 2|E | for G = (V ,E ) a graph

The best way to understand this formula is to note that each
edge {x , y} ∈ E contributes 2 to both sides of this equation

• +1 to each of deg(x) and deg(y) on the left-hand side

• +2 = 2 · 1 to the right-hand side for the edge {x ,w}
We want similar formulas for a surface S = (V ,E ,F ) with a
polygonal decomposition

Question What is the correct definition of degree in S ?

The problem
We are identifying edges in S and hence implicitly identifying vertices

▶ Do we identify edges and vertices when computing deg(v) and |E |?

Answer Yes and no!
— Topology – week 10



The degree of a vertex
Consider the surface with polygonal decomposition

a
d

a
b

c

b

a
d

a
b

c

b

x

x

x

x

y

y

Using identified vertices and edges + count with multiplicities

=⇒ deg(x) = 5, deg(y) = 3, so deg(x) + deg(y) = 8 = 2|E |

Not using identified edges or vertices (i.e. as a graph, ignoring the face)

=⇒ six vertices of degree 2 and six edges, so 12 = 2 · 6

The vertex-degree equation holds using either identified or non-identified
edges and vertices because in both cases the degree of a vertex is defined
to be the number of incident edges to the vertex
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The surface degree-vertex equation
Proposition
Let S = (V ,E ,F ) be a surface with polygonal decomposition. Then∑

v∈V
deg(v) = 2|E |

Proof The proof is the same as before: the edge {x , y} contributes +2 to
both sides of this equation because edge contributes +1 to deg(x)
and +1 to deg(y).

Therefore, we have two degree-vertex equations:

• The graph degree-vertex equation where we do not identify edges
and vertices in S

• The surface degree-vertex equation where we do identify edges
and vertices in S

— Topology – week 10
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The degree of a face
Let S = (V ,E ,F ) be a surface with polygonal decomposition

Let f ∈ F be a face of S . The degree of f is
deg(f ) =number of edges (count with multiplicities) incident

with f

Examples Suppose that f ∈ F is an n-gon

=⇒ deg(f ) = n

Notice that faces are never identified in the polygonal decomposition

Question How are
∑
f ∈F

deg(f ) and 2|E | related?
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Face degrees of basic surfaces
In all cases deg(face) = 4 as there are 4 non-identified edges

• Sphere

S2 ∼=

a

b

b

a

xy

yz

• Projective plane

P2 ∼=

a

b

a

b

x

x

y

y

• Disk

D2 ∼=

a

b

c

d

w

y

x

z

• Torus

T ∼=

a

b

a

b

xx

x x

• Klein bottle

K ∼=

a

b

a

b

xx

x x

• Annulus

A ∼=

a

b

a

c

x

x

y

y

• Möbius band

M ∼=

a

b

a

c

x

x

y

y
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The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



The face-degree equation
Recall that for any graph G = (V ,E ) we proved that

∑
v∈V deg(v) = 2|E |

Let (V ,E ,F ) be a polygonal decomposition

The degree of a face f ∈ F is deg(f ) = n if P is an n-gon

Proposition (The surface face-degree equation)
Let S = (V ,E ,F ) be a closed surface (no boundary). Then∑

f ∈F
deg(f ) = 2|E |,

Proof By definition, deg(f ) = n if f is an n-gon

Since S is a closed surface, every edge meets two faces (potentially the
same face), so it contributes +2 to both sides of this equation

=⇒
∑
f ∈F

deg(f ) = 2|E |

Remark To use this formula we need to know the number of identified
edges in the polygonal decomposition

— Topology – week 10



Dual surfaces
Let S = (V ,E ,F ) be a closed surface with a polygonal decomposition such
that the vertices around each polygon are distinct

The dual surface S∗ has polygonal decomposition (V ∗,E ∗,F ∗), where

• the vertex set of S∗ is V ∗ = F , the set of faces of S

• there is an edge between two vertices f and f ′ of S∗ if the
faces f and f ′ in S are separated by an edge

=⇒ the faces of S∗ are the vertices of S

Examples
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The dual of the cube

=⇒ the dual surface to the cube is the octahedron
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Dual surfaces and the degree equations
Taking the dual of a surface swaps the vertices and faces

=⇒ if v ∈ V then v ∈ F ∗ and degS(v) = degS∗(v)

=⇒ the vertex-degree equation for S is the same as
the face-degree equation for S∗

Example

S2 =

a

b

b

ac

xy

yz

(S2)∗ = a by a cx b cz

We will see better examples when we look at Platonic solids
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Kepler’s Harmonices Mundi

— Topology – week 10



Graphs on surfaces
Recall that a graph G is planar if it can be drawn
in R2 without edge crossings

Let S be a surface and x , y ∈ S . A path from x to y on S is a
continuous map p : [0, 1]−→S such that p(0) = x and p(1) = y

Let P(S) be the set of all paths on S

If S is any surface and G = (V ,E ) is a graph then an
embedding of G in S is a pair of maps

f :V −→S and p :E−→P(S)
such that:

• The map f is injective

• If e = {v ,w} ∈ E then p(e) ∈ P(S) is an injective path
from f (v) to f (w)

• If e, e ′ ∈ E then the paths F (e) and F (e ′) can intersect only at
the images of their endpoints
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Planar graphs
Theorem
Let G be a (finite) graph. Then the following are equivalent.

1 There is an embedding of G in R2 (= the graph is planar)

2 There is an embedding of G in D2

3 There is an embedding of G in S2

Proof Stereographic projection! (Move G away from ∞.)
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Faces of embedded graphs
Suppose that G has an embedding on a surface S

Identify G with its image in S

The faces of G are the connected components of S \ G
Example Taking S = D2 and G = K4 gives four faces:

K4 = =

=
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Planar graphs and polygonal decompositions
Theorem
Let G be a connected planar graph without leaves.
Then G gives a polygonal decomposition of S2 where the polygons
correspond to the non-trivial cycles in G

Proof Since G is connected, and S2 does not have a boundary, S2 \ G
is a disjoint union of a finite number of regions each of which is bounded
by a non-trivial cycle in G .

Every vertex v in G has degree at least 2 and, by assumption, every edge
is included in a non-trivial cycle in G

=⇒ there are two faces adjacent to every edge in G

=⇒ the embedding of G in S2 induces a polygonal
decomposition on S2

Remark The argument cheats slightly because we are implicitly assuming
that the edges are “nice” curves. This allows us to side-step issues
connected with the Jordan curve theorem
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Planar graphs and Euler characteristic
Theorem
Let G = (V ,E ) be a connected planar graph with face set F .
Then 2 = |V | − |E |+ |F |

Proof Use the previous theorem or argue by induction on |E |
Case 1 G is a tree

Combine |V | − |E | = 1 (previous lectures) and that there is only one face

Case 2 G is not a tree

By χ(S2) = 2 and the previous theorem
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Planarity of K5

Proposition

The complete graph K5 =

1

2

34

5
is not planar

Proof Assume that K5 is planar with |F | faces

We have |V | = 5 and |E | = 10, so 2 = |V | − |E |+ |F | =⇒ |F | = 7

Let’s count the number of faces in this polygonal decomposition differently

• The faces correspond to cycles in K5

• Every face has at least 3 edges, so by the degree-face equation

=⇒ 2|E | =
∑

f ∈F deg(f ) ≥ 3|F |
=⇒ 2|E | = 20 ≥ 21 = 3|F |    

Hence, the complete graph K5 is not planar
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Planarity of complete graphs
Corollary
The complete graph Kn is planar if and only if 1 ≤ n ≤ 4

Proof

K5 sits in Kn for n ≥ 5, and the previous theorem applies
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Planarity of bipartite graphs
Proposition

The bipartite graph K3,3 =

1 2 3

1′ 2′ 3′
is not planar

Proof Tutorials

Theorem (Kuratowski)
Let G be a graph. Then G if planar if and only if it has no subgraph
isomorphic to a subdivision of K5 or K3,3

The proof is out of the scope of this unit!
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Platonic solids
A Platonic solid is a surface that has a polygonal decomposition that is
constructed using regular n-gons of the same shape and size such that
the same number of polygons meet at every vertex

Examples

Tetrahedron Cube Octahedron Dodecahedron Isosahedron

n 3 4 3 5 3
|V| 4 8 6 20 12
|E| 6 12 12 30 30
|F| 4 6 8 12 20

Questions

• Are there any others?

