What are...matrix groups?

Or: The most important groups?!

Automorphisms of X form a group Aut(X):

- ► Multiplication is composition of maps Multiplication
- ► Composition of maps is associative Associativity
- ► The identity map is a do nothing operation Unit
- ► Automorphism are invertible Inverse
- ► Aut(finite sets) give symmetric groups
- ▶ Aut(field extensions) give Galois groups (roots of polynomials)
- $\operatorname{Aut}(\mathbb{K} \text{ vector spaces}) \text{ give } \operatorname{GL}_n(\mathbb{K})$
- $Aut(\mathbb{K} \text{ projective spaces})$ give $PGL_n(\mathbb{K})$

Small number coincidence: this is S_3

Producing finite groups

Multiplication table of $SL_2(\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z})$ (white=0, green=1, red=2):

<u>*</u>	00	00	::	::	::	::		00		::		:		•	:0	:0	0	•	:	:	0		:	
52	88	80	::	::	::	::	80	00		**	:	:	::	:0	•0	:0	:			::	:		::	::
44	::	::	00	80	8	00	::	::	:	::	::	:0	:	::	ះ		:	::	::	**	::	::	ះ	:
	::	::		.	•	••	::	::	:	::	:0	::	:	::	••	:	::	:	::	::	••	::	•	:
72	::	::	00	••	*	80	::	::	:	•0	•0	::	•	•	::	•	:0	::	••	•	•0	:	:	•
±=	::	::	••	••		00	::	::	••	:0	••	••	•	•	:	•	::	:0	:	••	•		••	•
-	8	•••	::	::	::	::	80	00	ះ	••	•	•	:	:	••	:	::	::	::	••	::	::	••	::
<u></u>	8	•	::	::	::	::	80	00	0.0	:	:	•	:	::	:	:	::	::	••	:	::	::	::	••
* ‡	•	••	:	••	ះ	••	:	••	:	•	00 00		::	::	•	••	::	::	:	••	••	••	••	•
0	••	•	••	:	••	•	•0	:	-	•	00	00	::	::	ះ	••	::	::	••	•0	:0	::	••	00
<u> </u>	8	:	:	•	:	:0	•	•0	••		8	•	••	:	::	::	::	::	••	••	::	::	:	••
₹ ∓	8	:	ះ	ះ	::	::	:	:	88	00	::	8	ះ	••		::	:	::	••	00	::	::	:	:
‡ ₽	:0	::	:	•0	•	•••	•	•	::	::	•0	:0	••	:	**		:	••	::	::	00	•	••	••
	••	::	••	•	:	•••	•••	••	::	::	•0	••	••	••	00	00	••	•	::	::	00	00	•	
*	••	••	••		:	•0	••	•	•0	•0		::	00		••	••	••	••			•••	•	::	
<u>+</u>	••	::	•		•0	:	:	••	•0	•0	::	::	80	00	:	:0	•	00	:	•	•	:	::	::
* =	•	•	0	00	•0	•0	•0	•••	00 00	•••			•		::	::	6	:0	00	00		::	••	•••
<u></u>	•••		0	0	•0	•0	•••	••	00	0		••	0	0	::		•0	0	00	0	::		••	••
<u>•</u>	••	•••	ē.		٥.	•••	•		•0	•0	õõ		ēō	00	•0	•0	00		••	0		••		
=	•0	0	•	**	:	00	00	••	••		::	••	••	00	•0	•0	00	00	••	••		00	••	::
<u>•</u>	••	••	••	•0	00	•••	••	••	••	•••	88	00			00	•	••	::	••	••	•0	••	00	00
*	•	**	•0	•0	0	0	••	••	••	•••	00	00			•	0	::	::	:	••	00	•0	80	00
<u>**</u>	•0	•••	ē.		••	••	00	0			ēē	ÖÖ	•0	•0	ēō	00	00			••	00		••	••
+ 0	••	:	::	::	ះ	•	8	•	::	::	::	::	:		00	80	•	•	::	::	80	00	:	

This is a group of order 24

A variant of Cayley's theorem. A finite group G of order n can be realized as a subgroup of $GL_n(\mathbb{Z})$

Proof idea. From the multiplication table of a finite group one gets matrices, e.g.

Subgroups of matrices are called linear groups All finite groups are linear but not all groups are linear • $\operatorname{GL}_n(\mathbb{F}_q)$ is a finite group of order

$$|\operatorname{GL}_n(\mathbb{F}_q)| = \prod_{k=0}^{n-1} (q^n - q^k)$$

so e.g.
$$|\mathrm{GL}_2(\mathbb{F}_q)|=(q^2-1)(q^2-q)$$

▶ $SL_n(\mathbb{F}_q)$ is a finite group of order

$$|\mathrm{SL}_n(\mathbb{F}_q)| = rac{1}{q-1} |\mathrm{GL}_n(\mathbb{F}_q)|$$

so e.g. $|\mathrm{SL}_2(\mathbb{F}_q)|=(q+1)(q^2-q)$

- ▶ $O_n(\mathbb{F}_q)$ is a finite group
- ▶ $\operatorname{Sp}_{2n}(\mathbb{F}_q)$ is a finite group

▶ etc.

 $\mathrm{GL}_n(\mathbb{F}_q)$ was one of the first groups formally discovered (by Galois ${\sim}1832)$

Thank you for your attention!

I hope that was of some help.