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We assume familiarity with the main paper’s notation [GTW23].

1. Example: dihedral groups

Let D2·n = Z/nZ = ⟨a, b|an = b2 = (ab)2 = 1⟩ = ⟨s, t|s2 = t2 = (st)n = 1⟩ be the dihedral group of
order 2n ∈ Z≥1. (The second presentation is the Coxeter presentation of D2·n where ab is replaced by
s.) The regular D2·n-representation is the 2n dimensional R-vector space R = R{x0, ..., xn−1, y0, ..., yn−1}
with (left) action given by

a � xi = xi+1, a � yi = yi−1, b � xi = yi, b � yi = xi,(1.1)

where we again read indexes modulo n. We denote by Ma and Mb the associated action matrices.
We also need the right action of D2·n on its regular representation. We denote this action in matrices by

Mra and Mrb . When comparing to Example 1.3, the difference is that the south-east block matrix of Ma becomes
the reverse cyclic matrix in Mra, and the two antidiagonal block matrices of Mb are identity matrices in Mrb .
Reading indices modulo n as before, this action is given by

xi � a = xi+1, yi � a = yi+1, xi � b = yn−i, yi � b = xn−i.(1.2)

Example 1.3. For n = 3 the action matrices one gets from (1.1) and (1.2) are:

Ma =

 0 0 1
1 0 0
0 1 0

0

0
0 1 0
0 0 1
1 0 0

 , Mb =

 0
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0

 , Mra =

 0 0 1
1 0 0
0 1 0

0

0
0 0 1
1 0 0
0 1 0

 , Mrb =

 0
0 0 1
0 1 0
1 0 0

0 0 1
0 1 0
1 0 0

0

 .

In general, Ma and Mra have cyclic matrices along the diagonal and Mb is the long permutation while Mrb has
identity block matrices on the antidiagonal. 3

1A. Simple representations, projections and inclusions. If n is even, then the dihedral group D2·n has
four nonequivalent one dimensional representations on R{v} given by

L0 : a � v = 1, b � v = 1, Lm : a � v = −1, b � v = 1,

L⋆
0 : a � v = 1, b � v = −1, L⋆

m : a � v = −1, b � v = −1.

If n is odd, then only L0, the trivial D2·n-representation, and L⋆
0 exist. Different from the cyclic group

case, the D2·n-representation L⋆
0 is the sign representation (of the Coxeter presentation).

There are also two dimensional D2·n-representations that we, similarly as in [GTW23, ???], denote by
Lk = R{vk, v−k}. The action of a on Lk is as before and we additionally have

b � v±k = v∓k ↭ b 7→ Nbk =

(
0 1
1 0

)
∈ EndR(Lk).

Lemma 1A.1. As real D2·n-representations we have

n even : R ∼= L0 ⊕ L⋆
0 ⊕ L⊕2

1 ⊕ ... ⊕ L⊕2
m−1 ⊕ Lm ⊕ L⋆

m, n odd : R ∼= L0 ⊕ L⋆
0 ⊕ L⊕2

1 ⊕ ... ⊕ L⊕2
m .

All of the appearing real D2·n-representations are simple and pairwise nonisomorphic. All simple real D2·n-
representations appear in this way.

Proof. Since there is no difference between simple real and complex D2·n-representations, this can be found
in many textbooks, e.g. [Ser77, Section 5.3]. □
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Notation 1A.2. All two dimensional simple real D2·n-representations in Lemma 1A.1 appear twice, and we
use +1 and −1 as a subscript to distinguish them. We use the same notation for the corresponding projectors
in Lemma 1A.6 below.

Lemma 1A.3. We have the following character tables for the dihedral group: Firstly, if n is even then:
1 a a2 a3 ... am−1 am b ab
1 2 2 2 ... 2 1 m m

χ0 1 1 1 1 ... 1 1 1 1
χ⋆
0 1 1 1 1 ... 1 1 −1 −1

χ1 2 2 cos(θ) 2 cos(2θ) 2 cos(3θ) ... 2 cos
(
(m− 1)θ

)
−2 0 0

... ... ... ... ... ... ... ... ... ...