• Can we understand them as polygonal decompositions of the sphere?
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Vertices, edges and faces of Platonic solids
Let P be a polygonal decomposition of S2 obtained by gluing together
(regular) n-gons so that p polygon meet at each vertex

Suppose there are |V | vertices, |E | edges and |F | faces

=⇒ each vertex has degree p and each face degree n

=⇒ p|V | = 2|E | by the vertex-degree equation

=⇒ 2|E | = n|F | by the face-degree equation

=⇒ 2 = χ(S2) = |V | − |E |+ |F | = 2|E |
p − |E |+ 2|E |

n

=⇒ 1
2 + 1

|E | =
1
p + 1

n

=⇒ 1
p + 1

n = 1
2 + 1

|E | >
1
2

We require p ≥ 3, n ≥ 3 and |E | ≥ 2

The equations above give:

|E | =
(

1
p + 1

n − 1
2

)−1
, |V | = 2|E |

p and |F | = 2|E |
n
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Classification of Platonic solids

Theorem
The complete list of Platonic solids is:

p n 1
p + 1

n e =
( 1
p + 1

n − 1
2

)−1
v = 2e

p f = 2e
n Platonic solid

3 3 2
3 6 4 4 Tetrahedron

3 4 7
12 12 8 6 Cube

3 5 8
15 30 20 12 Dodecahedron

4 3 7
12 12 6 8 Octahedron

5 3 8
15 30 12 20 Isosahedron

Proof Since 1
p + 1

n > 1
2 and p, n ≥ 3 we get n < 6 since 1

3 + 1
6 = 1

2
Case-by-case we then get the above values for p, n as the only possible
values for Platonic solids.

To prove existence we need to actually construct them
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Classification of Platonic solids

Proof Continued Their construction is well-known:
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Dual tetrahedron = tetrahedron
There is a symmetry in the Platonic solids given by (p, n) ↔ (n, p). This
corresponds to taking the dual surface

— Topology – week 10



Cube and octahedron

— Topology – week 10



Dodecahedron and icosahedron
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Platonic soccer balls
Here are two dodecahedral decompositions of S2
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Soccer ball
Example A ball is made by gluing together triangles and octagons so that
each octagon is connected to four non-touching triangles. Determine the
number of octagons and triangles used

Let there be |V | vertices, |E | edges and |F | faces

Write |F | = o + t, where o = #octagons and t = #triangles

=⇒ 2 = |V | − |E |+ o + t

We have:

• vertex-degree equation: 3|V | = 2|E |
• face-degree equation: 2|E | = 3t + 8o
• Every octagon meets 4 triangles,
=⇒ 3t = 4o =⇒ 2|E | = 12o
=⇒ 2 = o

(
4 − 6 + 1 + 4

3) =
o
3

=⇒ o = 6 and t = 8
=⇒ |E | = 36 and |V | = 24
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The octacube
As with the Platonic solids, we have only shown that if such a surfaces
exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!

In fact, this surface does exist and it can be constructed by cutting
triangular corners off a cube
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The octacube
As with the Platonic solids, we have only shown that if such a surfaces
exists then there are 6 octagons, 8 triangles, 24 vertices and 36 edges but
we have not shown that such a surface exists!
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Coloring maps
Question
How many different colors do you need to color a map so that
adjacent countries have different colors?

A map is a polygonal decomposition. The answer to this question involves
the same ideas we used to understand Platonic solids
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Chromatic number of (connected – assumed from now on) surfaces
Let P = (V ,E ,F ) be a polygonal decomposition of a surface S

Polygons in P are adjacent if they are separated by an edge

Let CP(S) be the minimum number of colours needed to colour the
polygons in P such that adjacent polygons have different colors

Definition
The chromatic number of S is C (S) = max{CP(S) |P is a “map” on S }

We still need to say what a map in in terms of polygonal decompositions

That is, C (S) is the smallest number of colors that we need to be able to
color any polygonal decomposition, or “map”, on S

Examples

CP(D2) = 2 CP(D2) = 3 CP(D2) = 4

=⇒ C (D2) ≥ 4

For maps of the world we are most interested in C (D2) = C (S2)
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Map colouring assumptions
A map on a surface S is a polygonal decomposition such that:

• All vertices have degree at least 3

• No region (i.e. face or polygon) has a border with itself

• No region contains a hole

• No region is completely surrounded by another

• No internal region has only two borders (i.e. edges)

These assumptions are purely for convenience because, in each
case, we can colour these maps using the same number of colours
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case, we can colour these maps using the same number of colours
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Understanding map colourings
The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colourings

Let M = (V ,E ,F ) be a map on a surface S . Set

• ∂V = 2|E |
|V | , the average vertex-degree

• ∂F = 2|E |
|F | , the average face-degree

By definition, ∂V |V | = 2|E | = ∂F |F |
Moreover,

▶ ∂V ≥ 3 since vertices have degree at least 3

▶ ∂F ≤ |F | − 1 as no region borders itself

Remark For a Platonic solid that is made from n-gons with p polygons
meeting at each vertex we have ∂V = p and ∂F = n
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Bounding the face degree
Lemma
Suppose that M is a map on a closed surface S . Then

∂F =
(
1 − χ(S)

|F |

)/(
1
2 − 1

∂V

)

Proof This is a simple calculation with the Euler characteristic:

χ(S) = |V | − |E |+ |F | = |F |∂F
∂V

− |F |∂F
2 + |F |

=⇒ χ(S)
|F | = ∂F

∂V
− ∂F

2 + 1

=⇒ ∂F =
(
1 − χ(S)

|F |

)/(
1
2 − 1

∂V

)
Corollary

Let M be a map on a closed surface S . Then ∂F ≤ 6
(
1 − χ(S)

|F |

)
Proof By assumption, ∂V ≥ 3 =⇒ 1

2 − 1
∂V

≥ 1
2 − 1

3 = 1
6

=⇒ ∂F ≤ 6
(
1 − χ(S)

|F |

)
as required
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Maps on sphere and projective planes
Corollary
Let M be a map on S2 or P2. Then ∂F < 6

Proof By the last corollary, ∂F ≤ 6
(
1 − χ(S)

|F |

)
Hence the result follows since χ(S2) = 2 and χ(P2) = 1

Remarks

1 A Platonic solid constructed out of n-gons is a special type of map
on S2. As ∂F = n this reproves the fact that Platonic solids only
exist when 3 ≤ n ≤ 5

2 If the average face degree ∂F < 6 then there must be at least
one face f with deg(f ) ≤ 5
This observation will be important when we prove the Five color
theorem (not quite the four color theorem)
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Map coloring assumptions
A map on a surface S is a polygonal subdivision such that:

• All vertices have degree at least 3

• No region (i.e. face or polygon) has a border with itself

• No region contains a hole

• No region is completely surrounded by another

• No internal region has only two borders (i.e. edges)

The last three assumptions are purely for convenience because, in each
case, we can color these maps using the same number of colors
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Recall: Notation for map colorings
The basic idea is to use the Euler characteristic and the degree-vertex
and degree-face equations to understand colorings

Let M = (V ,E ,F ) be a map on a surface S .

