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We assume familiarity with the main paper’s notation [GTW23b].

1. Example: symmetric groups

We now consider the symmetric group Sn on {1, ..., n}. Let mij = 2 for |i − j| ̸= 1, mij = 3 otherwise.
The Coxeter presentation of the symmetric group, that we will use, is Sn

∼= ⟨s1, ..., sn−1|(sisj)mij = 1⟩
with si corresponding to the simple transposition that swaps i and i+1. The regular Sn-representation is
the n! dimensional R-vector space R = R{xσ|σ ∈ Sn} with left and right actions

si � xσ = xsiσ, xσ � si = xσsi .(1.1)

We use the ordered basis of R given by {xσ1
< ... < xσn!

} where xσ ≤ xτ if and only if σ is lexicographically
smaller than τ in one-line notation. We use the same order on Sn itself.

Example 1.2. We have S3 = {1 < s2 < s1 < s1s2 < s2s1 < s2s1s2 = s1s2s1}. Let us write Mi = Msi for the
left action matrix of si, and similar for the right action matrix. Then the left and right actions of (1.1) in
matrices are:

M1 =

 0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

, M2 =

 0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

, Mr1 =

 0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

, Mr2 =

 0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

.

Note that S3
∼= D2·3, and in fact, the above S3-representation is equivalent to the D2·3-representation from

[GTW23b, ???], but with different generators and on a differently ordered basis. 3

Of course, (1.1) also makes sense for general elements and not just for the si.

1A. Simple representations, projections and inclusions. Let P (n) denote the set of partitions of n.
We illustrate elements of P (n) using Young diagrams in English convention. For λ ∈ P (n) let N(λ) denote
the set of nodes of λ and let hλ(n) denote the hook length of n ∈ N(λ), e.g.

λ = (5, 4, 1) ↭ ,
n

⇒ hλ(n) = 4.

For λ ∈ P (n) we let dimλ = n!/
∏

n∈N(λ) hλ(n) denote the value of the hook length formula on λ.
Recall from e.g. [FH91, Section I.4] that there is a rational Sn-representation, the Specht module, asso-

ciated to λ ∈ P (n) of dimension dimλ. We denote by Lλ its scalar extension to R.

Remark 1A.1. [FH91, Section I.4] use C as the ground field, but they point out that everything works over
Q as well. In fact, Specht modules can be defined over Z but that will not play any role for us.

Lemma 1A.2. As real Sn-representations we have

R ∼=
⊕

λ∈P (n)

L⊕ dimλ
λ .

All of the appearing real Sn-representations are simple and pairwise nonisomorphic. All simple real Sn-
representations appear in this way.

Proof. As for the dihedral group there is no significant difference between simple real and complex Sn-
representations, so this lemma is classical. See for example [FH91, Section I.4] for a concise discussion. □
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For λ ∈ P (n) let ST (λ) denote the set of all standard tableaux of shape λ, that is, fillings of the nodes of
λ with the entries from {1, ..., n} such that the entries strictly increase when reading along rows and columns.
For example,

λ = ⇒ ST (λ) =

{
1 3
2

,
1 2
3

}
.

Notation 1A.3. Recall that #ST (λ) = dimλ. And we will index the simple real Sn-representations in
Lemma 1A.2 by T ∈ ST (λ) and write LT for them. Their projectors, constructed below, are denoted pT .

The central projectors are the so-called Young symmetrizers and can be found in many textbooks on
Sn-representations, see for example [FH91, Section I.4]. In general, Young’s seminormal basis gives the
Artin–Wedderburn decomposition. We will briefly recall what we need from this theory.

For T ∈ ST (λ) let r(T ) ∈ R[Sn] denote the formal sum of all permutations which stabilize the rows of T ,
and dually, let c(T ) ∈ R[Sn] be the signed formal sum of permutations that stabilize the columns of T . As
one final piece of notation let T (n − 1) denote the standard tableaux with n − 1 nodes obtained from T by
removing the node with entry n.

Lemma 1A.4. Let λ ∈ P (n) and T ∈ ST (λ), and set κλ =
∏

n∈N(λ) hλ(n) = n!/ dimλ. We have the following
inductive formulas. First, p(∅) = 1, and otherwise

pT =
1

κλ
pT (n−1) r(T )c(T ) pT (n−1) ∈ R[Sn].