χm−1 2 2 cos
(
(m− 1)θ

)
2 cos

(
2(m− 1)θ

)
2 cos

(
3(m− 1)θ

)
... 2 cos

(
(m− 1)2θ

)
(−1)m−12 0 0

χm 1 −1 1 −1 ... (−1)m−1 (−1)m −1 1
χ⋆
m 1 −1 1 −1 ... (−1)m−1 (−1)m 1 −1

.

Second, if n is odd, then:
1 a a2 a3 ... am−1 am b
1 2 2 2 ... 2 2 n

χ0 1 1 1 1 ... 1 1 1
χ⋆
0 1 1 1 1 ... 1 1 −1

χ1 2 2 cos(θ) 2 cos(2θ) 2 cos(3θ) ... 2 cos
(
(m− 1)θ

)
2 cos(mθ) 0

... ... ... ... ... ... ... ... ...

χm 2 2 cos(mθ) 2 cos(2mθ) 2 cos(3mθ) ... 2 cos
(
(m− 1)mθ

)
2 cos(m2θ) 0

.

Here χi denotes the simple character associated to Li, and similarly for the star versions. The first row is a
representative of the associated conjugacy class, and the second row is the number of elements in the class.

Proof. Well-known, e.g. this follows from [Ser77, Section 5.3], and omitted. □

Notation 1A.4. In this and the next section we will abuse notation and use the same symbol for the
idempotents in the group ring and the corresponding projectors from R to the simple summands.

As we have seen above, the real and complex D2·n-representations are essentially the same, so we can use
the classical formulas for the central idempotents in R[D2·n] which give us the projectors pcL : R ↠ LdimR(L):

pcL = dimR(L)
|D2·n| ·

∑
g∈D2·n

χ(g−1)g.(1A.5)

These project to the isotypic components of R, in particular, we need to make them finer for the two dimensional
simple real D2·n-representations to have projectors pL : R ↠ L for every appearing summand separately.

Solving this for the one dimensional simple real D2·n-representations gives:

Lemma 1A.6. We have the following formulas for the primitive idempotents in R[D2·n].
(a) For the one dimensional summands:

n even or odd : p
L

(⋆)
0

=
1

2n

n∑
i=1

(ai + ϵaib),

n even only : p
L

(⋆)
m

=
1

2n

(
1 +

n∑
i=1

(−1)iϵaib+

m−1∑
i=1

(−1)i(ai + a−i) + (−1)mam
)
.

Here (⋆) means either star or not, with ϵ = 1 for the non-star and ϵ = −1 for the star case.

(b) Let ϵ ∈ {+1,−1}. We have the following formulas for the primitive idempotents in R[D2·n]:

pϵLk
=

1

n

(
id2·n +

n∑
i=1

cos(ikθ)ai + ϵ sin(ikθ)aib
)
.

The sum p+1
Lk

+ p−1
Lk

is the central projector obtained from (1A.5).

Proof. (a). Directly from (1A.5) and the character table in Lemma 1A.3.
(b). The primitive central idempotents have their formulas given by (1A.5) and Lemma 1A.3 implies that,

for n even, we get

pcentralLk
=

1

m

n∑
i=1

cos(ikθ)ai.

Thus, we get pcentralLk
= p+1

Lk
+ p−1

Lk
. Moreover, a direct computation verifies pxLk

pyLk
= δx,yp

x
Lk

where x, y ∈
{+1,−1}, and we are done. The n odd case can be shown verbatim. □

Lemma 1A.7. Substituting a 7→ Mra, b 7→ Mrb in Lemma 1A.6 gives projectors pL : R ↠ L.
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Proof. Immediate. □

