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ZÜRICH 2018

MARTINA LANINI

Abstract. These are notes for a minicourse held during the Workshop “In-
teractions of low-dimensional topology and “higher” representation theory”
(Zürich, September 17–21, 2018), organised by Daniel Tubbenhauer.

In this minicourse we will explain how the alcove combinatorics is related to
the representation theory of algebraic groups over an algebraically closed field
if the characteristc of the field is� 0, by stating the periodic version of Lusztig
conjecture (proven by Andersen, Jantzen and Soergel under the assumption
of big enough characteristic). In the third lecture we will discuss recent joint
work with Peter Fiebig, in which a certain category of sheaves on the alcoves
is introduced in order to get some understanding of the relevant representation
category whenever the base field has characteristic bigger than the Coxeter
number.

1. Representations of algebraic groups

Main reference for this first section is [J].
An algebraic group G over a field K is an algebraic variety which has also

a structure of a group (meaning that the multiplication map m : G ×G → G,
(g, h) 7→ gh, and the inversion map ι : G→ G, g 7→ g−1, are continuous maps).
An algebraic group is said to be reductive if it does not have any non-trivial
smooth connected nomal unipotent subgroup.

Let G be a connected reductive (linear) algebraic group over the algebraically
closed field K. For instance, GLn(K) (n ≥ 1), Sp2n(K), SLn(K) (n ≥ 2) are all
connective reductive algebraic groups.

A (rational) rapresentation of G is a K-vector space V together with a ho-
momorphism of algebraic groups

ϕ : G→ GL(V ).

We denote by Gm := GL1 ' K×.
An algebraic group is said to be an algebraic torus if it is a direct product of

some copies of Gm. We will often omit the word algebraic and just spaek of a
torus.

If G is an algebraic torus, then all its irreducible rational representations are
one-dimensional (as for the case of finite abelian groups), since by definition, it
consists of commuting operators.
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Example 1.1. If G = Gm, and k is a 1-dimensional K- vector space, then any
morphism of algebraic groups is of the form

G = Gm → GL(V ), g 7→ (v 7→ gjv)

for some fixed j ∈ Z. Therefore irreducible representations of a 1-dimensional
algebraic torus are parametrized by integers.

Let T be a torus. Then X(T ) := Hom(T,Gm) is its character lattice (where
we are taking homomorphisms in the category of algebraic groups).

Example 1.2. By the previous example, we see that if T is one dimensional,
then X(T ) ' Z.

Let G be a reductive connected algebraic group, we fix once and for all a
maximal (algebraic) torus T and we denote by X its character lattice X(T ).

Example 1.3. If G = SL2(K), then we can take

T =

{(
a 0
0 a−1

)
| a ∈ K×

}
' Gm.

Let M be a T -module. Since T is abelian, it consists of commuting operators
and therefore we can look at the weight space decomposition of M : M =⊕

λ∈XMλ, where, for λ ∈ X,

Mλ := {m ∈M | t ·m = λ(t)m, ∀t ∈ T}
and it is called the λ-weight space of M .

Denote now
h := Lie(T ), g := Lie(G).

Then g is a T -module under the adjoint action and the root system R ⊂ X is
the set of non-zero weights such that gα 6= 0.

Example 1.4. Let G = SL2, so that

sl2 := g =

{(
a b
c −a

)
| a, c, b ∈ K

}
.

Under the T -action, we have the following root space decomposition:

sl2 = g0 ⊕ gα ⊕ g−α,

with

g0 = K
(

1 0
0 −1

)
, g−α = K

(
0 0
1 0

)
, gα = K

(
0 1
0 0

)
,

where

α :

(
a 0
0 a−1

)
7→ a2.

We conclude that in this case R = {±α}.

We denote by Y := Hom(Gm, T ) the coweight lattice. There is a natural
pairing

〈 , 〉 : X × Y → Z, (ϕ,ψ) 7→ ϕ ◦ ψ
given by the composition (where we are identifying as before Hom(Gm,Gm) with
Z). For any α ∈ R, there is a unique element α∨ ∈ Y such that 〈α, α∨〉 = 2.
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Fix now once and for all a Borel subgroup B of G, that is a maximal closed
connected and solvable algebraic subgroup of G. We denote by b := Lie(B).