Set

• ∂V = 2|E |
|V | , the average vertex-degree

• ∂F = 2|E |
|F | , the average face-degree

By definition, ∂V |V | = 2|E | = ∂F |F |

Moreover,

▶ ∂V ≥ 3 since vertices have degree at least 3

▶ ∂F ≤ |F | − 1 because no region borders itself

▶ If M is a map on a closed surface S , then we proved that
∂F ≤ 6

(
1 − χ(S)

|F |

)
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Maps on surfaces with χ(S) ≤ 0
Lemma
Let M be a map on a closed surface S with χ(S) ≤ 0. Then

∂F ≤ 1
2

(
5 +

√
49 − 24χ(S)

)

Proof Recall that ∂F < |F | since no region bounds itself

∂F < |F | =⇒ |F | ≥ ∂F + 1

Using the corollary from last lecture, and the fact that χ(S) ≤ 0,

∂F ≤ 6
(
1 − χ(S)

|F |

)
≤ 6

(
1 − χ(S)

1+∂F

)
⇐⇒ ∂2

F − 5∂F + 6
(
χ(S)− 1

)
≤ 0

=⇒ ∂F ≤ 1
2

(
5 +

√
49 − 24χ(S)

)
as required

x

y = x2 − 5x + 6(χ− 1)

x = 1
2

(
5 +

√
49 − 24χ(S)

)
x = 1

2

(
5 −

√
49 − 24χ(S)

)
∂F
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Average face degree for the double torus
Example Let S = #2T.

=⇒ ∂F ≤ 1
2

(
5 +

√
49 − χ(S)

)
= 1

2

(
5 +

√
49 − 24(−2)

)
≈ 7.4

The standard polygonal decomposition for S = #2T is

a

b

a

b

c

d

c

d

This has ∂F = 8 !?

This is not a contradiction because we are assuming that no region has a
border with itself, which is never true for a polygonal decomposition that
has only one face
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Heawood’s theorem
Theorem
Suppose that S is a closed surface. Then

C (S) ≤

{
6, if S = S2 or S = P2,
7+
√

49−24χ(S)
2 , otherwise

Proof Let c be the integer part of the right-hand side. Then:

• If S = S2 or S = P2 then ∂F < 6 = c by last week’s discussion

• Otherwise, ∂F ≤ 1
2

(
5+

√
49 − 24χ(S)

)
= c − 1 < c by the last lemma

=⇒ ∂F < c for all S

Claim If M is a map on S then CM(S) ≤ c

We argue by induction on |F |
• If |F | ≤ 6 then M has at most 6 faces, so CM(S) ≤ 6 ≤ c

• Assume now that |F | > 6 and that the claim holds for smaller |F |

Since ∂F < c there is at least one face f with deg(f ) < c
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Proof of Heawood’s theorem...

We are now assuming that |F | > 6 and f is a face with deg(f ) < c

We construct a new map N by shrinking f to a point x :

f x

This gives a new map N on S with |F | − 1 faces
=⇒ CN(S) ≤ c by induction

Since deg(f ) < c we need at most c − 1 colors around x :

x

As we used at most c − 1 colors around x , we can color the map M
with c colors =⇒ CM(S) ≤ c =⇒ C (S) ≤ c
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Chromatic numbers
Heawood’s theorem gives an upper bound for the chromatic number C (S)

This estimate is exactly right except when S = S2 or S = K

Surface Heawood’s bound real C (S)

S2 6 4
K 7 6

S ̸= S2,K c =
⌊

7+
√

49−24χ(S)
2

⌋
c

Remarks

1 To prove this for S ̸= S2,K it is necessary to construct maps that
require this many colors and show no more colors are ever needed

2 It is easy to see that C (S2) ≥ 4 but it is really hard to show
that C (S2) = 4: the first proofs of the Four color theorem used
complicated reductions and then exceedingly long brute force
computer calculations

3 If S = S2 then χ(S2) = 2 so 7+
√

49−24χ(S)
2 = 4 !?
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complicated reductions and then exceedingly long brute force
computer calculations

3 If S = S2 then χ(S2) = 2 so 7+
√

49−24χ(S)
2 = 4 !?
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Why is C (S2) ≥ 4 easy to see? Well:
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Coloring the torus

Heawood’s estimate for the torus is C (T) ≤ 7+
√

49−24χ(T)
2 ≤ 7

Here is a map on the torus that requires 7 colors

Hence, C (T) = 7 (see the tutorials)
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Hexagons on the torus
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Coloring the projective plane
Heawood’s estimate for the projective plane P2 is

C (P2) ≤ 7+
√

49−24χ(P2)
2 ≤ 6

Here is a map on P2 that requires 6 colors:

Hence, C (P2) = 6
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Coloring the Klein bottle
Heawood’s estimate for the Klein bottle is

C (K) ≤ 7+
√

49−24χ(K)

2 ≤ 7

In fact, Franklin (1930) proved that C (K) = 6

Using these maps you can show that C (K) ≥ 6
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The four color theorem
Theorem
Every map on D2 can be colored using four colors.
That is, C (D2) = C (R2) = C (S2) = 4

Remark All known proofs have a computational component

There were several incorrect proofs published before Appel and Haken
proved this result. One of the incorrect proofs was due to Kempe and 11
years later Heawood found a counterexample to their proof. In doing this,
Heawood gave their upper bound for the chromatic number C (S) of any
closed surface and he gave a conjecture for coloring surfaces and graphs,
which was finally proved in 1968 by Ringel and Young.

At the same time, Heawood proved the Five color theorem

Theorem
Every map on D2 can be colored with five colors

By stereographic projection, it is enough to show that C (S2) ≤ 5
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Proof of Heawood’s Five color Theorem
Let M = (V ,E ,F ) be a map on S2. We argue by induction on |F |

If |F | ≤ 5 then we can color M with |F | colors, starting the induction

Suppose then that |F | > 5. Recall that we have proved ∂F < 6

=⇒ M has a face f with deg(f ) ≤ 5

As we did in the proof of Heawood’s theorem, construct a new map N by
shrinking f to a point:

f x

By induction the new map N is 5-colorable

As in the proof of Heawood’s theorem, the idea is now to modify the
5-coloring on N to give a 5-coloring on M. This time the proof is
more complicated and there are several cases to consider
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Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x

M

x

N

M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x

M

x

N M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x =⇒ M is 5-colorable:

M

x

N M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x =⇒ M is 5-colorable:

M

x

N M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N

M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x =⇒ M is 5-colorable:

M

x

N M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 2
Case 1: deg(f ) < 5

If deg(f ) < 5 then the 5-coloring of N has at most 4 colors for the faces in
N around x =⇒ M is 5-colorable:

M

x

N M

Case 2: deg(f ) = 5 and the colors around x are not distinct

M

x

N M

As we have used at most 4 colors in N around x , it follows that M
is 5-colorable

— Topology – week 11



Proof of the Five color Theorem . . . . . . . . . . . . 3
Case 3: deg(f ) = 5 and all of the colors in N around x are different

A
B

C

D
E

M

Label the regions A–E as shown.