Proof. Since the theories over R and C coincide, explicit forms for these projectors are well-known, see for
example [JK81, Section 3.2]. □

The projectors to LT , obtained by replacing σ ∈ Sn by its right action matrix as in (1.1), are denoted by
the same symbol. We will write p⃗T ∈ Rn! for the coefficient vector that one gets when one writes pT in the
basis of R[Sn] fixed above.

Notation 1A.5. We want to give matrices so we fix an order on standard tableaux as follows: Let λ, λ′ ∈ P (n)
be the partitions underlying T and T ′, respectively. Then T ≤ T ′ if and only if (λ is smaller or equal to λ′

lexicographically, and if λ = λ′ then additionally col(T ) ≤ col(T ′) lexicographically) where col() is the sequence
of the entries in column reading.

Example 1A.6. For n = 3 we have

T (1) = 1 2 3 ,
T (2) = 1 3

2 ,

T (3) = 1 2
3 ,

T (4) =
1
2
3
,

p⃗T (1) = 1/6(1, 1, 1, 1, 1, 1),
p⃗T (2) = 1/6(2,−1, 2,−1,−1,−1),

p⃗T (3) = 1/6(2, 1,−2,−1,−1, 1),
p⃗T (4) = 1/6(1,−1,−1, 1, 1,−1).

In terms of matrices we get

pT (1) =


1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

,

pT (2) =


1
3 − 1

6
1
3 − 1

6 − 1
6 − 1

6

− 1
6

1
3 − 1

6 − 1
6

1
3 − 1

6
1
3 − 1

6
1
3 − 1

6 − 1
6 − 1

6

− 1
6 − 1

6 − 1
6

1
3 − 1

6
1
3

− 1
6

1
3 − 1

6 − 1
6

1
3 − 1

6

− 1
6 − 1

6 − 1
6

1
3 − 1

6
1
3

,

pT (3) =


1
3

1
6 − 1

3 − 1
6 − 1

6
1
6

1
6

1
3 − 1

6
1
6 − 1

3 − 1
6

− 1
3 − 1

6
1
3

1
6

1
6 − 1

6

− 1
6

1
6

1
6

1
3 − 1

6 − 1
3

− 1
6 − 1

3
1
6 − 1

6
1
3

1
6

1
6 − 1

6 − 1
6 − 1

3
1
6

1
3

,

pT (4) =


1
6 − 1

6 − 1
6

1
6

1
6 − 1

6

− 1
6

1
6

1
6 − 1

6 − 1
6

1
6

− 1
6

1
6

1
6 − 1

6 − 1
6

1
6

1
6 − 1

6 − 1
6

1
6

1
6 − 1

6
1
6 − 1

6 − 1
6

1
6

1
6 − 1

6

− 1
6

1
6

1
6 − 1

6 − 1
6

1
6

,

as the projectors. 3

As for the dihedral group, the relevant change-of-basis matrix B ∈ EndR(R) is defined by choosing dimLλ =
dimλ linearly independent rows of the projectors, collect them into a n!-by-n! matrix Q−1. With the same
notation as for dihedral groups we get:

Lemma 1A.7. We have the following.
(a) The matrix Q−1 is invertible, with inverse denoted by Q.

(b) The matrix Q is Sn-equivariant and satisfies Nσ = Q−1MσQ.

Proof. Using Lemma 1A.4, the arguments from [GTW23b, ???] can be copied. □
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Example 1A.8. Again back to n = 3. We get

Q =

 1 1 0 1 0 1
1 −1 −1 1 −1 −1
1 1 0 −1 0 −1
1 −1 −1 −1 1 1
1 0 1 0 −1 1
1 0 1 0 1 −1

, Q−1 =


1
6

1
6

1
6

1
6

1
6

1
6

1
3 − 1

6
1
3 − 1

6 − 1
6 − 1

6

− 1
6 − 1

6 − 1
6 − 1

6
1
3

1
3

1
3

1
6 − 1

3 − 1
6 − 1

6
1
6

1
6 − 1

6 − 1
6

1
6 − 1

3
1
3

1
6 − 1

6 − 1
6

1
6

1
6 − 1

6

,

where we have chosen the first and the last row in the projectors to two dimensional summands. 3

1B. ReLU and symmetric groups. We do not know a general statement for the symmetric group, and we
can only discuss n ∈ {3, 4, 5}. We will also see a difference between the interaction graphs and the isotypic
interaction graphs.