The set of positive roots R+ is the set of non-zero weights appearing in
the weight decomposition of b, that is b = g0 ⊕γ∈R+ gγ . It turns out that

R = R+ t R−, where R− := −R+. Moreover, there exists a unique subset
∆ ⊆ R+ such that all roots in R+ are a Z≥0-combination of elements in ∆. ∆
is called the set of simple roots.

Example 1.5. If G = SL2, we can take

B :=

{(
a b
0 a−1

)
| a ∈ K× b ∈ K

}
so that

b =

{(
c d
0 −c

)
| c, d ∈ K

}
and it is immediately seen that R+(= ∆) = {α}.

The choice of a Borel, and hence of the set of positive roots, allows us to
define a partial order on X:

µ ≤ λ ⇔ λ− µ ∈ Z≥0R+.

The partial order just defined is called the dominance order.

1.1. Irreducible representations. We want to construct irreducible repre-
sentations for G.

We start by considering the 1-dimensional T representation Kλ: this is iso-
morphic to K as a vector space, and the action of T is given by t · r = λ(t)r for
any t ∈ T and r ∈ Kλ.

We have that B = U o T , where U is a unipotent subgroup.

Example 1.6. If G = SL2, T the subgroup of diagonal matrices and B the
subgroup of upper triangular matrice as before, then

U =

{(
1 b
0 1

)}
.

It is immediate to verify that U is normal in B and that B = U o T .

We can inflate Kλ to B via letting U act trivially:

u · r = r ∀u ∈ U, r ∈ Kλ.

The Weyl module W (λ) is hence defined as

W (λ) : = IndGB(Kλ) = {f : G→ Kλ regular | f(gb) = λ−1f(g),∀b ∈ B, g ∈ G}.

Example 1.7. If G = SL2, we can consider the action of SL2 on K[x, y], given
by (

a b
c d

)
· p(x, y) = p(ax+ cy, bx+ dy).
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This comes from the right action of SL2 on K2 if we see x, resp. y as the basis
coordinate (1, 0), resp. (0, 1) . Let r ∈ Z≥0, then Kr ' Kxr, as(

a 0
0 a−1

)
· xr = (ax)r = arxr,

(
1 b
0 1

)
· xr = (1 · x)r = xr.

Moreover, IndGBKr = K[x, y]r, where K[x, y]r is the vector space of homogeneous
polynomials of degree r.

Recall that the socle soc(M) of a module M is the submodule generated by
its simple submodules.

Theorem 1.1. (1) If W (λ) 6= (0), then soc(W (λ)) is simple.
(2) W (λ) 6= (0) if and only if λ ∈ X+, where X+ is the set of dominant

weights, that is

X+ = {λ ∈ X | 〈λ, α∨〉 ≥ 0 ∀α ∈ R+}.

We denote by L(λ) := soc(W (λ)) for any λ ∈ X+.

Example 1.8. Let G = SL2. If char(K) = 0, then it is easy to see that
W (r) = K[x, y]r is simple for every r ∈ Z≥0. But as soon as the characteristic is
positive, the Weyl module does not have to be irreducible. Let char(K) = p > 0,
then K{xp, yp} is the unique simple (proper) submodule of K[x, y]p, so that it
holds

soc(K[x, y]p) = K{xp, yp}.

Theorem 1.2. (1) dimL(λ)λ = 1.
(2) {L(λ) | λ ∈ X+} is a full set of representatives of isomorphism classes

of simple (rational) G-modules.

1.2. Character theory. AnyG-module has an induced structure of T modules
and hence a decomposition in weight spaces. Let M =

⊕
λ∈XMλ. Its character

is defined as

ch(M) :=
∑
λ∈X

dim(Mλ)eλ ∈ Z[X].

Example 1.9. Let G = SL2 and suppose that char(K) = 2. Then, under the
identification X ↔ Z, we have

char(W (2)) = e2 + e0 + e−2, char(L(2)) = e2 + e−2.

The character is an additive function, that is, if M ′ ⊂ M is a submodule
then ch(M) = ch(M ′) + ch(M/M ′).

Example 1.10. Let G = SL2 and char(K) = 2. Then according with the
additive property just stated, we have that ch(W (2)/L(2)) = e0.

From the way L(λ) is constructed and the fact that the highest weight space
has dimension 1 we know that

ch(L(λ)) = eλ +
∑
µ<λ

aµL(µ).
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Therefore {L(λ) | λ ∈ X+} ⊂ Z[X] is a linearly independent set. We deduce
that the knowledge of all simple characters allows us to determine Jordan-
Hölder multiplicities for a modules from its character and viceversa.