Example 1A.8. For n = 3 we have

pL+1
1

=


1
3 − 1

6 − 1
6

1
2
√

3
− 1

2
√

3
0

− 1
6

1
3 − 1

6 − 1
2
√

3
0 1

2
√

3

− 1
6 − 1

6
1
3 0 1

2
√

3
− 1

2
√

3
1

2
√

3
− 1

2
√

3
0 1

3 − 1
6 − 1

6

− 1
2
√

3
0 1

2
√

3
− 1

6
1
3 − 1

6

0 1
2
√

3
− 1

2
√

3
− 1

6 − 1
6

1
3

, pL−1
1

=


1
3 − 1

6 − 1
6 − 1

2
√

3
1

2
√

3
0

− 1
6

1
3 − 1

6
1

2
√

3
0 − 1

2
√

3

− 1
6 − 1

6
1
3 0 − 1

2
√

3
1

2
√

3

− 1
2
√

3
1

2
√

3
0 1

3 − 1
6 − 1

6

1
2
√

3
0 − 1

2
√

3
− 1

6
1
3 − 1

6

0 − 1
2
√

3
1

2
√

3
− 1

6 − 1
6

1
3

,

as the projectors to the two dimensional summand. Moreover, the matrix for pL0
has the entry 1/6 everywhere,

while p
L

(⋆)
0

has the entries ±1/6 everywhere with the positive entry in the block diagonal, and with the negative
entry in the block antidiagonal. 3

The change-of-basis matrix Q ∈ EndR(R) between the matrices obtained from (1.1) and the decomposition
in Lemma 1A.1, denote the matrices Na and Nb, is now given as follows.

Consider the order of decomposition as in Lemma 1A.1, where we order L+1
i before L−1

i . For every projector
to a one dimensional simple real D2·n-representation choose a row, and for every projector to a two dimensional
simple real D2·n-representation choose two linearly independent rows. We have thus chosen 2n rows that we
put, in the above order, into a matrix Q−1.

Lemma 1A.9. Let n be even.
(a) Let D = diag(1/2n, 1/2n, 1/n, ..., 1/n, 1/2n, 1/2n) be a diagonal matrix with the indicated diagonal

entries. The matrix Q−1 is invertible, with inverse denoted by Q, and we have Q−1 = DQT .

(b) The matrix Q is D2·n-equivariant and satisfies Na = Q−1MaQ and Nb = Q−1MbQ.
Similarly for n is odd.

Proof. Note that the construction of Q−1 involves choosing dimR L linearly independent vectors for each L.
Lemma 1A.6 then ensures that Q−1 realizes the base change for the Artin–Wedderburn decomposition, cf.
[Ser77, Section 6.2]. In particular, Q−1 is invertible and (b) follows. The equation Q−1 = DQT is then easy to
verify by hand.

The case n odd works verbatim. □

Notation 1A.10. To be completely explicit below, in the definition of Q we now fix the first row for all
projectors and additionally the last row for the projectors to the two dimensional summands.

Example 1A.11. For n = 3 we get

Q =


1 1 1 0 1 0

1 1 − 1
2

√
3

2 − 1
2 −

√
3

2

1 1 − 1
2 −

√
3

2 − 1
2

√
3

2

1 −1
√

3
2 − 1

2 −
√

3
2 − 1

2

1 −1 −
√

3
2 − 1

2

√
3

2 − 1
2

1 −1 0 1 0 1

, Q−1 =


1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6 − 1

6 − 1
6 − 1

6
1
3 − 1

6 − 1
6

1
2
√

3
− 1

2
√

3
0

0 1
2
√

3
− 1

2
√

3
− 1

6 − 1
6

1
3

1
3 − 1

6 − 1
6 − 1

2
√

3
1

2
√

3
0

0 − 1
2
√

3
1

2
√

3
− 1

6 − 1
6

1
3

,

as one easily checks. Note that QQT = diag(1/6, 1/6, 1/3, 1/3, 1/3, 1/3). 3

Let us describe Q more explicitly, and this works mutatis mutandis as for the cyclic group. Precisely, assume
that n is even. For L

(⋆)
0 and L

(⋆)
m we use the length 2n vectors w0 = (1, ..., 1), w⋆

0 = (1, ..., 1,−1, ...,−1) and
wm = (1,−1..., 1,−1,−1, 1, ...,−1, 1) with the change of pattern in the middle, and w⋆

m = (1,−1..., 1,−1),
respectively. For L±1

k we take

+1:

{
wk =

(
cos((−j + 1)kθ)