Consider the polygonal decomposition P contained in N that has these five
faces together with all of the regions in N that have the same colors as the
faces A and C

A
B

C

D
E

M
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Proof of the Five color Theorem . . . . . . . . . . . . 4
Case 3a: The regions A and C are not connected in P

A
B

C

D
E

M

=⇒ Swapping the colors A and C in the connected component of P
that contains A gives a new map N ′ with a valid coloring

A
B

C

D
E

M

=⇒ A and C now have the same color and we are back in Case 2

=⇒ The map M is 5-colorable
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Proof of the Five color Theorem . . . . . . . . . . . . 5
Case 3b: The regions A and C are connected in P

A
B

C

D
E

M

1

2
3456

7
8

9

10
11

12

13

14

15
16

1718

1920

21
22

=⇒ As A and C are connected, B and E cannot be connected!
Swap colors B and E in the “color connected component” containing D

A
B

C

D
E

M

1

2
3456

7
8

9

10
11

12

13

14

15
16

1718

1920

21
22

=⇒ We are back in Case 2, so M is 5-colorable
This completes the proof of the Five color Theorem
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Knots
Intuitive definition A knot is a piece of string with the ends tied together

Definition
A knot is the image of an injective continuous map from S1 into R3,
where S1 = { (x , y) ∈ R2 | x2 + y2 = 1 } is the unit circle in R2

Equivalently, a knot is a closed path in R3 that has no self-intersections

Examples

Unknot Trefoil Reverse trefoil Heart knot

Knot theory is a beautiful mathematical subject with applications in
mathematics, computer science, computer chip design, biology, . . .
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A picture of life
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Another picture of life
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More knots
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Basic question in knot theory
Question
When is a knot the unknot?

Unknot

Another unknot

It is difficult to tell if
a knot is the unknot
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When are two knots the same?
• Can we tell when two knots are equal?

• What does it even mean for two knots to be equal?

Question Is being homeomorphic enough?

No! Every knot is homeomorphic to S1

=⇒ Homeomorphism is not the right equivalence relation for knots!

Definition
Two knots K and L are equivalent, and we write K ∼= L, if there exists a
continuous map, or ambient isotopy, f :R3 × [0, 1]−→R3 such that

1 for each t ∈ [0, 1] the map R3 → R3; x 7→ f (x , t) is a homeomorphism

2 if x ∈ K then f (x , 0) = x , and

3 there is a homeomorphism K → L given by x 7→ f (x , 1)

Intuitively, f continuously deforms K = f (K , 0) into the knot L = f (K , 1)

In practice, we will never use this definition but you should see it
A knot K is trivial if it is equivalent to the unknot otherwise it is non-trivial
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Different notions of “equal”
Objects Graphs Surfaces Knots

Equivalence Isomorphism of graphs Homeomorphism Equivalence of knots

In other words, graphs, surfaces and knots should never be directly
compared – they are different beasts
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Polygonal knots
A polygonal knot is a finite union of (straight) line segments in R3 that is
homeomorphic to S1

just like the polygonal decompositions of surfaces, polygonal
knots reduce the study of knots to combinatorics

Examples

Unknot
Trefoil

Figure eight

Remark Two polygonal knots K and L are equivalent if they have a
common subdivision
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Only polygonal knots
From now on all knots are polygonal knots and we drop the adjective
polygonal

This is not a huge restriction: anything you can draw is polygonal. Any
“finite thing” is a polygonal knot, but “limits” are not so we ignore them

Good (but the limit is not):

Not good:
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Polygonal knots avoid pathologies

These are not polygonal knots:
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Knot projections
Question What do our drawings of knots actually mean?

A knot projection is a drawing of a knot in R2 such that:

• crossings only involve two string segments, or connected components

• over and under crossings indicate relative string placement

Warning!
Knot projections are a convenient way of drawing knots but they involve a
choice of projection

=⇒ Knot projections can be misleading so we have to check that
our constructions are independent of the choice of knot projection
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Projections = shadows
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The trefoil knot times nine
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Reidemeister’s theorem
Theorem
Two knot diagrams represent the same knot if and only if they are related
by a (finite) sequence of moves of the following three types

Here the 0th move is usually used silently

We won’t prove Reidemeister’s theorem in this lecture - the proof is a bit
technical and uses the definition of equivalence of knots

The point: Reidemeister’s theorem reduces topology to combinatorics of
diagrams
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The Reidemeister moves on one slide

— Topology – week 12



The knotty trefoil
Question
Is the trefoil knot equivalent to the unknot?

It seems clear that these two knots are different but, so far, we have not
seen an easy way to distinguish between them
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Knot colorings
Definition
A coloring of a knot (projection) is the assignment of colors to the different
segments,or connected components, so that at each crossing all segments
have either the same color or they all have different colors and at least two
colors are used

or

=⇒ If a knot (projection) is 3-colorable then it has a coloring that
uses exactly 3 colors

Let C3(K ) be the number of different colorings of K using 3 colors

Remark

• A knot can always be colored using a single color,
so C3(K ) ≥ 3 for all knots K

• As soon as more than one color is used we must use all three
colors, so K is 3 colorable if and only if C3(K ) > 3
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Three colorings
As the unknot has no crossings, it has only one segment that must always
be colored using the same color

=⇒ C3(Unknot) = 3 and the Unknot is not 3-colorable

Which of the following are knots are 3-colorable?
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coloring the trefoil knot
Question What is C3(T ) if T is the trefoil knot?

Claim C3(T ) = 9 since the components of T can be colored independently

— Topology – week 12



coloring the trefoil knot
Question What is C3(T ) if T is the trefoil knot?

Claim C3(T ) = 9 since the components of T can be colored independently

— Topology – week 12



coloring the trefoil knot
Question What is C3(T ) if T is the trefoil knot?

Claim C3(T ) = 9 since the components of T can be colored independently

— Topology – week 12



Three colorability
Theorem
The integer C3(K ) is a knot invariant
That is, C3(K ) depends only on K , up to ambient isotopy, and it is
independent of the choice of knot projection

Corollary
Being 3-colorable is a knot invariant

The corollary follows because K is 3-colorable if and only if C3(K ) > 3

To prove the theorem it suffices to check that C3(K ) is invariant under the
three Reidemeister moves

• Twisting ↔ and ↔

• Looping ↔ and ↔
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Three colorability . . . . . . . . . . . . . . . . . . . 2
• Braiding

↔ and ↔

↔ and ↔

↔ and ↔

↔ and ↔

Key point For each Reidemeister move there is a unique way to complete
any coloring given the existing colors of the segments going in and out
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Reidemeister moves are powerful but might be tricky

This is the unknot:

These two knots
are equivalent:

How to show that? Use Reidemeister moves (this is a strongly
recommended exercise). But that might be tricky in general, so invariants
is what we want.
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Connected sums of knots
We used connected sums to construct and classify surfaces

We want an analog of connected sums for knots

Definition
Given two knots K and L their connected sum is the knot K#L that is
obtained by cutting both knots and splicing them together

K L K L

K#L
Remarks

▶ # does not depend on the choice of knot projections or where you cut
either knot, and it is an “addition” or “multiplication”:

▶ K# ∼= K

▶ K#L ∼= L#K

▶ (K#L)#M ∼= K#(L#M)
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Examples of #
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Three colorability and connected sums
Proposition

Let K and L be knots. Then C3(K#L) = 1
3C3(K ) · C3(L)

Proof We need to count the possible colorings of K#L

K L

C3(K) colorings C3(L) colorings

K L

K#L

C3(K) colorings

Since the colors of the connecting strands are fixed, there are
only 1

3C3(L) ways to 3-color the strands of L inside K#L
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How many knots are there?
Corollary
There are infinitely many inequivalent knots

Proof Since C3(K ) is a knot invariant, it is enough to find an infinite
family of knots that have a different number of 3-colorings

Let T be the trefoil knot

=⇒ C3(T ) = 9 = 32 > 3

=⇒ if n ≥ 1 then
C3(#

kT ) = 1
3C3(T ) · C3(#

k−1T ) = 1
3 · 9 · C3(#

k−1T )
= 3C3(#

k−1T )
= 32C3(#

k−2T ) · · · = 3k−1C3(T ) = 3k+1

Therefore, the knots T , #2T , #3T , . . . are all inequivalent because they
all have a different number of 3-colorings

More generally, the same argument shows that if K is 3-colorable then the
knots K , #2K , #3K ,. . . are all inequivalent
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Prime knots
Definition
The knot K is a composite knot if it has a factorisation K = L#M,
where L and M are not the unknot
A knot K is prime if it is not composite

Example

#

Remark The definition of prime knots is hard to apply because it is difficult
to tell when a knot is not the unknot!