The central problem is hence to compute ch(L(λ)) for any λ ∈ X+.
If char(K) = 0, then all W (λ) are irreducible and their characters are known

to be given by the Weyl character formula.
Thus from now on, we assume char(K) > 0. In the full generality we have

stated it, this problem is still open. We will discuss how certain polynomials
govern the simple characters for big enough characteristic.

Before moving on, let us notice that the SL3 case was completely solved by
Braden in 1976; in the Seventies, Jantzen was able to determine all characters
in the cases SL4, Sp4, G2 (via his sum formula). All further cases are not yet
completely solved (even for SL5 there are still some cases missing!).

1.3. Steinberg tensor product theorem. From here on, to avoid techni-
calities, we assume moreover, that our reductive connected algebraic group is
simple and simply connected. This is the case, for example, of SLn. Let A0 be
an Fp-algebra such that K[G] = A0 ⊗Fp K. Then there is an algebra morphism

K[G] = A0 ⊗Fp k → K[G] = A0 ⊗Fp k, a⊗ x = ap ⊗ x

which induces a (surjective) morphism of algebraic groups

Fr : G→ G.

Example 1.11. If G = SLn(K), then Fr(aij) = (apij).

Let M be a G-module, then the pullback of the G structure along the Frobe-
nius morphism induces a new G-module structure on it, that we denote by
M (1). Explicitely, M (1) = M as a vector space, but g ·(1) m = Fr(g) ·m.

Lemma 1.1. Let λ ∈ X+, then L(λ)(1) ' L(pλ).

Example 1.12. For G = SL2 and char(K) = p it is immediate that L(1)(1) =

(K{x, y})(1) ' K{xp, yp} = L(p).

Let j ∈ Z>0, we denote by M (j) the module obtained by Frobenius twisting
M j times

Let X1 := {λ ∈ X | 0 ≤ 〈λ, α∨〉 < p ∀α simple } be the set of restricted
weights.

Theorem 1.3 (Steinberg’s Tensor product Theorem). Let λ ∈ X+ and write
λ = λ0 + pλ1 + p2λ2 + . . . + pnλn, where λi ∈ X1 for any i = 1, . . . , n. Then
there is an isomorphism

L(λ) ' L(λ0)⊗ L(λ1)
(1) ⊗ . . .⊗ L(λn)(n).

Exercise 1.1. Prove the previous theorem in the SL2 case.

We deduce that it is enough to know ch(L(λ)) for λ ∈ X+ to determine all
simple characters.
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1.4. Modules over restricted Lie algebras. We want now to rephrase the
problem in terms of modules over a quotient of the enveloping algebra of the
Lie algebra of G.

As before, we denote by g = Lie(G). Denote by [, ] the Lie bracket on g. For
any x ∈ g, recall the endomorphism ad(x) : g→ g, y 7→ [x, y].

Since G is defined over a field of characteristic p, then g is a p-Lie algebra,
that is it admits a p-operation [p] : g→ g satisfying the following properties:

• (ax)[p] = apx[p] for any a ∈ K and x ∈ g,

• ad(x[p]) = (ad(x))p for any a ∈ K and x ∈ g,

• (x+ y)[p] = x[p] + y[p] +
∑p−1

i=1 [adp−1(tx+ y)(x)]i−1/i, where [adp−1(tx+

y)(x)]i−1 is the coefficient of ti−1 in the expansion of adp−1(tx+ y)(x).

If we think of g as a subalgebra of the algebra of the derivations Der(K[G],K[G])
(precisely, the elements of g are the derivations which commute with the mor-
phisms between affine algebras induced by λx : G→ G, g 7→ gx for any x ∈ G),
then the p-operation is just the composition of a derivation with itself p-times.

Let U(g) be the enveloping algebra of g. Any G-module admits also a struc-
ture of g-module by differentiating the action. Now the problem is that modules
that were simple for the G-action may now become reducible as U(g)-modules.
Moreover, we loose information on the characters: h acts in the same way (as
0) on K0 and Kpλ for any λ ∈ X+.

