Tutorial 11 - Solutions

Weekly summary and definitions and results for this tutorial

a) If $G=(V, E)$ is a connected graph embedded in \mathbb{D}^{2} then $|V|-|E|+|F|=2$, where F is the set of disconnected regions, or faces, in $\mathbb{D}^{2} \backslash G$.
b) The complete graphs K_{n}, for $n \geqslant 5$, are not planar.
c) Face-degree equation: Let S be a polygonal surface without boundary, with e edges, vertex set V and F the set of faces. Then $\sum_{x \in V} \operatorname{deg} x=2 e=\sum_{y \in F} \operatorname{deg} y$.
d) A platonic solid is a solid made by gluing together regular n-gons of the same size with p edges meeting at every vertex. If the regular solid has vertex set V, edge set E and face set F then

$$
\frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}>\frac{1}{2}
$$

As a consequence, we saw that there are exactly five platonic solids:

Solid	n	p	$v=\frac{2 e}{p}$	e	$f=\frac{2 e}{p}$
Tetrahedron	3	3	4	6	4
Octahedron	3	4	6	12	8
Icosahedron	3	5	12	30	20
Cube	4	3	8	12	6
Dodecahedron	5	3	20	30	12

e) A map on a closed polygonal surface S is polygonal decomposition such that all vertices have degree at least 3, no region (or face), borders itself, no region contains a hole or another region and no internal region has only two borders.
f) A colouring of a map on a surface S is a colouring of the faces of the map so that polygons sharing a common edge (a.k.a countries that share a border) have different colours.
g) The chromatic number $C_{M}(S)$ of the map M is the minimum number of colours needed to colour M. The chromatic number of the surface S is

$$
C(S)=\max \left\{C_{M}(S) \mid M \text { a map on } S\right\} .
$$

h) Heawood's estimate says that

$$
C(S) \leqslant \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2} \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

The key to proving this when $\chi(S) \leqslant 0$ is that $\partial_{F} \leqslant 5$, where $\partial_{F}=\frac{2|E|}{|F|}$ is the average degree of a face.
Heawood's estimate is sharp (i.e. exactly right), except when $S=S^{2}$ or $S=\mathbb{K}$. We proved that every map on S^{2} or, equivalently (by stereographic projection), a map on \mathbb{D}^{2}, requires at most 5 colours. In fact, every map on S^{2} is 4-colourable.
i) A knot is a closed path in \mathbb{R}^{3} with no self-intersections.
j) A knot projection is a drawing of a knot in \mathbb{R}^{2} with over and under crossings being used to indicate the relative positions of the strings and with no more than two strands meeting at any crossing.
k) A polygonal decomposition of a knot is a sequence of line segments with consecutive endpoints identified. Any knot is equivalent to a polygonal knot. Two polygonal knots are equivalent if there exists a polygonal knot that is a subdivision of both knots.

1) Two knot projections correspond to equivalent knots if and only if one can be transformed into the other using the three Reidemeister moves: twisting, looping and sliding.
m) The segments of a knot projection are the connected components of the knot projection.

Questions to complete during the tutorial

1. Recall that the complete graph K_{5} on 5 vertices is not planar. That is, K_{5} cannot be drawn on the plane or on the sphere without edge crossings.
a) Is it possible to draw K_{5} without edge crossings on the Möbius band \mathbb{M} ?
b) Is it possible to draw K_{5} without edge crossings on the annulus \mathbb{A} ?
[Hint: Argue by contradiction thinking about the relationship between \mathbb{A} and S^{2}.]

Solution

a) Using the standard polygonal decomposition of \mathbb{M} it is not hard to draw K_{5} on \mathbb{M} :

where the red edges are all distinct, The key point is that the left and right-hand edges of the Möbius band have opposite orientations. Therefore, the top edge leaving the Möbius band on the left-hand side at the vertex x is connected to the bottom edge on the right-hand side. Similarly, the bottom left-hand edge that leaves \mathbb{M} at y is connects to top right-hand edge.
b) It is not possible to draw K_{5} on the annulus without edge crossings. As $\chi(\mathbb{A})=0=\chi(\mathbb{M})$ we cannot argue as we did in lectures to show that this is impossible. Instead, as suggested by the hint, we argue by contradiction and assume that we can draw K_{5} on the annulus without edge crossings. Now, the annuls \mathbb{A}, or cylinder, is a twice punctured sphere. Therefore, as we are assuming that we can draw K_{5} on \mathbb{A} without edge crossings, by filling in the two punctures in \mathbb{A} we can draw K_{5} on the sphere without edge crossings. We saw in lectures, however, that this is impossible, so this is a contradiction. Hence, we cannot draw K_{5} on A without edge crossings either.
More generally, by the same argument, we cannot draw K_{5} on $S^{2} \# \#^{d} \mathbb{D}^{2}$, the sphere with d punctures where $d \geqslant 0$, without edge crossings. Indeed, it is not hard to show that a graph is planar if and only if it can be drawn on $S^{2} \# \#^{d} \mathbb{D}^{2}$ without edge crossings.
2. Show that the complete bipartite graph $K_{3,3}$

is not planar.
[Hint: Argue by contradiction and first show that each face has four or six edges.]
Solution Suppose by way of contradiction that $K_{3,3}$ is planar. Then there is a polygonal decomposition of the sphere with 6 vertices and 9 edges. Let the number of faces in this decomposition be F. Then $2=\chi\left(S^{2}\right)=$ $6-9+F$, so that $F=5$. Now, observe that because $K_{3,3}$ is bipartite it can only have cycles of even length. Therefore, as it has no cycles of length 2 , all of the cycles in $K_{3,3}$ have length 4 or 6 since there can be no cycles
of length greater than 6 since $K_{3,3}$ has only 6 vertices. Hence, in the polygonal decomposition of S^{2} coming from $K_{3,3}$, each face of has either 4 or 6 edges. Let F_{4} be the number of faces with 4 edges and F_{6} be the number of faces with 6 edges. Then $F_{4}+F_{6}=5$ and, since each edge must meet two faces, $4 F_{4}+6 F_{6}=2 \#$ edges $=18$, so that $2 F_{4}+3 F_{6}=9$. Hence,

$$
9=2 F_{4}+3 F_{6} \geqslant 2\left(F_{4}+F_{6}\right)=2 \times 5=10 . \quad!!
$$

