Tutorial 8

Weekly summary and definitions and results for this tutorial

- a) A Eulerian circuit, or Eulerian cycle, in a connected graph G is a circuit in G that goes through every edge exactly once.
- b) Theorem A graph has a Eulerian circuit if and only if it is connected and every vertex has even degree.
- c) Suppose that $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^n$. Then X and Y are **homeomorphic** if there exist continuous maps $f : X \longrightarrow Y$ and $g : Y \longrightarrow X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$, where id_X and id_Y are the identity maps on X and Y. We write $X \cong Y$.
- d) If a < b and c < d are real numbers then $(a, b) \cong (c, d) \cong \mathbb{R}$, $[a, b) \cong [c, d) \cong (c, d]$ and $[a, b] \cong [c, d]$. Any two (filled in) polygons are homeomorphic: a (filled in) triangle is homeomorphic to a (filled in) square, pentagon, hexagon, ... and all of these are homeomorphic to the disc $\mathbb{D}^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$.
- e) Informal definition of a surface: Let $n \ge 0$. A surface is a subset of \mathbb{R}^n such that, locally, X looks like the graph of a function z = f(x, y).
- f) Examples of surfaces: planes, spheres, cubes, the tori (or donuts), coffee cups, double torus, Möbius strips, Klein bottles, projective planes, cylinders, annuli, ...
- g) An **identification space** for a surface *T* is a collection of surfaces X_1, \ldots, X_r together with a continuous map $f : \bigcup_r X_r \longrightarrow T$. So *f* identifies $x \in X_i$ and $y \in X_j$ whenever f(x) = f(y).
- h) *Formal definition of the surfaces considered in this course:* A surface with a **polygonal decomposition** is the identification space given by a (finite) collection of polygons with at most two polygons being identified along any edge.
- i) Polygonal decompositions, or identification spaces, for some important surfaces:

j) The Euler characteristic of a surface S with polygonal decomposition (V, E, F) is:

$$\chi(S) = |V| - |E| + |F|.$$

k) The **boundary** of a surface S with a polygonal decomposition is the union of the free, or unpaired, edges. The boundary ∂S is a disjoint union circuits, which are the **boundary circles** of S.

Questions to complete before the tutorial

1. In the tutorial of week 7, we talked about the projections of the five Platonic solids onto the plane:

We found a Eulerian cycle for the octahedral graph last week. Determine, for each of the graphs of the platonic solids, whether they have a Eulerian cycle.

- **2.** Recall that K_n is the complete graph on *n* vertices, for $n \ge 1$.
 - a) Determine the Euler characteristic of K_n .
 - b) For which values of *n* is K_n a tree?
 - c) For which values of *n* does K_n have a Eulerian circuit?
- **3.** Recall that the complete bipartite graph $K_{m,n}$, for $m, n \ge 1$, has vertex set $V = M \sqcup N$ (disjoint union), where m = |M|, n = |N|, and with edge set $\{(x, y) \mid x \in M \text{ and } y \in N\}$. That is, $K_{m,n}$ has mn edges that connect every element of M with every element of N.
 - a) Find a formula for $\chi(K_{m,n})$.
 - b) For which values of m and n does $K_{m,n}$ have a Eulerian circuit?

Questions to complete *during* the tutorial

- 4. a) Show that a connected graph with $n \ge 3$ and every vertex of degree 2 is isomorphic to the cyclic graph C_n .
 - b) Deduce a graph has every vertex of degree two if and only if it is a disjoint union of cycle graphs.
 - c) Show that any connected graph in which the vertex degrees are 1 or 2 is a path graph or a cycle graph.
 - d) Deduce that a graph has every vertex of degree one or two if and only if it is a disjoint union of cycles graphs and path graphs. In this case show the Euler characteristic of the graph counts the number of path graph components.
- **5.** Check that you understand the polygonal decompositions of the surfaces \mathbb{D}^2 , \mathbb{A} , S^2 , \mathbb{T} , \mathbb{M} , \mathbb{K} and \mathbb{P}^2 given in the lecture summary at the start of the tutorial.
- 6. Let W be a sector of the disc between two distinct radii OP and OQ. What surface do we get when we identify OP with OQ?

7. Label the vertices of a rectangle A, B, C, D as we move anticlockwise around the sides.

What surfaces do we get when we identify:

- a) AB with AD?
- b) AB with AD and CB with CD?

Questions to complete after the tutorial

8. In lectures it was explained in an intuitive way why the annulus A and the cylinder are homeomorphic. Up to homeomorphism, the annulus is the set

$$A = \left\{ (x, y) \in \mathbb{R}^2 \, \Big| \, \frac{1}{2} \leqslant x^2 + y^2 \leqslant 1 \right\} \subseteq \mathbb{R}^2$$

and up to homeomorphism the cylinder is the set

$$C = \left\{ (x, y, z) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \text{ and } \frac{1}{2} \leq z \leq 1 \right\} \subseteq \mathbb{R}^3.$$

In particular, the annulus A embeds in \mathbb{R}^2 whereas the cylinder C embeds in \mathbb{R}^3 .

- a) Draw the sets A and C and verify that they are the annulus and the cylinder, respectively.
- b) Show that $A \cong C$ by constructing explicit continuous maps $f : A \longrightarrow C$ and $g : C \longrightarrow A$ such that $f \circ g = id_C$ and $g \circ f = id_A$.