The solution is to look at restricted U(g)-modules: U(g)-modules such that

x[p] ·m = xp ·m, where xp denotes the p-power of x in the U(g).
If we define the restricted enveloping algebra as the quotient

U res := U(g)/(xp − x[p], x ∈ g),

then the category of restricted U(g)-modules is equivalent to the category
of U res-modules. We now focus on the category C, whose objects are U res-
modules M equipped with an X-grading, i.e. a direct sum decomposition
M =

⊕
λ∈XMλ, such that h acts on Mλ via λ (=character of h obtained

by differentiating λ).
We hence obtain a functor

{rational G-representations} → C
via differentiating and remembering the T -action.

Denote by U(b)res the image of U(b) ⊆ U(g) in U res. For any λ ∈ X we
define

Z(λ) = U res ⊗Ures(b) Kλ

(where by abuse of notation we denote by Kλ the image of Kλ under the above
functor). Analogously as for a Verma module, we have

Z(λ) =
⊕

{α1,...,αm}=R−
0≤ri<p

(xr1α1
. . . xrmαm)1⊗ 1.

where (xr1α1
. . . xrmαm)1 ⊗ 1 ∈ Z(λ)λ+r1α1+...rmαm , and xα is a generator of the

(one-dimensional) weight space gα.
The module just defined is called Baby Verma module. The terminology is

due to the fact hat it looks similar to a Verma, but it is finite dimensional.
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By definition, every proper submodule of Z(λ) is contained in
⊕

µ<λ Z(λ)µ,

so that Z(λ) admits a unique irreducible quotient, which we denote by L′(λ).
The set {L′(λ)} is a full set of isomorphism class representatives for the irre-
ducible modules in C.

For us the fundamental result is the following:

Theorem 1.4. If λ ∈ X1, then ch(L′(λ)) = ch(L(λ)).

We can hence rephrase the original problem in terms of certain simple objects
in the category C. By construction, the character of any Verma module is easy to
compute, therefore we would be able to solve our problem if we could determine
the multiplicities

[Z(µ) : L(λ)]

of L(λ) in a(ny) Jordan-Hölder series for Z(µ), for λ ∈ X1 and µ ∈ X+.
We will see that in fact the set of pairs of weights whose multiplicities we

need to compute can be further reduced.

2. Affine Weyl group and the set of alcoves

We keep the notation of the previous sections. In particular, remember that
we have restricted to the case of G simple and simply connected.

Let V = X ⊗Z R. Then the affine Weyl group Ŵ is a subgroup of the group

of affine transformations Aff(V ) of V . More precisely, Ŵ is the subgroup of
Aff(V ) generated by elements sα,n for α ∈ R+ and n ∈ Z defined as

sα,n(λ) = λ− (〈, λ, α∨〉 − pn)α.

We denote by W0 the subgroup of Ŵ generated by the elements sα,0, α ∈ R+.
This is isomorphic to the Weyl group of G.

By definition, Ŵ naturally acts on V . Nevertheless, this is not the action we
want to look at, but we will consider the one obtained by translating the origin
by −ρ, where ρ is the Weyl vector: ρ = 1

2

∑
α∈R+ α. Such an action is referred

to as the dot action. Explicitely:

w · (λ) = w(λ+ ρ)− ρ, ∀w ∈ Ŵ , λ ∈ V,

where w(λ + ρ) is the image of λ + ρ under the natural affine action of Ŵ on
V .

Let α ∈ R+ and n ∈ Z. Consider the hyperplane fixed by sα,n under the dot
action:

Hα,n := {v ∈ V | 〈v + ρ, α∨〉 = pn}.
The set of alcoves A is the set of connected component of V \

⋃
α,nHα,n.

Let h be the Coxeter number of G, i.e. h = 1 + ht(θ), where θ is the unique
highest root of R, i.e. the unique root such that if θ =

∑
α simple aαα, the

value of the sum ht(θ) =
∑

α simple aα is maximal.

Example 2.1. If G = SLn, then θ =
∑

α simple α and, since there are n − 1

simple roots, h = n.
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If p ≥ h, then the origin 0 ∈ V does not lie in any of the hyperplanes Hα,n.
There is hence a unique alcove containing it. Let’s denote it by A0 and call it
the fundamental alcove. More explicitely,

A0 := {λ ∈ V | 0 < 〈λ+ ρ, α∨〉 ∀α simple, and 〈λ+ ρ, θ∨〉 < p}

The affine Weyl group Ŵ acts freely and transitively on A, so that we have a
bijection

Ŵ → A, w 7→ Aw := unique alcove containing w · 0.