)
j∈{1,...,n} ∪

(
sin(jkθ)

)
j∈{1,...,n},

w−k =
(
sin((j − 1)kθ)

)
j∈{1,...,n} ∪

(
cos(−jkθ)

)
j∈{1,...,n},

−1:

{
wk =

(
cos((−j + 1)kθ)

)
j∈{1,...,n} ∪

(
− sin(jkθ)

)
j∈{1,...,n},

w−k =
(
− sin((j − 1)kθ)

)
j∈{1,...,n} ∪

(
cos(−jkθ)

)
j∈{1,...,n},

where ∪ means concatenation. Similarly for n odd.

Lemma 1A.12. For n even we have Q = (w0, w
⋆
0 , w

+1
1 , w+1

−1, ..., w
−1
m−1, w

−1
−(m−1), wm, w⋆

m). For n odd we have
Q = (w0, w

⋆
0 , w

+1
1 , w+1

−1, ..., w
−1
m , w−1

−m). Here we read Q as a sequence of column vectors.

Proof. By construction. □
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1B. ReLU and dihedral groups. We redefine the order. Some special cases for n ≡ 0 mod 4 appear:

Definition 1B.1. The order ord(L) of L is defined as the pair of the orders of the action matrix for a and
b. We then define ord′(L)a as in [GTW23, ???] and

ord′(L)b =


ord(L)b if n is odd,
3 if n is even and (L = Lm or ord′(L)a ≡ 0 mod 4),
5 if n is even and (L = L∗

m or ord′(L)a ≡ 2 mod 4),

where we use subscripts to indicate the a and b component of ord(L).

With the adjusted definition of the order we get the analog of [GTW23, ???] which reads almost exactly
the same.

Theorem 1B.2. Consider the interaction graph ΓReLU. Every vertex has a loop. Moreover, there is a non-loop
edge from L to K if and only if ord(K) divides ord′(L) componentwise.

The isotypic interaction graph iΓReLU is obtained from ΓReLU by identifying the vertices for L+1
i and L−1

i .

Note that this implies that most example essentially stay the same as for the cyclic group, but some of the
modules are doubled. The main difference comes from the one dimensional real D2·n-representations, which
is what the next example focuses on.

Example 1B.3. Take n = 8. Then we have

R ∼= L0 ⊕ L⋆
0 ⊕ L1

1 ⊕ L-1
1 ⊕ L1

2 ⊕ L-1
2 ⊕ L1

3 ⊕ L-1
3 ⊕ L4 ⊕ L⋆

4.

The orders and adjusted orders, from left to right, are (1, 1), (1, 2), (8, 2), (8, 2), (4, 2), (4, 2), (8, 2), (8, 2),
(2, 1), (2, 2), and (1, 1), (1, 2), (4, 3), (4, 3), (2, 5), (2, 5), (4, 3), (4, 3), (2, 3), (2, 5). Then Theorem 1B.2 gives

ΓReLU =

L0

L⋆
0 L4 L⋆

4

L1
2 L-1

2

L1
1 L-1

1 L1
3 L-1

3

.

We omitted the arrows going from L±1
k to L0 to avoid clutter. The top part of this graph is a form of doubling

of the cyclic case. 3

Example 1B.4. For n = 3 we get

ΓReLU =

L0

L∗
0

L+1
1 L-1

1

,

as a calculation verifies. 3

1C. Absolute value and dihedral groups. For the absolute value we get almost the same theorem:

Theorem 1C.1. There is an edge from L to K in ΓAbs if and only if ord(K) divides ord′(L) componentwise.
The isotypic interaction graph iΓAbs is obtained from ΓAbs by identifying the vertices for L+1

i and L−1
i .
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Example 1C.2. Again omitting some arrows to L0, for n = 8 one gets

ΓAbs =

L0

L⋆
0 L4 L⋆

4

L1
2 L-1

2

L1
1 L-1

1 L1
3 L-1

3

.

which is almost the same as in Example 1B.3. 3

1D. The piecewise linear maps for the dihedral group. The analysis of the various piecewise linear
maps is similar to [GTW23, ???] and we will be brief and focus on the differences.