Example 1B.1. Let T (i) be as in Example 1A.6. Writing T (i) instead of LT (i) and similarly for the isotypic
components, for S3 we get

ΓReLU =

1 2 3

1 2
3

1
2
3

1 3
2

, iΓReLU = .

Note the asymmetry between the isomorphic S3-representations LT (2) and LT (3).
Moreover, the isotypic graph is not obtained from ΓReLU by collapsing vertices along isomorphism classes,

but the isotypic graph is the same as for the dihedral group under the isomorphism S3
∼= D2·3. 3

Remark 1B.2. Example 1B.1 shows that the interaction graphs crucially depend on the choice of projectors:
The projectors to isotypic components are canonical and indeed the isotypic intersection graphs for the dihedral
group and the symmetric group are the same. The projectors to the simple summands are not canonical and
the different choices for the dihedral group and the symmetric group changed the intersection graphs.

Example 1B.3. For S4 the pattern of the graph ΓReLU is already quite sophisticated. Let us therefore also
display iΓReLU. Before we display the graphs, let us fix the notation:

1 ↭ 1 2 3 4 ,

21 ↭ 1 3 4
2 ,

22 ↭ 1 2 4
3 ,

23 ↭ 1 2 3
4 ,

31 ↭ 1 3
2 4 ,

32 ↭ 1 2
3 4 ,

41 ↭
1 4
2
3

,

42 ↭
1 3
2
4

,

43 ↭
1 2
3
4

,

5 ↭
1
2
3
4

.

Only keeping the first entry gives the isotypic components. In this notation one gets (the colors are a visual
aid only and indicate isotypic components):

ΓReLU =

triv

21

22

23

31

32

41

42

43

sgn

, iΓReLU =

triv

2

3

4

sgn

.

These graphs can be produced with the Mathematica code available on [GTW23a]. 3

Example 1B.4. Let us fix the following notation for the seven partitions of five:

1 ↭ , 2 ↭ , 3 ↭ , 4 ↭ , 5 ↭ , 6 ↭ , 7 ↭ .
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The standard tableaux are ordered such that column reading is minimized, see Example 1B.3 for the n = 4
case. For S5 the graph, using the same color code as in Example 1B.3, iΓReLU is

iΓReLU =

triv

2

3

4

5

6

sgn

.

The graph ΓReLU itself is large, so we do not display it here. It can be produced using the Mathematica code
available on [GTW23a]. 3

Remark 1B.5. The order on partitions that comes from iΓReLU in Example 1B.3 is(
↔

)
→ → → .

Thus, the standard S4-representation corresponding to and its conjugate are the easiest ones with
respect to [GTW23b, ???].

For S5 we get

(
↔ ↔ ↔ ↔

)
→ → .

from Example 1B.4.

Theorem 1B.6. We have the following regarding ΓReLU and iΓReLU.

(a) All L have an edge to the trivial Sn-representation L1.

(b) The interaction graphs ΓReLU for S3 and S4, and iΓReLU for S5 are as in Example 1B.1, Example 1B.3
and Example 1B.4. The remaining ones can be displayed using the code on available on [GTW23a].

The proof of this theorem is postpone to the end of Section 1D.

1C. Absolute value and symmetric groups. As for ReLU, we only have restricted knowledge of the
pattern:

Theorem 1C.1. We have the following regarding ΓAbs and iΓAbs.

(a) All L have an edge to the trivial Sn-representation L1.

(b) The interaction graphs ΓAbs for S3 and S4, and iΓAbs for S5 are

n = 3:

triv

21

22

sgn
, n = 4:

triv

21

22

23

31

32

41

42

43

sgn

,
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n = 5:

triv

2

3

4

5

6

sgn

.

The remaining ones can be displayed using the code on available on [GTW23a].

As for ReLU, the proof will follow below.

1D. The piecewise linear maps for the symmetric group. Let us first discuss n = 4 and the piecewise
linear maps to the trivial S4-representation. With the notation in Example 1B.3, we will explicitly give

ReLU1
1, ReLU1

21, ReLU1
31, ReLU1

4,

and the remaining maps are similar.
First, ReLU1

1 is just ReLU and ReLU1
5 is Abs, as before.