With this notation, we have Ae = A0.

The above bijection induces a right action of Ŵ on A given by

Aw · x := Awx (w, x ∈ Ŵ .

2.1. Back to representation theory. Thanks to the linkage and translation
principles (sorry, no time to discuss them!), it is enough to compute

[Z(w · 0) : L′(x · 0)]

for x · 0 ∈ X1 and w · 0 ∈ X+ to determine all relevant multiplicities.
It will be convenient for us to denote by Z(Aw), resp. L′(Ax), the module

Z(w · 0), resp. and L′(x · 0).

2.2. The Hecke algebra of a Coxeter system. Our main reference for this
section is [Soe].

Let (W,S) be a Coxeter system, that is a group given by a finite set of
generators S and relations among all pairs of them:

(sisj)
mij

where mij ∈ Z≥1 ∪ {∞} are such that mii = 1 and mji = mij ≥ 2 if i 6= j. We
will sometime refer to elements of W as to words, meaning that they can be
thought of as words in the alphabet S. If w = si1 . . . sir is an expression of w
as a product of a minimal number of generators, then such a product is called
a reduced expression for w.

The Coxeter group W is equipped with a partial order ≤, called Bruhat(-
Chevalley) order. The Bruhat order has several characterisations. The defini-
tion we give here is in terms of subwords: y ≤ w if and only if y is obtained by
removing some letters from a reduced expression for w.

We have now recalled everything we need to define the Hecke algebra H =
H(W,S).

The Hecke algebra H is the free Z[v±1]-module with basis {Hx | x ∈W} and
whose algebra structure is uniquely determined by

HxHs =

{
Hxs if xs > x,
(v − v−1)Hx +Hxs if xs < x,

(x ∈W, s ∈ S)

It follows that if x = si1 . . . sir is a reduced expression of x, then

Hx = Hsi1
· . . . ·Hsir .
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Moreover, we notice that, beingHe the unity ofH, if we apply the multiplication
rule with x = s we obtain that

H−1s = Hs − (v − v−1)

and we deduce that H−1w ∈ H for any w ∈W .
We can hence define the Z-linear involution · : H → H given by

Hx 7→ H−1
x−1 , v

±1 7→ v∓1.

The following theorem was proven by Kazhdan and Lusztig in their seminal
paper [KL]:

Theorem 2.1. For any y ∈W there exists a unique element Hy ∈ H such that

(1) Hy = Hy,

(2) Hy = Hy +
∑

x 6=y hx,yHx, where hx,y ∈ v−1Z[v−1].

The polynomials hx,y are called Kazhdan-Lusztig polynomials.

Example 2.2. (1) It is immediate to see that He = He.
(2) Since we know the inversion formula for Hs, we can easily verify that

Hs = Hs + v−1:

Hs + v−1 = Hs + v−1 = (Hs − (v − v−1)) + v = Hs + v−1.

Clearly, we could have also defined H as the Z[v±1] module admitting a right
H-module structure, given by right multiplication. Such a structure is uniquely
determined by the following rule:

HxHs =

{
Hxs + v−1Hx if xs > x,
Xxs + vHx if xs < x.

(x ∈W, s ∈ S)

On top of being a more symmetric rule than the one given by right multiplica-
tion by Hs, the above formula is the one we will use as an inspiration to define
the periodic module.

2.3. The periodic module. From now on, H will be the Hecke algebra of
the affine Weyl group, seen as a Coxeter system with set of simple reflections
S = {sα,0 | α ∈ ∆} ∪ {sθ,1}.

Before giving the definition of periodic module we need to equip the set of
alcoves with a partial order which will play the role of the Bruhat order in the
alcove setting.

Let α ∈ R+, n ∈ Z. Then the hyperplane Hα,n divides V into two halfspaces:

H+
α,n = {v ∈ V | 〈v + ρ, α∨〉 > pn},

H−α,n = {v ∈ V | 〈v + ρ, α∨〉 < pn}.
The generic (or semi-infinite) order � on A is the partial order relation gener-
ated by

A ≺ sα,nA ⇔ A ⊂ H−α,n.
Notice that the generic order is invariant by weight translation: A � B if and
only if A+ pλ � B + pλ for any λ ∈ X.
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Now we have set everything we need to define the periodic module P: it is
the free Z[v±1]-module with basis {A | A ∈ A} equipped with a right H-module
structure given by

AHs =

{
As+ v−1A if As � A,
As+ vA if As ≺ A, (a ∈ A, s ∈ S).

