What are...examples of sheaves?

Or: Sheaves are everywhere

My favorite example

► Sheaf of fin. dim. vector spaces on X (some graph)

$$\mathbf{\mathcal{F}}(U) = \mathbb{R}^n \text{ for } n = n(U)$$

•
$$\mathcal{F}(U, V) \colon \mathcal{F}(U) \to \mathcal{F}(V) =$$
a matrix

Variation Replace "fin. dim. vector spaces" with some more structure object

The textbook example

- ► Sheaf of abelian groups on X (some topological space)
- ► $\mathcal{F}(U) = \{f : U \to \mathbb{R} | f \text{ is continuous}\}$ with point-wise addition
- $\mathcal{F}(U, V) \colon \mathcal{F}(U) \to \mathcal{F}(V) = \text{restriction map}$

Variation Replace "continuous" with some other local property

The fancy example

Sheaf of sections of $f: Y \to X$ (some continuous map)

$$\blacktriangleright \mathcal{F}(U) = \{s \colon U \to Y | f \circ s = id_U\}$$

▶
$$\mathcal{F}(U, V)$$
: $\mathcal{F}(U) \to \mathcal{F}(V) =$ restriction map

Example $f = exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}, \mathcal{F}(U) = \text{branches of the complex logarithm}$

Here is a list of important sheaves beyond the previous examples:

On (smooth) manifolds

- Dash j times differentiable \mathcal{O}_M^j or smooth \mathcal{O}_M^∞ functions $M o \mathbb{R}$
- \triangleright The one for maximal *j* is called the structure sheaf
- \triangleright Differential forms Ω^p_M (of degree p) on M
- Skyscraper sheaf on a topological space associated to a fixed point a fixed gadget and 'nothing' to the rest, e.g. an abelian group to x and the zero group to $y \neq x$
- Constant sheaf on a topological space associated to every point a fixed gadget, e.g. an abelian group

The categorical "example"

Presheaf categorically = a functor from the op of lattice of open sets of a topological space X to whatever you want your sheaf to be equipped with, e.g.

$$\operatorname{Open}_X^{op} \to \operatorname{Set}$$

We get that sheaf form a category $[Open_X^{op}, Set]$

Sheaf categorically = add an equalizer condition

► This perspective leads to a generalization ("topos") and more examples

Thank you for your attention!

I hope that was of some help.