In fact, we don’t yet know that the figure eight knot is not the unknot!!
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The crossing number of a knot

Definition
The crossing number of a projection is the number of crossings you see.
The crossing number cross(K ) of a knot K is the smallest number of
crossings in any knot projection

This is obviously a knot invariant but not obvious how to compute it !!!

Examples

• cross( ) = 0. In fact, cross(K ) = 0 if and only if K is the unknot

• cross( ) = 3

Lemma
Let K and L be knots. Then cross(K#L) ≤ cross(K ) + cross(L)

Remark It is a big open question if cross(K#L) = cross(K ) + cross(L)

This is only known to be true for certain types of knots such as
alternating knots, which we will meet soon
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The crossing number and prime knots

Lemma
Let K and L be knots. Then cross(K#L) ≤ cross(K ) + cross(L)

Proof Note that K#L has a projection with cross(K ) + cross(L) crossings

Corollary
Let K be a knot. Then K = P1# . . .#Pn, for prime knots P1, . . . ,Pn

Proof Immediate by induction on cross(K ), the minimal number of
crossings in K

Conversely, we can ask how many prime knots there are
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Torus knots
For a, b ∈ R write a ≡ b if a− b ∈ Z ⇐⇒ same fractional part

Definition
Then the (p, q)-torus knot Tp,q is the closed path { (x , y) ∈ T | py ≡ qx }
on the standard polygonal decomposition of the torus on the unit square,
where p, q ∈ N and gcd(p, q) = 1

T ∼=

a

a

b b1

1

2

2

3

3

Torus knot (2, 3)

∼=

a

a

b b1

1

2

2

Torus knot (3, 2)

a

a

b b
1

1

2

2

3

3

4

4

5

5

6

6

7

7

Torus knot (5, 7)
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Torus knots are prime knots
Theorem
Suppose that gcd(p, q) = 1. Then the (p, q)-torus knot is prime

This is intuitively clear because whenever we try to write a torus knot as
the connected sum of two smaller knots, each of the smaller knots is the
unknot; we sketch the proof momentarily

Corollary
There are an infinite number of prime knots

Proof If p < q then cross(Tp,q) = (p − 1)q — true but won’t prove

=⇒ the torus knots T2,q with q > 2 odd are all inequivalent

The number of prime knots with n-crossings
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972

As is common, knots and their mirror images are only counted once
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Torus knots are prime - proof sketch

Proof

For p, g ≥ 2 let the (p, q)-torus knot K lie on an unknotted torus T ⊂ S3

and let the 2-sphere S define a decomposition of K . We assume that S
and T are in general position, that is, S ∩ T consists of finitely many
disjoint simple closed curves.

Such a curve either meets K , is parallel to it or it bounds a disk D on T
with D ∩ K = ∅. Choose γ with D ∩ S = ∂D = γ. Then γ divides S into
two disks D ′, D ′′ such that D ∪ D ′ and D ∪ D ′′ are spheres,
(∪D ′) ∩ (∪D ′′) = D; hence, D ′ or D ′′ can be deformed into D by an
isotopy of S3 which leaves K fixed. By a further small deformation we get
rid of one intersection of S with T .
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Torus knots are prime - proof sketch

Proof Continued

Consider the curves of S ∩ T which intersect K . There are one or two
curves of this kind since K intersects S in two points only. If there is one
curve it has intersection numbers +1 and −1 with K and this implies that
it is either isotopic to K or nullhomotopic on T . In the first case K would
be the trivial knot. In the second case it bounds a disk D0 on T and
D0 ∩ T , plus an arc on S , represents one of the factor knots of K ; this
factor would be trivial, contradicting the hypothesis.
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Torus knots are prime - proof sketch

Proof Continued

The case remains where S ∩ T consists of two simple closed curves
intersecting K exactly once. These curves are parallel and bound disks in
one of the solid tori bounded by T . But this contradicts p, q ≥ 2
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Prime factorisation of knots
Theorem
Suppose that K is not the unknot. Then K = P1#P2# . . .#Pn, for prime
knots P1, . . . ,Pn. Moreover, the multiset of prime knots is a knot invariant

This can be proved using Seifert surfaces (that we meet later)

Here is a table of the unknot and the first 36 prime knots:
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Colorable knots

Question
Is the figure eight knot the unknot?

=⇒ We need another knot invariant to show that the figure eight
knot is not the unknot

To do this we first need to better understanding 3-colorings

Rather than colors, lets color the segments with 0, 1 and 2

Question
What can we say about c1 + c2 + c3 for a 3-coloring?

c2

c3

c1

or

c2

c3

c1
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Possible colorings and the values of c1 + c2 + c3

Allowed colorings
c2

c3

c1

or

c2

c3

c1

Disallowed colorings
c2

c3

c1

or

c2

c3

c1

or

c2

c3

c1
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Knot colorings with p-colors
Definition
Let p ∈ N. A p-coloring of a knot K is a coloring of the segments of K
that using colors from {0, 1, . . . , p − 1} such that

cj

ck

ci

=⇒ 2ci ≡ cj + ck (mod p)

Let Cp(K ) be the number of p-colorings of K .
A knot is p-colorable if it has a p-coloring that uses at least two colors

• a ≡ b (mod p) = a− b is divisible by p. When p = 3 this agrees with
the previous definition of 3-coloring

• As with 3-coloring this depends on the choice of knot projection

• For any p the constant coloring is a p-coloring

=⇒ Cp(K ) ≥ p
=⇒ K is p-colorable if and only if Cp(K ) > p
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Colorability is a knot invariant
Theorem
Suppose that p ≥ 3. Then Cp(K ) and p-colorability are both knot
invariants

Proof Repeat the argument used for 3-colorings to show that Cp(K )
is unchanged by the Reidemeister moves and hence is a knot invariant

=⇒ p-colorability is a knot invariant since K is p-colorable
if and only if Cp(K ) > p

Similarly, Cp(K#L) = 1
pCp(K )Cp(L), for knots K and L

Question
Is there an easy way to tell if a knot is p-colorable?
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Examples of p-colorings
Are the following knots 4-colorable, 5-colorable, ... ?

We need a better way to determine if a knot is p-colorable!

Use linear algebra!
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The trefoil knot is knotted!
Corollary
The trefoil knot is not the unknot

Proof The trefoil is 3-colorable and the unknot is not

Corollary
The trefoil knot is not equivalent to the figure eight knot

Proof The trefoil is 3-colorable and the figure eight knot is not
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The trefoil knot in comparison

̸=

or
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Colorful linear algebra
Consider the figure eight knot.

