## Tutorial 11

## Weekly summary and definitions and results for this tutorial

a) If $G=(V, E)$ is a connected graph embedded in $\mathbb{D}^{2}$ then $|V|-|E|+|F|=2$, where $F$ is the set of disconnected regions, or faces, in $\mathbb{D}^{2} \backslash G$.
b) The complete graphs $K_{n}$, for $n \geqslant 5$, are not planar.
c) Face-degree equation: Let $S$ be a polygonal surface without boundary, with e edges, vertex set $V$ and $F$ the set of faces. Then $\sum_{x \in V} \operatorname{deg} x=2 e=\sum_{y \in F} \operatorname{deg} y$.
d) A platonic solid is a solid made by gluing together regular $n$-gons of the same size with $p$ edges meeting at every vertex. If the regular solid has vertex set $V$, edge set $E$ and face set $F$ then

$$
\frac{1}{p}+\frac{1}{n}=\frac{1}{2}+\frac{1}{|E|}>\frac{1}{2}
$$

As a consequence, we saw that there are exactly five platonic solids:

| Solid | $n$ | $p$ | $v=\frac{2 e}{p}$ | $e$ | $f=\frac{2 e}{p}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Tetrahedron | 3 | 3 | 4 | 6 | 4 |
| Octahedron | 3 | 4 | 6 | 12 | 8 |
| Icosahedron | 3 | 5 | 12 | 30 | 20 |
| Cube | 4 | 3 | 8 | 12 | 6 |
| Dodecahedron | 5 | 3 | 20 | 30 | 12 |

e) A map on a closed polygonal surface $S$ is polygonal decomposition such that all vertices have degree at least 3, no region (or face), borders itself, no region contains a hole or another region and no internal region has only two borders.
f) A colouring of a map on a surface $S$ is a colouring of the faces of the map so that polygons sharing a common edge (a.k.a countries that share a border) have different colours.
g) The chromatic number $C_{M}(S)$ of the map $M$ is the minimum number of colours needed to colour $M$. The chromatic number of the surface $S$ is

$$
C(S)=\max \left\{C_{M}(S) \mid M \text { a map on } S\right\} .
$$

h) Heawood's estimate says that

$$
C(S) \leqslant \begin{cases}6, & \text { if } S=S^{2} \text { or } S=\mathbb{P}^{2}, \\ \frac{7+\sqrt{49-24 \chi(S)}}{2}, & \text { otherwise }\end{cases}
$$

The key to proving this when $\chi(S) \leqslant 0$ is that $\partial_{F} \leqslant 5$, where $\partial_{F}=\frac{2|E|}{|F|}$ is the average degree of a face.
Heawood's estimate is sharp (i.e. exactly right), except when $S=S^{2}$ or $S=\mathbb{K}$. We proved that every map on $S^{2}$ or, equivalently (by stereographic projection), a map on $\mathbb{D}^{2}$, requires at most 5 colours. In fact, every map on $S^{2}$ is 4-colourable.
i) A knot is a closed path in $\mathbb{R}^{3}$ with no self-intersections.
j) A knot projection is a drawing of a knot in $\mathbb{R}^{2}$ with over and under crossings being used to indicate the relative positions of the strings and with no more than two strands meeting at any crossing.
k) A polygonal decomposition of a knot is a sequence of line segments with consecutive endpoints identified. Any knot is equivalent to a polygonal knot. Two polygonal knots are equivalent if there exists a polygonal knot that is a subdivision of both knots.

1) Two knot projections correspond to equivalent knots if and only if one can be transformed into the other using the three Reidemeister moves: twisting, looping and sliding.
$m$ ) The segments of a knot projection are the connected components of the knot projection.

## Questions to complete during the tutorial

1. Recall that the complete graph $K_{5}$ on 5 vertices is not planar. That is, $K_{5}$ cannot be drawn on the plane or on the sphere without edge crossings.
a) Is it possible to draw $K_{5}$ without edge crossings on the Möbius band $\mathbb{M}$ ?
b) Is it possible to draw $K_{5}$ without edge crossings on the annulus $\mathbb{A}$ ?
[Hint: Argue by contradiction thinking about the relationship between $\mathbb{A}$ and $S^{2}$.]
2. Show that the complete bipartite graph $K_{3,3}$

is not planar.
[Hint: Argue by contradiction and first show that each face has four or six edges.]
3. A ball is constructed from squares and regular hexagons sewn along edges such that at each vertex 3 edges meet. Each square is surrounded by hexagons, and each hexagon by 3 squares and 3 hexagons. How many squares and hexagons are used in the construction?
4. a) Show that there is no regular polygonal decomposition of the torus by pentagons.
b) For which $n$ is there a regular polygonal decomposition of the torus into $n$-gons?

## 5. The Degenerate Regular Decompositions of the Sphere

a) Show that for each integer $p \geq 2$ there is regular decomposition of the sphere into $p$ two sided polygons.
b) Dually, show that for each integer $n \geq 2$ there is a regular decomposition of the sphere into 2 polygons with $n$ sides.