Definition 1D.1. The hyperplane arrangment associated to Li is almost in [GTW23, ???] but with the
following adjustments:

(a) For all one dimensional simple real D2·n-representations we take the hyperplane arrangment of L0

from [GTW23, ???].

(b) Let dimR Lk = 2. For n ≡ 2 mod 4 or n odd we take twice as many hyperplanes compared to [GTW23,
???], namely the ones for ζ

1/2
k in case n ≡ 2 mod 4 and the ones for ζ

1/4
k for n odd.

The case n ≡ 0 mod 4 remains the same.

Example 1D.2. For n ∈ {2, 3, 4} the hyperplane arrangements for L1 are as follows:

n = 2: A

a � A

b � A

ab � A

, n = 3:

a � B

ab � A

b � B

A

a2 � B

a2b � Aab � B

a � A

B

b � A

a2b � B

a2 � A

,

n = 4:

Aa � A

a2 � A a � A

.
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For later use, we have also indicated the D2·n-orbits. Note that we do not need the generator b for n = 4 to
get one orbit. We also list all hyperplane arrangements for n ∈ {3, ..., 8}:

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

.

This should be compared to [GTW23, ???]. 3

Proof of Theorem 1B.2 and Theorem 1C.1. As a first step, we get analogs of [GTW23, ???] and [GTW23,
???] by using the same arguments for the hyperplane arrangements in Definition 1D.1. The only new obser-
vation in this case is that for n ≡ 2 mod 4 or n odd the extra generator (when compared to Cn) b doubles the
size of orbits, but we also double the number of hyperplanes, so the overall statement remains the same.

Using Lemma 1A.9 and Lemma 1A.12, we then continue along the same lines as in the proof in [GTW23,
???].

That iΓReLU is as claimed can be proven mutatis mutandis. □

The explicit description of the various piecewise linear maps is similar to the cyclic group case discussed
in [GTW23, ???]. Let us therefore just exemplify the result. For example, for n = 3 we have R ∼= L0 ⊕ L∗

0 ⊕
L+1
1 ⊕ L−1

1 of dimension 1, 1, 2, 2. For L+1
1 we therefore have two piecewise linear maps that we can illustrate

using level sets, namely:

ReLU0
1+ : ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

, ReLU0∗
1+ : ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

where we use the evident adjustment of [GTW23, ???]. These piecewise linear maps are almost the same as
the ones for Cn, but with doubled hyperplanes.

Finally, let us look at the two piecewise linear maps ReLU1+
1+ and ReLU1−

1+. These are maps R2C ∼=→ C ∼= R2,
and we illustrate the real part (left) and imaginary part (right) of them:

ReLU1+
1+ : ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

, ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

,

ReLU1−
1+ : ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

, ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

.

Note that these are quite different maps.

References

[GTW23] J. Gibson, D. Tubbenhauer, and G. Williamson. Equivariant neural networks and piecewise linear representation theory.
2023. URL: https://arxiv.org/abs/0706.0351.

[Ser77] J.-P. Serre. Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New
York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott.

J.G.: The University of Sydney, School of Mathematics and Statistics F07, Office Carslaw 827, NSW 2006,
Australia, www.jgibson.id.au

Email address: joel@jgibson.id.au

https://arxiv.org/abs/0706.0351
https://www.jgibson.id.au


EQUIVARIANT...DIHEDRAL GROUPS 7

D.T.: The University of Sydney, School of Mathematics and Statistics F07, Office Carslaw 827, NSW 2006,
Australia, www.dtubbenhauer.com, https://orcid.org/0000-0001-7265-5047

Email address: daniel.tubbenhauer@sydney.edu.au

G.W.: The University of Sydney, School of Mathematics and Statistics F07, Office L4.41 Quadrangle A14,
NSW 2006, Australia, www.maths.usyd.edu.au/u/geordie/, https://orcid.org/0000-0003-3672-5284

Email address: g.williamson@sydney.edu.au

http://www.dtubbenhauer.com
https://www.maths.usyd.edu.au/u/geordie/

	1. Example: dihedral groups
	References

