What are...examples of regular functions?

Or: Regular functions and localizations

For $\mathbb Z$ to $\mathbb Q$

▶ $R = \mathbb{Z}$ is a ring Numerator

- ▶ $S = \mathbb{Z} \setminus \{0\}$ is multiplicatively closed and $1 \in S$ Denominators
- ▶ Every $q \in \mathbb{Q}$ is of the form $s^{-1}r$ for $r \in R$ and $s \in S$ $\mathbb{Q} \cong S^{-1}R$
- ► $(\frac{a}{b} = \frac{r}{s}) \Leftrightarrow (sa = br) \Leftrightarrow (t(sa br) = 0 \text{ for } t \in S)$ Equivalence relation
- Q is a ring:
 ▷ Q has an addition ^a/_b + ^r/_s = ^{sa+br}/_{bs}
 ▷ Q has a multiplication ^a/_b · ^r/_s = ^{ar}/_{bs}
 ▷ Q has a zero ⁰/₁ and a one ¹/₁
 ℤ is a subring of Q by r ↦ ^r/₁

Rational functions

Complex rational functions [edit]

- ▶ R = "polynomials $\mathbb{K} \to \mathbb{K}$ " is a ring Numerator
- ▶ $S = \{s \in R \mid s(0) \neq 0\}$ is multiplicatively closed and $1 \in S$ Denominators
- Every regular function L is of the form $s^{-1}r$ for $r \in R$ and $s \in S$ $L \cong S^{-1}R$
- $(\frac{a}{b} = \frac{r}{s}) \Leftrightarrow (t(sa br) = 0 \text{ for } t \in S)$ Equivalence relation

▶ Regular functions form a ring:
 ▷ L has an addition ^a/_b + ^r/_s = ^{sa+br}/_{bs}
 ▷ L has a multiplication ^a/_b · ^r/_s = ^{ar}/_{bs}
 ▷ L has a zero ⁰/₁ and a one ¹/₁
 ▶ R has a map to L by r ↦ ^r/₁

Localization

Let R be a commutative ring and S be a multiplicatively closed set with $1 \in S$ (a) Equivalence relation on $R \times S$

$$(a,b)\sim (r,s) \Leftrightarrow \exists t\in S: t(sa-br)=0$$

(b) The set of equivalence classes $S^{-1}R$ Localization (localize at S)

(c) Addition on $S^{-1}R$

$$(a,b) + (r,s) = (sa + br, bs)$$

(d) Multiplication on $S^{-1}R$

$$(a,b)\cdot(r,s)=(ar,bs)$$

Slogan. Invert elements of S

- $S^{-1}R$ is a ring with zero (0, 1) and one (1, 1)
- ▶ There is a ring homomorphism $\iota \colon R \to S^{-1}R$ given by $r \mapsto (r, 1)$
- ι is injective (R is a subring of $S^{-1}R$) if and only if S contains no zero divisors
- Recall Regular functions = things of the form $\phi = f/g$
- Recall Localization = the thing above
- Observation Kind of the same, right?

For *V* affine variety, $f \in \mathbb{K}[V]$ we have:

 $\mathcal{O}_V(D(f)) \cong \mathbb{K}[V]_f$

where $\mathbb{K}[V]_f$ = localization of $\mathbb{K}[V]$ along $S = \{f, f^2, f^3, ...\}$

- ▶ Here $D(f) = V \setminus V(f) = \{v \in V | f(v) \neq 0\}$ are distinguished open sets
- ▶ Regular to coordinate functions 🚧 Laurent to usual polynomials

Example (not a distinguished open set) $V = \mathbb{K}^2$ and $U = \mathbb{K}^2 \setminus 0$, then

$$\mathcal{O}_V(U) \cong \mathbb{K}[x, y] \cong \mathcal{O}_V(V)$$

so one can extend functions from U to V

In complex analysis: every holomorphic function on C² \ 0 can be extended holomorphically to V = C²

Thank you for your attention!

I hope that was of some help.