The piecewise linear map ReLU1
31 can be illustrated via level sets and we get

ReLU1
31 : ,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

.

Surprisingly, this map is the same as ReLU1
21 for S3.

Finally, ReLU1
21 is a map R3 → R, which we illustrate as a movie thinking of the final entry as time. That

is, we think of ReLU1
21 as f(x, y, t), display f(x, y, t) for fixed t and then vary t. What one gets is a map

ReLU1
21 :

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

t = −3

→

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

t = 0

→

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

t = 3

,

with level sets for t = −3, t = 0 and t = 3. The movie reads as

t = −3

→

t = −2.5

→

t = −2

→

t = −1.5

→

t = −1

→

t = −0.5

→

t = 0

→

t = 0.5

→

t = 1

→

t = 1.5

→

t = 2

→

t = 2.5

→

t = 3

.

An honest movie of this map is available at [GTW23a].
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Proof of Theorem 1B.6 and Theorem 1C.1. (a) follows from [GTW23b, ???].
Part (b) is a computer calculation, see the discussion above for n = 3 and n = 4, and partially for n = 5.

The code is available at [GTW23a]. □

1E. Minimal interaction graphs for the symmetric group with six elements. Recall that interaction
graphs in general depend on the choice of idempotents, cf. [GTW23b, ???]. In particular, the interaction
graph for Sn depends on this choice whenever n ≥ 3.

Example 1E.1. Here are a few example of how ΓReLU could be:

1 2 3

1 2
3

1
2
3

1 3
2

,

1 2 3

1 2
3

1
2
3

1 3
2

,

1 2 3

1 2
3

1
2
3

1 3
2

,

1 2 3

1 2
3

1
2
3

1 3
2

.

The northwest graph in Theorem 1E.2 is the one for the Young idempotents and the southeast graph is the
one for the dihedral idempotents under the identification S3

∼= D2·3. 3

For n = 3 we can classify the interaction graphs:

Theorem 1E.2. The interaction graph for the Young idempotents is minimal. The case of ΓAbs is verbatim.

Proof. This boils down to a minimization problem after observing that the only choice involved in this case is
the choice of a 4-4 idempotent matrix. The code verifying this is available at [GTW23a]. □

1F. The polynomial representation of the symmetric groups. Assume n ∈ Z≥3. There is another Sn-
representation which is much smaller than R: the polynomial representation Fun(n,R) = Fun({1, ..., n},R).
For it we have a complete answer regarding ReLU and Abs as we will see in this section.

Lemma 1F.1. Let (n) and (n− 1, 1) denote the respective partitions of n.
(a) As real Sn-representations we have

Fun(n,R) ∼= L(n) ⊕ L(n−1,1).

(b) The Sn-equivariant change-of-basis matrix is given by Q =
(
(1, ..., 1), e1 − e2, ..., e1 − en

)
.

(c) Q is invertible with inverse given by

Q−1 =
1

n
·

 1 1 1 1 1
1 −(n−1) 1 1 1

1 1
... ... 1

1 1
... ... 1

1 1 1 1 −(n−1)

.

Proof. Easy and omitted. □

Theorem 1F.2. Consider the interaction graph ΓReLU. Every vertex has a loop. Moreover, there is a non-loop
edge from L(n−1,1) to L(n).

The interaction graph ΓAbs is exactly the same, and similarly for the isotypic interaction graphs.

Proof. This can be directly read-off from Q and its inverse Q−1 as in Lemma 1F.1. □

Example 1F.3. Independent of n we have

ΓReLU = ΓAbs =
L(n)

L(n−1,1)

for both, ReLU and Abs. 3
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The explicit description of ReLU(n)
(n−1,1) : L(n−1,1) → L(n) is not difficult. Identifying L(n−1,1)

∼= Rn−1 and

L(n)
∼= R shows that ReLU

(n)
(n−1,1) can be seen as a map Rn−1 → R. Fixing all but two coordinates to be zero

gives a map R2 → R which can be illustrated by now familiar pictures:

,

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

.

This description is independent of n. Varying the coordinates set to zero to other values creates new hyper-
planes, e.g.:

,

-4 -2 0 2 4

-4

-2

0

2

4

.

An animation of this can be found on [GTW23a].
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