Label the segments c1, c2, c3, c4 in
traveling order around the knot

=⇒ We require:
2c1 −c3 −c4 ≡ 0
−c2 2c2 −c4 ≡ 0
−c1 −c2 2c3 ≡ 0

−c2 −c3 2c4 ≡ 0

In matrix form this becomes MKC ≡ 0 (mod p), where

MK =


2 0 −1 −1

−1 2 0 −1
−1 −1 2 0

0 −1 −1 2

 and C =


c1
c2
c3
c4


That is, C is a p-coloring ⇐⇒ MKC ≡ 0 (mod p)

We have reduced finding c1, . . . , c4 to linear algebra!
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−c2 2c2 −c4 ≡ 0
−c1 −c2 2c3 ≡ 0

−c2 −c3 2c4 ≡ 0

In matrix form this becomes MKC ≡ 0 (mod p), where

MK =


2 0 −1 −1

−1 2 0 −1
−1 −1 2 0

0 −1 −1 2

 and C =


c1
c2
c3
c4


That is, C is a p-coloring ⇐⇒ MKC ≡ 0 (mod p)

We have reduced finding c1, . . . , c4 to linear algebra!

— Topology – week 12



Colorful linear algebra
Consider the figure eight knot.

Label the segments c1, c2, c3, c4 in
traveling order around the knot

=⇒ We require:
2c1 −c3 −c4 ≡ 0
−c2 2c2 −c4 ≡ 0
−c1 −c2 2c3 ≡ 0

−c2 −c3 2c4 ≡ 0

In matrix form this becomes MKC ≡ 0 (mod p), where

MK =


2 0 −1 −1

−1 2 0 −1
−1 −1 2 0

0 −1 −1 2

 and C =


c1
c2
c3
c4


That is, C is a p-coloring ⇐⇒ MKC ≡ 0 (mod p)

We have reduced finding c1, . . . , c4 to linear algebra!

— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



The knot matrix
Let K be knot projection with n crossings.

=⇒ Each segment starts and ends at a crossing, and each crossing
has two under-crossings, so the knot projection has n segments.

Traveling around the knot in an anti-clockwise direction let the colors
of the segments be c1, . . . , cn and let the crossings be x1, . . . , xn

The knot matrix of K is the matrix MK =
(
mij

)
, where mij is the sum of

the contributions of the jth segment of color cj to the ith crossing xi with{
+2, for over-crossings
−1, for under-crossings

=⇒ crossings label rows and segments label columns

An atypical example

c3

c2

c1

MK =


c1 c2 c3

2 − 1 −1 0
2 −1 −1

2 − 1 0 −1



— Topology – week 12



Alternating knots
We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and
under crossings as you travel around the knot in an anti-clockwise direction

=⇒ Being alternating is not a knot invariant
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We mainly consider colorings of alternating knots

A knot projection is alternating if the crossings alternate between over and
under crossings as you travel around the knot in an anti-clockwise direction
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Alternating knots – careful with projections
The unknot is alternating, but it can have non-alternating projections:

Similarly, for other knots
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Knot matrices for alternating knots
If K is an alternating knot then:

=⇒ every segment starts as an under-string, becomes an over-string
and finishes as an under-string

=⇒ when read in traveling order the segments and crossings alternate
as c1, x2, c2, x2, . . . , cn, xn

=⇒ if K is alternating and no segment meets itself then each row
of MK will contain one 2 and two −1’s

=⇒ if K is alternating the row and column sums of MK are all 0

We will mainly consider colorings of alternating knots
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Knot matrix examples

MK =


2 −1 −1

−1 2 −1

−1 −1 2



ML =



2 0 0 −1 −1

−1 2 0 0 −1

−1 −1 2 0 0

0 −1 −1 2 0

0 0 −1 −1 2



K =

L =
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Properties of the knot matrix
Lemma
Let K be an alternating knot.

1 The row and column sums of MK are all 0

2 MK

[ 1
...
1

]
= 0

3 detMK = 0

Proof

(1) Since the knot is alternating every colored strand contributes 2 once
and −1 twice (see below) and dually from crossings
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Properties of the knot matrix

Proof Continued

(2) By (1), the respective vector is an eigenvector with eigenvalue zero

(3) By (2) there is an zero eigenvector, so the kernel is nontrivial
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Minors of a matrix
The (r , c)-minor of an n × n matrix M is the (n − 1)× (n − 1)-matrix Mrc

obtained by deleting row r and column c from M)

M =


a11 a1c a1n
...

...
...

ar1 arc arn
...

...
...

an1 anc ann



Mrc =


a11 . . . a1c . . . a1n
... ¨

...
...

...
ar1 . . . arc . . . arn
... ¨

...
...

...
an1 . . . anc . . . ann


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The knot determinant
Definition
Let K be a knot. The knot determinant of K is det(K ) =

∣∣det(MK )11
∣∣

Lemma
Let M = (mrc) be an n × n matrix with zero row and column sums.
Then detMrc = ± detM11, for 1 ≤ r , c ≤ n

Proof Let I be the n × n-matrix with every entry equal to 1

Then det(M + I)
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Proof Let I be the n × n-matrix with every entry equal to 1

Then det(M + I) = det

m11+1 m12+1 ··· m1n+1
m21+1 m22+1 ··· m1n+1

...
. . . . . .

...
mn1+1 mn2+1 ··· mnn+1


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∑
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∑
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∑
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...

. . . . . .
...
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∑
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. . . . . .
...
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By the same argument, if 1 ≤ r , c ≤ n then

det(M + I) = (−1)r+cn2 detMrc
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The knot determinant

Definition
Let K be an alternating knot. The knot determinant of a knot K is

det(K ) =
∣∣det(MK )11

∣∣ — can take any minor of MK

Theorem
Let K be an alternating knot and p ≥ 3 be a prime. Then K is p-colorable
if and only if p divides the knot determinant det(K )

Proof

By definition, K is p-colorable if and only if there exist c1, . . . , cn

such that MK

[ c1
...
cn

]
≡

[ 0
...
0

]
(mod p).

Now
[ 1

...
1

]
is a 0-eigenvector of MK , so if d ∈ Z then

MK

[ c1
...
cn

]
= MK

[
c1+1

...
cn+1

]
= MK

[
c1+2

...
cn+2

]
= · · · = MK

[
c1+d

...
cn+d

]
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By definition, K is p-colorable if and only if there exist c1, . . . , cn

such that MK

[ c1
...
cn

]
≡

[ 0
...
0

]
(mod p).

Now
[ 1

...
1

]
is a 0-eigenvector of MK

, so if d ∈ Z then

MK

[ c1
...
cn

]
= MK

[
c1+1

...
cn+1

]
= MK

[
c1+2

...
cn+2

]
= · · · = MK

[
c1+d

...
cn+d

]
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The knot determinant . . . . . . . . . . . . . . . . /2

Proof Continued

=⇒ We can assume that c1 = 0 by taking d = −c1

Hence, K is p-colorable if and only if and only if there
exist c2, . . . , cn such that

MK

 0
c2
...
cn

 ≡ 0 (mod p)

⇐⇒ (MK )11

[ c2
...
cn

]
≡ 0 (mod p)

⇐⇒ det(K ) ̸= 0 (mod p)
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The knot determinant . . . . . . . . . . . . . . . . /3

Remarks

1 The Reidemeister moves show that the knot matrix MK is not a knot
invariant but det(K ) = | det(MK )11| is a knot invariant

2 If K and L are knots then det(K#L) = det(K ) det(L)
=⇒ if det(K#L) = p is prime, then either det(K ) = p or

det(L) = p

3 If K is not alternating then the row sums of MK are still 0.Therefore,
the argument used to prove the theorem shows that K is p-colorable if
and only if p divides (MK )rc , for some r , c .
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Colorability of the figure eight knot
Summary of how to determine p-colorability

