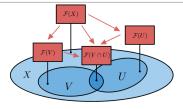
What are...sheaves, take 2?

Or: A discrete version

Recall from the previous video



Sheaves, in a limited way for now and only on some (complex) manifold M:

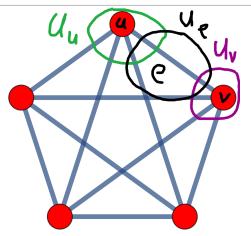
(i) A presheaf \mathcal{F} is a collection

$$\mathcal{F}(U) = \{f \colon U \to \mathbb{C} \text{ satisfying condition X (e.g. holomorphic)}\}$$

for any nonempty open subset $U\subset M$ such that the restriction $f|_{U'}\in\mathcal{F}(U')$ for all $f\in\mathcal{F}(U)$ and $U'\subset U$

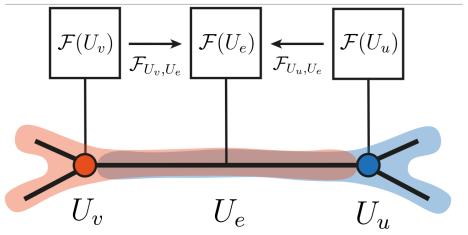
- (ii) A presheaf \mathcal{F} is a sheaf if for any open set $U \subset M$ and any open cover U_i : $f \in \mathcal{F}(U)$ if $f|_{U_i} \in \mathcal{F}(U_i)$
- ▶ Staring at the above definition, what catches the eye ?
- ▶ Sheaf = a way to associate data to a space, e.g. $(\mathcal{F}(U))$ to U to M
- ► Today The same idea applied in a discrete context

Open sets on graphs



- ► Graph/Network = a collection of vertices and edges
- ► Open sets for vertices and edges as above
- ► So what is a sheaf on a graph ?

Presheaves on graphs



- ▶ Pick a finite dimensional vector space $\mathcal{F}(v)$ for vertex
- ▶ Pick a finite dimensional vector space $\mathcal{F}(e)$ for edge
- ▶ Pick restriction maps $\mathcal{F}(u) \to \mathcal{F}(e)$ and $\mathcal{F}(v) \to \mathcal{F}(e)$ for $e: u \to v$

For completeness: A formal statement

 \mathcal{F} is a sheaf (of finite dimensional vector spaces) on a graph G if:

- (i) ${\mathcal F}$ is a presheaf as on the previous slide
- (ii) In this case we need nothing more A little miracle
 - ► Here is an example:

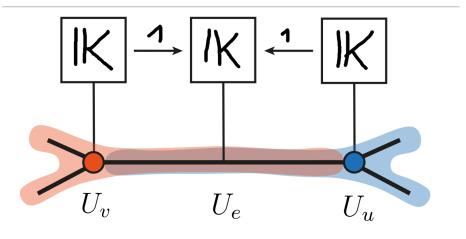
$$R^{2} = F(V_{1})$$

$$F(e_{12}) = R^{2}$$

$$F(v_{2}) = R^{3}$$

► Constant sheaf = all vector spaces are the same, all maps identities

Structure sheaf



- ▶ Structure sheaf = all vector spaces are the field, all maps are identities
- **Boils down to**: Every vertex has the field, say \mathbb{K} , every edge-mid-point the field as well, and every interval between vertex and edge-mid-point gets the scalar 1

Thank you for your attention!

I hope that was of some help.