What are...examples of regular functions?

Or: Regular functions and localizations

For \mathbb{Z} to \mathbb{Q}

- $R=\mathbb{Z}$ is a ring Numerator
- $S=\mathbb{Z} \backslash\{0\}$ is multiplicatively closed and $1 \in S$ Denominators
- Every $q \in \mathbb{Q}$ is of the form $s^{-1} r$ for $r \in R$ and $s \in S \mathbb{Q} \cong S^{-1} R$
- $\left(\frac{a}{b}=\frac{r}{s}\right) \Leftrightarrow(s a=b r) \Leftrightarrow(t(s a-b r)=0$ for $t \in S)$ Equivalence relation
- \mathbb{Q} is a ring:
$\triangleright \mathbb{Q}$ has an addition $\frac{a}{b}+\frac{r}{s}=\frac{s a+b r}{b s}$
$\triangleright \mathbb{Q}$ has a multiplication $\frac{a}{b} \cdot \frac{r}{s}=\frac{a r}{b s}$
$\triangleright \mathbb{Q}$ has a zero $\frac{0}{1}$ and a one $\frac{1}{1}$
- \mathbb{Z} is a subring of \mathbb{Q} by $r \mapsto \frac{r}{1}$

Rational functions

Julia sets for rational maps

- $R=$ "polynomials $\mathbb{K} \rightarrow \mathbb{K}$ " is a ring Numerator
- $S=\{s \in R \mid s(0) \neq 0\}$ is multiplicatively closed and $1 \in S$ Denominators
- Every regular function L is of the form $s^{-1} r$ for $r \in R$ and $s \in S L \cong S^{-1} R$
- $\left(\frac{a}{b}=\frac{r}{s}\right) \Leftrightarrow(t(s a-b r)=0$ for $t \in S)$ Equivalence relation
- Regular functions form a ring:
$\triangleright L$ has an addition $\frac{a}{b}+\frac{r}{s}=\frac{s a+b r}{b s}$
$\triangleright L$ has a multiplication $\frac{a}{b} \cdot \frac{r}{s}=\frac{a r}{b s}$
$\triangleright L$ has a zero $\frac{0}{1}$ and a one $\frac{1}{1}$
- R has a map to L by $r \mapsto \frac{r}{1}$

Localization

Let R be a commutative ring and S be a multiplicatively closed set with $1 \in S$
(a) Equivalence relation on $R \times S$

$$
(a, b) \sim(r, s) \Leftrightarrow \exists t \in S: t(s a-b r)=0
$$

(b) The set of equivalence classes $S^{-1} R$ Localization (localize at S)
(c) Addition on $S^{-1} R$

$$
(a, b)+(r, s)=(s a+b r, b s)
$$

(d) Multiplication on $S^{-1} R$

$$
(a, b) \cdot(r, s)=(a r, b s)
$$

Slogan. Invert elements of S

- $S^{-1} R$ is a ring with zero $(0,1)$ and one $(1,1)$
- There is a ring homomorphism $\iota: R \rightarrow S^{-1} R$ given by $r \mapsto(r, 1)$
$-\iota$ is injective $\left(R\right.$ is a subring of $S^{-1} R$) if and only if S contains no zero divisors
- Recall Regular functions $=$ things of the form $\phi=f / g$
- Recall Localization $=$ the thing above
- Observation Kind of the same, right?

For completeness: A formal statement

For V affine variety, $f \in \mathbb{K}[V]$ we have:

$$
\mathcal{O}_{V}(D(f)) \cong \mathbb{K}[V]_{f}
$$

where $\mathbb{K}[V]_{f}=$ localization of $\mathbb{K}[V]$ along $S=\left\{f, f^{2}, f^{3}, \ldots\right\}$

- Here $D(f)=V \backslash V(f)=\{v \in V \mid f(v) \neq 0\}$ are distinguished open sets
- Regular to coordinate functions $\leftrightarrow \rightsquigarrow$ Laurent to usual polynomials

Complex versus algebraic geometry - again

- Example (not a distinguished open set) $V=\mathbb{K}^{2}$ and $U=\mathbb{K}^{2} \backslash 0$, then

$$
\mathcal{O}_{V}(U) \cong \mathbb{K}[x, y] \cong \mathcal{O}_{V}(V)
$$

so one can extend functions from U to V

- In complex analysis: every holomorphic function on $\mathbb{C}^{2} \backslash 0$ can be extended holomorphically to $V=\mathbb{C}^{2}$

Thank you for your attention!

I hope that was of some help.