1 Label the segments in traveling order

2 Compute the entries of the knot matrix MK

3 Compute the knot determinant det(K ) = | det(MK )11|

4 Check if p divides det(K )

MK =


2 −1 −1 0

−1 0 2 −1
−1 −1 0 2

0 2 −1 −1

 K =

The determinant is five, so the figure eight knot is five-colorable (and only
five colorable)
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Colorability of the figure eight knot – part 2

Thus, the figure eight knot is not trivial (it has strictly more than five
5-colorings) and also not the trefoil knot
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Seifert surfaces
Definition
A Seifert surface for a knot K is an orientable surface that has K as its
boundary

Theorem
Every knot has a Seifert surface

Remark In general, a Seifert surface is not unique

We will prove this result by giving an algorithm for constructing a Seifert
surface for any knot
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Constructing Seifert surfaces

Proof Real world version

Take a knot, build out of wire, and put it into soap

The minimal surface you get is a Seifert surface
— Topology – week 12



Constructing Seifert surfaces

Proof Math version

Step 1 Pick an orientation of the knot
That is, fix a direction to travel around the knot

Step 2 At each crossing cut the over-string and join the incoming and
outgoing strings; the knot is then a disjoint union of Seifert circles

Step 3 Imagine the Seifert circles as being at different heights and glue a
disk onto each one of the Seifert circles

Step 4 Now each crossing in K , glue on a twisted strip that has the
crossing as a boundary
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The platform construction
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Examples of Seifert surfaces

• Unknot:

• Trefoil

• Figure eight
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More examples of Seifert surfaces

Figure 8= 41 61 71 85
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The genus of a knot
Let S be a Seifert surface of a knot K

=⇒ S is orientable + has one boundary circle since it embeds in R3

=⇒ S ∼= D2 ##tT, where t = 1−χ(S)
2 ≥ 0

Definition

The genus of K is g(K ) = min
{

1−χ(S)
2

∣∣∣ S a Seifert surface of K
}

Remark Used to prove uniqueness of factorization of prime knots

Example (with proof!)

• K = =⇒ g(K ) = 0 as S ∼= D2 and g cannot be smaller, so just
checking this one diagram is sufficient

Fact g(K ) = 0 ⇐⇒ K =

Problem K is the trefoil: . . . not very clear how to calculate g(K ) !
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Calculating the knot genus
Proposition
Let S be the Seifert surface with s Seifert circles that is constructed
from a knot projection for a knot K with c crossings.
Then χ(S) = s − c and g(K ) ≤ 1+c−s

2

Proof Recall from tutorials that χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

Write S = A ∪ B , where A the union of the Seifert circles and B the union
of the twists in S

=⇒ A ∩ B is a union of c pairs

=⇒ χ(S) = χ(A) + χ(B)− χ(A ∩ B) = s + c − 2c = s − c

Hence, g(K ) ≤ 1−χ(S)
2 = 1+c−s

2
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Genus of trefoil and figure eight knots

If K has c crossings and s Seifert circles then g(K ) ≤ 1+c−s
2

So g(K ) ≤ 1+4−3
2 = 1
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Genus of alternating knots

Bad news: It can happen that g(K ) < 1−χ(S)
2 !!

The good news is that there is no bad news for alternating knots

Theorem
Let S be the Seifert surface constructed from an alternating knot
projection of K . Then g(K ) = 1−χ(S)

2

Proof Nontrivial and omitted!
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Knot genus is additive
Theorem
Let K and L be knots. Then g(K#L) = g(K ) + g(L)

Start of proof It is not hard to see that SK#L
∼= SK#stripSL (connected sum

along a strip connecting the surfaces and boundary cycles). This implies
that g(K#L) ≤ g(K ) + g(L). The reverse implication is much harder!

The theorem gives another proof that the trefoil and figure eight knots are
non-trivial because both knots have genus 1

Corollary
Let K and L be knots, which are not the unknot. Then K ̸∼= (K#L)#M
for any knot M

Proof If such a knot M existed then
g(K ) = g

(
(K#L)#M

)
= g(K ) + g(L) + g(M)

=⇒ g(M) = −g(L) < 0    
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Left = right-handed trefoil? No idea...
No method we have seen distinguishes these two fellows:

But that has to wait for another time...
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A few take away pictures

Topic 1: graphs!

Topic 2: surfaces!

Topic 3: knots!
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This was my last slide!
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The three main topics

Topic 1: graphs!

Topic 2: surfaces!

Topic 3: knots!
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Topic 1: graphs!
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Questions we ask about a graph G

1 Have we seen G before? Is it one of the standard ones (lines, cycles,
complete graphs, complete bipartite graphs)?

2 How many vertices and edges does G have?

3 What is its Euler characteristic?

4 Is G connected? How many connected components does G have?

5 Is G a tree? If not, then can we find a spanning tree?

6 What are its paths (start and endpoint might be different)? What are
its circuits?

7 Does G have an Eulerian circuit? Does G have an Eulerian path?

8 Is G planar, i.e. does it embed into the plane = the disc = S2?

9 Does G embed into other surfaces?

10 How many colors do we need to color maps defined by G?

Let us answer 1-10 for the Pappus graph

But before, let us recall what the above are!
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Basics
A connected graph with |V | = 6, |E | = 8, χ = −2 and one loop:

A non-connected graph with |V | = 9, |E | = 9, χ = 0:
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Standard graphs

Line:

Cycle:

Complete:

Complete bipartite:
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Standard graphs – part 2
Exercise Check whether you understand how the various standard graphs
are related and what properties they have. For example, which ones are
subgraphs, which ones are planar etc.
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Trees
Trees are acyclic, so only the right graph below is a tree:

Trees satisfy many properties and are always amenable for induction, e.g.
prove the following as an exercise:
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Euler and cycles
Euler’s famous criterion:
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Embeddings on surfaces

Heawood’s coloring formula:
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The Pappus graph G
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The Pappus graph G – answering 1–10, part 1

The Pappus graph is a not a standard graph – it is neither a line nor a
cycle nor complete nor complete bipartite

We clearly have |V | = 18 and |E | = 27, so that χ(G ) = |V | − |E | = −9,
and G is connected

The Pappus graph is not a tree and a spanning tree is illustrated above
(there are many more spanning trees)
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The Pappus graph G – answering 1–10, part 2

The Pappus graph has many cycles that are hexagons, as illustrated above.
In fact, one checks that the length of the smallest cycle is 6

Every vertex in the Pappus graph is of degree 3, so there are neither
Eulerian circuits nor paths
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The Pappus graph G – answering 1–10, part 3

The Pappus graph does not embed into S2

G embeds onto the torus and then needs 3 colors to color it, see above

Heawood’s theorem for the torus would give ⌊7+
√

49−24·0
2 ⌋ = 7 as the

number of colorings needed in the worst case, so G does better
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The Heawood graph – answer 1–10 as an exercise

The above graph is called the Heawood graph – try yourself!
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Topic 2: surfaces!
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Questions we ask about a surface S

1 Have we seen S before? Is it one of the standard ones (sphere, torus,
Klein bottle, projective plane etc.)?

2 How many boundary cycles = punctures does S have?

3 What is its Euler characteristic?

4 Is S connected? How many connected components does S have?

5 Is S orientable?

6 Can we find a polygonal form of S?

7 What is its standard form?

8 How many cross-caps are there in standard form?

9 How many handles are there in standard form?

10 If d = 0, then what is the chromatic number of S?

Let us answer 1-10 for a randomly generated polygonal form

But before, let us recall what the above are!
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The standard surfaces in polygonal form

These are 2 dimensional objects, e.g. the torus is hollow:

T =
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From polygons to surfaces
Recall that one goes from a polygon to a surface by identifying paired edges

For the torus that means e.g.