For a λ ∈ X, define

Eλ :=
∑
x∈W0

v−`(x)(Ax) + pλ.

Let P0 be the H-submodule of P generated by the Eλ’s.
The last notion we need before stating the periodic version of Kazhdan-

Lusztig’s theorem is the notion of skew-linear map: this is a Z-linear map
f : P → P such that f(ph) = f(p)h for any h ∈ H, p ∈ P.

Theorem 2.2 ([Lu]). (1) There exists a unique skewlinear involutive map
· : P → P such that Eλ = Eλ.

(2) For any A ∈ A there exists a unique element PA = A+
∑

B 6=A pB,AB,

where pA,B ∈ v−1Z[v−1].

Example 2.3. In the SL2 case, any alcove is of the form A = (−1 +mp,−1 +
(m + 1)p) for an m ∈ Z (where (a, b), for a < b denotes the corresponding
interval on the real line). Then, under the identification of X with Z, we have
that PA = Em.

The periodic version of Lusztig’s conjecture is

[Z(A) : L(B)] = pw0A,w0B(1),

where A corresponds to a regular weight in X+ and B to a weight in X+∩(Ŵ ·0).
This is actually a theorem due to Andersen, Jantzen and Soergel if p� 0 [AJS].
The above equality was expected to be valid for p ≥ h, but thanks to work
of Williamson [W] we know by now that this was a way to optimistic bound.
There is an explicit bound (which is huge!) due to Peter Fiebig [F]. What really
happens in between such a huge bound and h is still sort of mysterious. In the
following section I will sketch a construction of a category recently introduced
in [FL1] which should provide new insight into the problem.

3. Sheaves on the alcoves

We start by defining a topology on the set of alcoves A. Recall that we have
equipped A with a partial order �. We now consider A as a topological space
by declaring open the poset ideals, that is J ⊆ A is open if and only if whenever
A ∈ J and B � A, then also B ∈ J .

Remember that the partial order � was invariant under translation by any p-
multiple of a weight, and hence also by any p-multiple of an element of the root
lattice ZR+. We deduce that for any λ ∈ ZR+ we obtain a homeomorphism of
topological spaces:

A → A, A 7→ A+ pλ.

We consider now the quotient of A by the translation action of pZR and denote

it by V. There is a left action of the finite Weyl group W0 on V since Ŵ =
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W0npZR+. Moreover, V is a homogeneous space for W0, being Aa homogenous

space for the action of Ŵ .
Denote by S = Sym(Y ⊗Z k) the symmetric algebra of the vector space dual

to V . Then we can define the structure algebra as

Z :=

{
(zx) ∈

⊕
x∈V

S | zx − zsα,0x ∈ α∨S

}
.

The structure algebra admits a diagonal action of C, and it is indeed a C
algebra, where addition and multiplication are defined componentwise.

Remark 3.1. The structure algebra computes equivariant cohomology of the
Langlands dual flag variety: Z ' HT∨(G∨/B∨, k). If char(k) is a good prime
for G (cf. [AJS, Appendix D]), then Z ' C ⊗CW0 C. Finally, if k = C, Z
is isomorphic to the centre (of a deformed version) of a principal block in the
BGG category O for the Lie algebra g = Lie(G), or, equivalently (cf. Michael
Ehrig’s 2nd lecture), to the endomorphism ring of the “big” projective (i.e. the
one obtained by taking the direct sum of all indecomposible projectives in the
principal block).

We are interested in studying categories of (pre)-sheaves of Z-modules on A.
Of course, it will be too much to hope that any presheaf of Z-modules on A
could help us in solving our representation theoretical problem. We need hence
to require some technical conditions to hold. The first one is reasonably easy
to state, while we will only see an approximation of the others, and then refer
the interested reader to the preprints [FL1], [FL2].

Let x ∈ V and denote by ιx the inclusion ιx : x ↪→ A. We denote by Zx the
image of the projection map Z → S, given by (zx) 7→ zx and, for a Z-module
M we define Mx := M ⊗Z Zx. For a presheaf of Z-modules we denote by F x

the sheaf of Zx-modules obtained by applying ·x to its modules of sections.
Thus we say that a sheaf F satisfies the support condition if the map

F x → ιx,∗ι
∗
xF

x.

is an isomorphism.
Consider now the set of alcoves with a finer topology defined as follows: first

of all for a positive root α ∈ R+ consider Sα := S[β−1 | β ∈ R+ \ {α}]. Then
define a new partial order �α on A given by

A �α B if either B ∈ A+ pZR+ or (B = sα,nA and A ⊂ H−α,n).