This is a contradiction, so we conclude that $K_{3,3}$ is not planar.
3. A ball is constructed from squares and regular hexagons sewn along edges such that at each vertex 3 edges meet. Each square is surrounded by hexagons, and each hexagon by 3 squares and 3 hexagons. How many squares and hexagons are used in the construction?

Solution Let the number of squares be F_{4} and the number of hexagons be F_{6} and let V, E and F be the number of vertices, edges and faces of the decomposition, respectively. Then $F=F_{4}+F_{6}$ and $3 V=2 E$. Counting the edges of the faces counts each edge twice so

$$
4 F_{4}+6 F_{6}=2 E
$$

Each square meets 4 hexagons and each hexagon meets 3 squares, so $4 F_{4}=3 F_{6}$. Hence $9 F_{6}=2 E=3 V$. Therefore,

$$
E=\frac{9}{2} F_{6}, \quad V=3 F_{6}, \quad F=F_{6}+\frac{3}{4} F_{6}=\frac{7}{4} F_{6} .
$$

Using the Euler characteristic equation $V-E+F=\chi\left(S^{2}\right)=2$ shows that

$$
12 F_{6}-18 F_{6}+7 F_{6}=8
$$

Hence $F_{4}=6$ and $F_{6}=8$. Such a surface can realised as a regular truncated octahedron.
See http://en.wikipedia.org/wiki/File:Truncatedoctahedron.gif for an animated rotating image.

4. a) Show that there is no regular polygonal decomposition of the torus by pentagons.
b) For which n is there a regular polygonal decomposition of the torus into n-gons?

Solution

a) Suppose we have a decomposition of the torus with pentagonal faces with p pentagons meeting at each vertex. Let v, e and f be the number of vertices, edges and faces in this decomposition. The graph of vertices and edges of the decomposition has all vertices of degree p. Hence,

$$
p v=\sum_{\text {vertices } x} \operatorname{deg} x=2 e
$$

Each pentagon has 5 edges so counting over all faces $5 f=2 e$, since each edge is counted twice. Therefore, since the torus has Euler characteristic zero,

$$
0=\chi(\mathbb{T})=v-e+f=\frac{2 e}{p}-e+\frac{2 e}{5}=e\left(\frac{2}{p}-1+\frac{2}{5}\right)=e\left(\frac{2}{p}-\frac{3}{5}\right) .
$$

Hence, $\frac{2}{p}-\frac{3}{5}=0$ after dividing by e (which is necessarily non-zero), so that $p=\frac{10}{3}$. This is nonsense, however, because p is an integer. Therefore, it is not possible to find a decomposition of the torus using pentagons.
b) Arguing as in part (a), but now assuming that p n-gons meet in each vertex, we obtain

$$
p v=2 e=n f
$$

Therefore, $v=\frac{2 e}{p}$ and $f=\frac{2 e}{n}$ so that $0=\chi(\mathbb{T})=\frac{2 e}{p}-e+\frac{2 e}{n}=2 e\left(\frac{1}{p}+\frac{1}{n}-\frac{1}{2}\right)$. We can divide by e since it is non-zero so, clearing denominators, we require that $n p-2 n-2 p=0$ or, equivalently, that $(n-2)(p-2)=4$. As the only positive integer factorisations of 4 are $4=4 \times 1=2 \times 2=1 \times 4$ this means that the only possible solutions are $(n, p)=(6,3),(n, p)=(4,4)$ or $(n, p)=(3,6)$, respectively. All of these decompositions can be realised.
The last paragraph gives necessary conditions on p and n for the existence of a regular decomposition of the torus, but we have not yet shown that these decompositions exist in any of the three cases $(n, p)=(6,3)$, $(n, p)=(4,4)$ or $(n, p)=(3,6)$. The only way to prove that such a decomposition exists is to produce one. In fact, it turns out that in each case there are infinitely many different regular polygonal decompositions of the torus by triangles, squares and hexagons. The regular decompositions of the torus can be found at www.weddslist.com/groups/genus/1/
Recall that we have seen one of these, namely the one with seven touching hexagons:

5. The Degenerate Regular Decompositions of the Sphere

a) Show that for each integer $p \geq 2$ there is regular decomposition of the sphere into p two sided polygons.
b) Dually, show that for each integer $n \geq 2$ there is a regular decomposition of the sphere into 2 polygons with n sides.

Solution To get regular decomposition of the standard sphere into p two sided polygons, mark a north pole N and south pole S on the sphere and then draw p longitudinal semi-great circles with angle between lines of longitude each $2 \pi / p$. Then this is a polygonal decomposition of sphere into 2 -gons with vertices N and S. This decomposition into 2 -gons is regular the same number p, of the 2 -gons, meets at each vertex. You have all seen this before:

To get a regular decomposition of the sphere into two polygons each with n mark n equally spaced points on the great circle. Then gives a polygonal decomposition of the sphere into two n-gons whose vertices are the marked points, edges the great circle arcs joining them and faces the northern and southern hemispheres. This is
regular decomposition into n-gons because the same number two, of n-gons, meets at each vertex.