For an annulus one gets

b

a

c

a

xx

y y

↭

One can build of most these, e.g. a Möbius, strip out of paper
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The boundary
Boundary points have neighborhoods that are half-discs; all other point
have disc neighborhoods

In a polygonal form, the free edges wrap around boundary components:

Note that the surface S is on the outside in these pictures
— Topology – recollection



Euler characteristic
Every surface S has infinitely many polygonal forms and they might look
wildly different, e.g.:

The Euler characteristic χ(S) = |V | − |E |+ |F | is the same for any
polygonal form

left: χ(T) = 1 − 2 + 1 = 0, right: χ(T) = 2 − 3 + 1 = 0
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Euler characteristic – only almost perfect
We have χ(S) ̸= χ(T ) ⇒ S ̸∼= T but the converse is not true:

T ↭

a

b

a

b

xx

x x

, χ(T) = 0, T ∪ T ↭

a

b

a

b

xx

x x

c

d

c

d

xx

x x

, χ(T ∪ T) = 0

Fix: check connectivity

T ↭

a

b

a

b

xx

x x

, χ(T) = 0, K ↭

a

b

a

b

xx

x x

, χ(K) = 0

Fix: check orientability

T ↭

a

b

a

b

xx

x x

, χ(T) = 0, A ↭

a

b

a

c

xx

y y

, χ(A) = 0

Fix: check boundary
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Connectivity – we can eyeball it
Connected = we can go from every point of S to any other point of S

Connected:

or

a

b

a

c

c

d

e

f

Not connected:

or

a

b

a

b

c

d

e

f
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Orientability – we can tell on the words
Orientable = consistent choice of a coordinate system

Top: orientable, bottom: not orientable

This is hard to check on the surface itself but:
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Boundary = punctures = holes
Eight and six boundary components, respectively:

On the polygon this is the free-edge game: identify free edges, and check
what cycles they form, e.g.:

a
b

c

d
e

f

d

b

xx

y

y

z w

z

y

↭
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The classification theorem

Thus, every surfaces is of either of the following two forms, called standard:

d ↭ punctures=boundary=holes
p ↭ projective planes=cross caps

t ↭ handles=tori
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Handles and cross-caps do not want to go along

T#P2 ∼= K#P2 ∼= P2 #P2 #P2 ↭ “t = 2p”
Not true: T ∼= K

We can use this to always get rid of all tori in the presence of P2, e.g.:

The left-hand surface is not in standard form
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From a surface to a polygon
Here is an example how to find a word for the 3-times punctured sphere:

↭ ↭

a

b

c

b

d

e

d

In general, using the classification theorem, we had standard words that we
can paste together:
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Heawood’s exciting theorem
For a connected closed surface S ̸∼= K we have that the chromatic number
C (S) is

C (S) =
⌊1

2(7 +
√

49 − 24χ(S))
⌋

Additionally C (K) = 6

Example

S = , χ(S) = −4,C (S) = ⌊9.5208⌋ = 9

recall the formula:
χ(S) = 2 − d − p − 2t

for S ∼= S2 ##dD2 ##pP2 ##tT
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A random example

a
b

c

d
e

c

b

a

To find (d , p, t) for S we go through a list of steps:

1 Identify vertices and count them ⇒ |V |

2 Count edges and faces ⇒ |E | and |F |

3 Compute χ(S) = |V | − |E |+ |F |

4 Check how free edges arrange themselves in cycles ⇒ d

5 Check for a...a and a...a; if we find them, then t = 0 otherwise p = 0
⇒ we get either p or t

6 Use χ(S) = 2 − d − p − 2t to determine the remaining entry t or p
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A random example – part 2

a
b

c

d
e

c

b

a

xy

z

w

v w

z

y

↭

Lets do it!

1 From the above we get |V | = 5

2 Counting edges and faces gives |E | = 5 and |F | = 1

3 We get χ(S) = |V | − |E |+ |F | = 1

4 The only free edges d : v → w and e : w → v form one cycle, so d = 1

5 No pairs a...a or a...a, so p = 0

6 1 = χ(S) = 2 − 1 − 0 − 2t gives t = 0
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More examples – answer 1–10 as an exercise

These two surfaces are well-known and want to be identified – try
yourself!

Exercise Write down some word representing a polygonal form and identify
its corresponding standard form, meaning (d , p, t)
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Topic 3: knots!
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Questions we ask about a knot K

1 Have we seen K before? Is it one of the standard ones, i.e. for low
crossing number?

2 Can the diagram(=projection) of K that we see be simplified?

3 Is K the unknot a.k.a. trivial?

4 What is the crossing number of K?

5 Is K alternating?

6 Is K three colorable?

7 Is K p-colorable for p > 3?

8 What is the knot determinant of K?

9 Can we explicitly compute a Seifert surface for a diagram of K?

10 What is the genus of K?

Let us answer 1-10 for the knot 51

But before, let us recall what the above are!
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Knots
A knot is an embedding of S1 into R3 and we study these up to
equivalence, i.e. continuous deformation without cutting

Note that all knots are homeomorphic, so this is the wrong notion of
equivalence for knots

— Topology – recollection



The periodic table of knots
A main point of knot theory is to have a table of knots up to mirror images:

knot

name unknot trefoil figure 8 cinquefoil three-twist
notation 01 31 41 51 52

cross(K ) 0 3 4 5 5
det(K ) 1 3 5 5 7
g(K ) 0 1 1 2 1
prime? yes yes yes yes yes

alternating? yes yes yes yes yes

Google The Rolfsen Knot Table or use e.g. KnotData of Mathematica

Mirror images (=flipped crossings) cannot be detected by our invariants
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Simplify diagrams using Reidemeister moves
A first step is to check whether there are any “obvious” simplifications:

Recall that two knot diagrams represent the same knot if and only if we
can relate them by the Reidemeister moves:
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The culprit
Sometimes diagrams drastically simplify:
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Reidemeister moves – practise makes perfect
Exercise Check whether you understand the Reidemeister moves used for
the culprit on the previous slide

Exercise Check using isotopies and Reidemeister moves whether these two
beasts are the same knot:
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The main question...
...is always: are two knot diagrams representing the same knot?

We want knot invariants to do this!

We had essentially two ways to decide that

Knot invariant 1: colorability
Knot invariant 2: genus
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p-colorable; here only p = 3
Coloring = each segment gets a color such that we have 3-colored
crossings or monochromatic crossings

A knot is 3-colorable if it admits a non-monochromatic coloring
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The genus: great to check whether a knot is trivial
Genus = the minimal t of all Seifert surfaces; to compute it for an
alternating knot run Seifert’s algorithm:

Then t = 1
2(1 + c − s) where c is the number of crossings and s the

number of Seifert circles

Cool fact (verify “⇐” as an exercise):

g(K ) = 0 ⇔ K ∼= unknot
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The knot K = 51

Let us go through the list of steps:

1 We have seen it before, it is 51

2 The diagram cannot be made simpler in any obvious way
3 The knot is not trivial, see next slide or coloring above
4 Since the diagram is alternating cross(K ) = 5
5 The diagram is clearly alternating
6 No, K is not 3-colorable see above
7 Yes, K is 5-colorable, see above
8 We have det(K ) = 5 by computation
9 Yes, Seifert surfaces are easy to get, see next slide
10 g(K ) = 1, see next slide
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The knot K = 51 – Seifert surfaces and genus

orient−−−→ resolve−−−−→

Thus, c = 5 and s = 2 gives χ(S) = s − c = −3 and
g = 1

2(1 − χ(S)) = 1
2(1 + c − s) = 2

Putting in the twists gives:
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Another knot – answer 1–10 as an exercise

This is knot 52 – try yourself!
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I hope you enjoyed topology!
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