Or: What is...reproducibility with Al?

Why reproducibility is hard in practice

THE FORGETTING CURVE
100% Immediate recall
80%
60% 20 minutes

1hour

@ MEMORY RETENTION
a

1 2 3 4 5 6 7
ELAPSED TIME (DAYS)

This curve demonstrates how information students learn is lost
over time when there is no attempt to consciously review &
remember the learned material

» Human memory Forgetting curve: ~ 50% lost after 1 hour, ~ 70% after 24
hours, up to 90% after a week (without review)

» Reproducibility crisis Surveys: >70% of researchers failed to reproduce
others’ results; ~ 60% failed to reproduce their own results after a few years

» For us Our “experiments” are scripts and notebooks; reproducibility means
future-you can re-run them and get the same numbers and proofs

Why is Al so good at this?

Metrics used to measure performance
Top responses shown, N=500

Time to complete a task

Number of production incidents

Lines of code written

Number of bugs or issues resolved 33%

https://githublblog/news-insights researcﬁZsurveJ—revea s—als—lmpact—on—the—dev%tr—experience/

» Pattern machines Most developers now use Al coding tools; models are
trained on huge corpora of real code and config files

» Used for repetition Surveys and case studies: people mainly use Al for
repetitive work: docs, comments, tests, wiring up scripts

> _ READMESs, comments etc. for future-you

Studies, studies, studies

All sur,

10.1016/j.jml.2022.104332

No data
8

Code
32

Reproduced Not reproduced Reproduced Not reproduced
1 13 1 18

> Case study of 59 papers: only about 34-56% were

computationally reproducible; with data but no code, this drops to ~ 37%, but
jumps to ~ 80% when scripts are provided

» Main barriers Surveys: top blockers are e.g. incomplete documentation

> - Exactly the stuff Al can help you write and standardize

An example from my own code

Some math todeand:fitends

> | have been coding for years; my documentation is terrible: lots

of one-off scripts, almost no comments, future-me is lost

> _ | feed a messy script or notebook to Al and ask: “Summarize
what this does; add comments, docstrings, and a single driver function.”

> - In a few rounds (you still edit!) | get something | can actually reuse

Summary

» Why this matters Memory fades fast, projects live for years; without a bit of
structure, even you cannot reproduce your own work

» Minimal kit For each serious experiment: one folder, one main
script/notebook, a short README, dependencies, etc.

> - Al can cheaply generate the boring bits

| hope that was of some help.