We define the open sets as before, by replacing � by �α, and denote by Aα the
set of alcoves equipped with this new topology. The map

γ : Aα → A, A 7→ A

is continuous (Exercise!) and we can define

F �S S
α := (γ∗(F ⊗S Sα))+

where G+ denotes the maximal quotient of G+ which satisfies the support
condition. Now, F �S S

α is a presheaf of Z⊗S Sα-modules on Aα and it is not
a sheaf in general.
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The category we are interested in is the following

S =

 full subcategory of the category of sheaves of Z-modules on A
whose objects are flabby reflexive sheaves F satisfying

the support condition and such that F �S S
α is a sheaf ∀α ∈ R+


Even if S is not an abelian category, it inherits the exact structure from the

category of sheaves on A, so that we can talk about projective objects therein.
Denote by ∆(A) the skyscraper sheaf on A.

Theorem 3.1. (1) For any B ∈ A, there is a unique indecomposable pro-
jective object P(B) ∈ S such that there is a unique epimorphism P(B)→
∆(B).

(2) The sheaf P(B) admits a finite filtration whose subquotients are iso-
morphic to skyscraper sheaves ∆(A)’s.

(3) The multiplicities of skyscraper sheaves in these particular projective
sheaves compute the relevant representation theoretical multiplicities:

(P(B) : ∆(A)) = [Z(A) : L′(B)].

Remark 3.2. Skyscraper sheaves play in this theory the same role that Verma
modules play in the more classical setting of category O for a simple complex fi-
nite dimensional Lie algebra, and the filtration in point (2) of the above theorem
is the analogue of a Verma flag of an indecomposable projective object.

3.1. Remarks on the proof. To prove the first two statements of Theorem
3.1, we first directly construct P(B) in the case B = A0 + pλ (λ ∈ X), and
then we proceed by induction via translation functor techniques. It is not
hard to prove the existence of translation funtors satisfying certain functoriality
conditions in the category of flabby, reflexive Z-modules, but it is hard work to
prove that they preserve our category S.

As for the third statement, we have to rely on Andersen, Jantzen and So-
ergel’s work [AJS]. More precisely, in [AJS], the authors define a combinatorial
category (usually referred to as the AJS-category) and show the existence of
special projective objects (again by first constructing some base object and then
applying translation functors to it), indexed by A, which in some way encode
the multiplicities [Z(A) : L′(B)]. We hence define a functor from our category
to the AJS-category (which is far from being an equivalence) and show that it
sends any P(B) to the corresponding special projective.
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220 (1994), 338 pages.

[F] P. Fiebig, An upper bound on the exceptional characteristics for Lusztig’s character
formula, J. Reine Angew. Math. 673 (2012), 1–31.

[FL1] P. Fiebig, M.Lanini, Sheaves on the alcoves and modular representations I, preprint
2018, arXiv:1801.03959

[FL2] P. Fiebig, M.Lanini, Sheaves on the alcoves and modular representations II, preprint
2018, arXiv:1801.03958

[J] J.C. Jantzen, Representations of Algebraic Groups: Second Edition, American Mathe-
matical Soc., 2003, 576 pages.



13

[KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent.
Math. 53 Vol. 2 (1979), 165–184.

[Lu] G. Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Advances in
Mathematics 37 Vol. 2 (1980), 121–164.

[Soe] W. Soergel,Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Rep-
resentation Theory 1 (1997), 83–114.

[W] G. Williamson, Schubert calculus and torsion explosion, J. Amer. Math. Soc. 30 (2017),
1023–1046.


	1. Representations of algebraic groups
	1.1. Irreducible representations
	1.2. Character theory
	1.3. Steinberg tensor product theorem
	1.4. Modules over restricted Lie algebras

	2. Affine Weyl group and the set of alcoves
	2.1. Back to representation theory
	2.2. The Hecke algebra of a Coxeter system
	2.3. The periodic module

	3. Sheaves on the alcoves
	3.1. Remarks on the proof

	References

